Assessing Yield and Yield Stability of Hevea Clones in the Southern and Central Regions of Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Planting Materials and Locations
2.2. Data Collection
2.3. Yield Stability Analysis
2.4. Rubber Yields and Climatic Data
3. Results and Discussion
3.1. Mean Yields and Yield Stability
3.2. Rubber Yields and Climate
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fox, J.; Castella, J.C. Expansion of rubber (Hevea brasiliensis) in Mainland Southeast Asia: What are the prospects for smallholders? J. Peasant Stud. 2013, 40, 155–170. [Google Scholar] [CrossRef]
- MRB. Pocket Book 2020; Malaysian Rubber Board: Kuala Lumpur, Malaysia, 2020. [Google Scholar]
- Sharib, S.; Halog, A. Enhancing value chains by applying industrial symbiosis concept to the Rubber City in Kedah, Malaysia. J. Clean. Prod. 2017, 141, 1095–1108. [Google Scholar] [CrossRef]
- Goh, H.H.; Tan, K.L.; Khor, C.Y.; Ng, S.L. Volatility and market risk of rubber price in Malaysia: Pre- and Post-global financial crisis. J. Quant. Econ. 2016, 14, 323–344. [Google Scholar] [CrossRef]
- Wee, S.M.W.J.; Singaravelloo, K. Income Targets and Poverty of Rubber Smallholders. J. Malays. Inst. Plan. 2018, 16, 381–396. [Google Scholar]
- Purcell, T.D. The Factors Affecting the Long Run Supply of Rubber from Sarawak, East Malaysia, 1900–1990—An Historical and Econometric Analyis. Master’s Thesis, The University of Queensland, Brisbane, Australia, 8 November 1993. [Google Scholar]
- Paardekooper, E.C. Exploitation of the Rubber Tree. Rubber 1989, 5, 349–414. [Google Scholar]
- Gonçalves, P.D.S.; Silva, M.D.A.; Gouvêa, L.R.L.; Scaloppi Junior, E.J. Genetic variability for girth growth and rubber yield in Hevea brasiliensis. Sci. Agric. 2006, 63, 246–254. [Google Scholar] [CrossRef] [Green Version]
- Vinod, K.K.; Suryakumar, M.; Chandrasekhar, T.R.; Nazeer, M.A. Temporal stability of growth and yield among Hevea genotypes introduced to a non-traditional rubber growing region of peninsular India. Ann. For. Res. 2010, 53, 107–115. [Google Scholar]
- Das, G.; Reju, M.J.; Mondal, G.C.; Singh, R.P.; Thapliyal, A.P.; Chaudhuri, D. Adaptation of Hevea brasiliensis clones in three widely different cold prone areas of northeastern India. Indian J. Plant Physiol. 2013, 18, 231–239. [Google Scholar] [CrossRef]
- Priyadarshan, P.M. Contributions of weather variables for specific adaptation of rubber tree (Hevea brasiliensis Muell.-Arg) clones. Genet. Mol. Biol. 2003, 26, 435–440. [Google Scholar] [CrossRef]
- Njukeng, J.N.; Muenyi, P.M.; Ngane, B.K.; Ehabe, E.E. Ethephon stimulation and yield response of some Hevea clones in the humid forests of South West Cameroon. Int. J. Agron. 2011, 2011, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Soumahin, E.F.; Obouayeba, S.; Anno, P.A. Low tapping frequency with hormonal stimulation on Hevea brasiliensis clone PB 217 reduces tapping manpower requirement. J. Anim. Plant Sci. 2009, 2, 109–117. [Google Scholar]
- Gonçalves, P.D.S.; Luiz Teixeira de Moraes, M.; de Almeida Silva, M.; Regina Lima Gouvêa, L.; Tosoni da Eira Aguiar, A.; Brito da Costa, R. Prediction of Hevea progeny performance in the presence of genotype-environment interaction. Braz. Arch. Biol. Technol. 2009, 52, 25–33. [Google Scholar] [CrossRef]
- Priyadarshan, P.M.; Dey, S.K.; Nazeer, M.A.; Varghese, Y.A.; Kang, M.S. Adaptability analysis of rubber (Hevea Brasiliensis Muell.-Arg.) clones via GGE biplot. J. Rubber Res. 2008, 11, 237–244. [Google Scholar]
- Silva, G.A.P.; Gouvêa, L.R.L.; Verardi, C.K.; Oliveira, A.L.B.; de Gonçalves, P.D.S. Annual growth increment and stability of rubber yield in the tapping phase in rubber tree clones: Implications for early selection. Ind. Crop. Prod. 2014, 52, 801–808. [Google Scholar] [CrossRef]
- Thanh, T.; Tuy, L.M.; Lam, L. Van. Genotype × environment interaction of Hevea clones in traditional and non-traditional rubber growing regions of Vietnam. J. Plant Interact. 2016, 11, 20–29. [Google Scholar] [CrossRef] [Green Version]
- De Vita, P.; Mastrangelo, A.M.; Matteu, L.; Mazzucotelli, E.; Virzì, N.; Palumbo, M.; Storto, M.; Lo Rizza, F.; Cattivelli, L. Genetic improvement effects on yield stability in durum wheat genotypes grown in Italy. Field Crop. Res. 2010, 119, 68–77. [Google Scholar] [CrossRef]
- Piepho, H.P. Methods for comparing the yield stability of cropping systems—A review. J. Agron. Crop Sci. 1998, 180, 193–213. [Google Scholar] [CrossRef]
- Zhe, Y.; Lauer, J.G.; Borges, R.; de Leon, N. Effects of genotype × environment interaction on agronomic traits in soybean. Crop Sci. 2010, 50, 696–702. [Google Scholar]
- Berzsenyi, Z.; Gyorffy, B.; Lap, D. Effect of Crop Rotation and Fertilisation on Maize and Wheat Yields and Yield Stability. Eur. J. Agron. 2000, 13, 225–244. [Google Scholar] [CrossRef]
- Macholdt, J.; Honermeier, B. Yield stability in winter wheat production: A survey on German farmers’ and advisors’ views. Agronomy 2017, 7, 45. [Google Scholar] [CrossRef] [Green Version]
- Basso, B.; Shuai, G.; Zhang, J.; Robertson, G.P. Yield stability analysis reveals sources of large-scale nitrogen loss from the US Midwest. Sci. Rep. 2019, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Chandrasekhar, T.R.; Marattukalam, J.G.; Mercykutty, V.C.; Priyadarshan, P.M. Age of yield stabilization and its implications for optimising selection and shortening breeding cycle in rubber (Hevea brasiliensis Muell. Arg.). Euphytica 2007, 156, 67–75. [Google Scholar] [CrossRef]
- Williams, A.; Hunter, M.C.; Kammerer, M.; Kane, D.A.; Jordan, R.; Mortensen, D.A.; Smith, R.G.; Snapp, S.; Davis, A.S. Soil Water Holding Capacity Mitigates Downside Risk and Volatility in US Rainfed Maize: Time to Invest in Soil Organic Matter? PLoS ONE 2016, 11, e0160974. [Google Scholar] [CrossRef] [PubMed]
- Gonçalves, P.D.S.; Bortoletto, N.; Martins, A.L.M.; Costa, R.B.; da Gallo, P.B. Genotype-environment interaction and phenotypic stability for girth growth and rubber yield of Hevea clones in São Paulo State, Brazil. Genet. Mol. Biol. 2003, 26, 441–448. [Google Scholar] [CrossRef]
- Koo, Y.B.; Yeo, J.K.; Woo, K.S.; Kim, T.S. Selection of superior clones by stability analysis of growth performance in Populus davidiana Dode at age 12. Silvae Genet. 2007, 56, 93–101. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, P.D.S.; Martins, A.L.M.; Bortoletto, N.; Saes, L.A. Selection and genetic gains for juvenile traits in progenies of Hevea in São Paulo State, Brazil. Genet. Mol. Biol. 2004, 27, 207–214. [Google Scholar] [CrossRef]
- Gonçalves, P.D.S.; Júnior, E.J.S.; Martins, M.A.; Moreno, R.M.B.; Branco, R.B.F.; Gonçalves, E.C.P. Assessment of growth and yield performance of rubber tree clones of the IAC 500 series. Pesqui. Agropecu. Bras. 2011, 46, 1643–1649. [Google Scholar] [CrossRef] [Green Version]
- Gouvêa, L.R.L.; Silva, G.A.P.; Verardi, C.K.; de Oliveira, A.L.B.; Gonçalves, E.C.P.; Scaloppi-Junior, E.J.; de Moraes, M.L.T.; Gonçalves, P.D.S. Rubber tree early selection for yield stability in time and among locations. Euphytica 2013, 191, 365–373. [Google Scholar] [CrossRef]
- Silva, G.A.P.; Gouvêa, L.R.L.; Verardi, C.K.; Resende, M.D.V.; Scaloppi Junior, E.J.; Gonçalves, P.S. Genetic parameters and correlation in early measurement cycles in rubber trees. Euphytica 2013, 189, 343–350. [Google Scholar] [CrossRef]
- Souza, A.M.D.; Gouvêa, L.R.L.; de Oliveira, A.L.B.; Silva, G.A.P.; Gonçalves, P.D.S. Estimates of genetic parameters for the rubber yield and secondary traits in rubber tree. Ind. Crop. Prod. 2017, 98, 19–24. [Google Scholar] [CrossRef]
- Golbon, R.; Ogutu, J.O.; Cotter, M.; Sauerborn, J. Rubber yield prediction by meteorological conditions using mixed models and multi-model inference techniques. Int. J. Biometeorol. 2015, 59, 1747–1759. [Google Scholar] [CrossRef] [PubMed]
- Rao, P.S.; Saraswathyamma, C.K.; Sethuraj, M.R. Studies on the relationship between yield and meteorological parameters of para rubber tree (Hevea brasiliensis). Agric. For. Meteorol. 1998, 90, 235–245. [Google Scholar] [CrossRef]
- Yang, X.; Blagodatsky, S.; Marohn, C.; Liu, H.; Golbon, R.; Xu, J.; Cadisch, G. Climbing the mountain fast but smart: Modelling rubber tree growth and latex yield under climate change. For. Ecol. Manag. 2019, 439, 55–69. [Google Scholar] [CrossRef]
- Yu, H.; Hammond, J.; Ling, S.; Zhou, S.; Edward, P.; Xu, J. Greater diurnal temperature difference, an overlooked but important climatic driver of rubber yield. Ind. Crop. Prod. 2014, 62, 14–21. [Google Scholar] [CrossRef]
- Isik, M.; Devadoss, S. An analysis of the impact of climate change on crop yields and yield variability. Appl. Econ. 2006, 38, 835–844. [Google Scholar] [CrossRef]
- Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N.; et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc. Natl. Acad. Sci. USA 2014, 111, 3268–3273. [Google Scholar] [CrossRef] [Green Version]
- Webber, H.; Gaiser, T.; Ewert, F. What role can crop models play in supporting climate change adaptation decisions to enhance food security in Sub-Saharan Africa? Agric. Syst. 2014, 127, 161–177. [Google Scholar] [CrossRef]
- Suhaila, J. Trend analysis and change point detection of annual and seasonal temperature series in Peninsular Malaysia. Meteorol. Atmos. Phys. 2018, 130, 565–581. [Google Scholar] [CrossRef]
- Tang, K.H.D. Science of the total environment climate change in Malaysia: Trends, contributors, impacts, mitigation and adaptations. Sci. Total Environ. 2019, 650, 1858–1871. [Google Scholar] [CrossRef]
- Wong, C.; Yusop, Z.; Ismail, T. Trend of daily rainfall and temperature in Peninsular Malaysia based on gridded data set. Int. J. 2018, 14, 65–72. [Google Scholar] [CrossRef]
- Withanage, S.P.; Attanayake, G.; Karunasekara, K.A. Adaptability of recently recommended rubber clones for agro-climatic variability of Sri Lanka. J. Rubber Res. Inst. Sri Lanka 2005, 87, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Daud, W.N. Rubber Plantation: Soil Management & Nutritional Requirement; Universiti Putra Malaysia Press: Serdang, Malaysia, 2013. [Google Scholar]
- Mokhatar, S.J.; Daud, N.W.; Ishak, C.F. Response of Hevea Brasiliensis (RRIM 2001) planted on an Oxisol to different rates of fertilizer application. Malays. J. Soil Sci. 2012, 16, 57–69. [Google Scholar]
- MRB. Rubber Plantation and Processing Technologies; Malaysian Rubber Board: Kuala Lumpur, Malaysia, 2009. [Google Scholar]
- Yew, F.K.; Chan, H.Y. Soil suitability classification systems for Hevea brasiliensis cultivation. J. Nat. Rubber Res. 1992, 7, 290–302. [Google Scholar]
- White, J.W.; Hoogenboom, G.; Wilkens, P.W.; Stackhouse, P.W.; Hoel, J.M. Evaluation of satellite-based, modeled-derived daily solar radiation data for the continental United States. Agron. J. 2011, 103, 1242–1251. [Google Scholar] [CrossRef] [Green Version]
- Monteiro, L.A.; Sentelhas, P.C.; Pedra, G.U. Assessment of NASA/POWER satellite-based weather system for Brazilian conditions and its impact on sugarcane yield simulation. Int. J. Climatol. 2018, 38, 1560–1570. [Google Scholar] [CrossRef]
- Van Wart, J.; Kersebaum, K.C.; Peng, S.; Milner, M.; Cassman, K.G. Estimating crop yield potential at regional to national scales. Field Crop. Res. 2013, 143, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Kattel, D.B.; Yao, T.; Yang, W.; Gao, Y.; Tian, L. Comparison of temperature lapse rates from the northern to the southern slopes of the Himalayas. Int. J. Climatol. 2015, 35, 4431–4443. [Google Scholar] [CrossRef]
- Hildebrand, P.E.; Russell, J.T. Adaptability Analysis: A Method for the Design, Analysis and Interpretation of On-Farm Research-Extension; Iowa State University Press: Ames, IA, USA, 1996. [Google Scholar]
- Smith, R.G.; Menalled, F.D.; Robertson, G.P. Temporal yield variability under conventional and alternative management systems. Agron. J. 2007, 99, 1629–1634. [Google Scholar] [CrossRef] [Green Version]
- Döring, T.F.; Knapp, S.; Cohen, J.E. Taylor’s power law and the stability of crop yields. Field Crop. Res. 2015, 183, 294–302. [Google Scholar] [CrossRef]
- Team, R.C. A Language and Environment for Statistical Computing 2016; R Foundation for Statistical Computing: Vienna, Austria, 2016. [Google Scholar]
- Galecki, A.; Burzykowski, T. Linear Mixed-Effects Models Using R; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Finlay, K.W.; Wilkinson, G.N. The analysis of adaptation in a plant breeding. Aust. J. Agric. Resour. 1963, 14, 742–754. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Das, G.; Mydin, K.K. Performance of some Hevea clones under the cold prone climate of Sub-Himalayan West Bengal. Rubber Sci. 2015, 28, 37–44. [Google Scholar]
- Carr, M.K.V. The water relations of rubber (hevea brasiliensis): A review. Exp. Agric. 2012, 48, 176–193. [Google Scholar] [CrossRef]
- Priyadarshan, P.M. Biology of Hevea Rubber; CABI: Preston, UK, 2011. [Google Scholar]
- Priyadarshan, P.M. Biology of Hevea Rubber; Springer International Publishing AG: Cham, Switzerland, 2017. [Google Scholar]
- Zongdao, H.; Xueqin, Z. Rubber cultivation in China. In Proceedings of the Rubber Research Institute of Malaysia Planters’ Conference, Kuala Lumpur, Malaysia, 17–19 October 1983; pp. 31–43. [Google Scholar]
- Shuochang, A.; Yagang, G. Exploration of the high yield physiological regulation of Hevea brasiliensis in Xishuangbanna. In Proceedings of the IRRDB Symposium on Physiology and Exploitation of Hevea Brasiliensis, Kunming, China, 6–7 October 1990; pp. 83–92. [Google Scholar]
- Jiang, A. Climate and natural production of rubber (Hevea brasiliensis) in Xishuangbanna, southern part of Yunnan province, China. Int. J. Biometeorol. 1988, 32, 280–282. [Google Scholar] [CrossRef]
- Emmanuel, L.A.; Batablinlè, L.; Célestin, M.; Hodabalo, K. Future extremes temperature: Trends and changes assessment over the Mono River Basin, Togo (West Africa). J. Water Resour. Prot. 2019, 11, 82–98. [Google Scholar] [CrossRef] [Green Version]
- Fallah-Ghalhari, G.; Shakeri, F.; Dadashi-Roudbari, A. Impacts of climate changes on the maximum and minimum temperature in Iran. Theor. Appl. Climatol. 2019, 138, 1539–1562. [Google Scholar] [CrossRef]
- Li, L.; Yao, N.; Li, Y.; Liu, D.L.; Wang, B.; Ayantobo, O.O. Future projections of extreme temperature events in different sub-regions of China. Atmos. Res. 2019, 217, 150–164. [Google Scholar] [CrossRef]
- Zhou, Y.F. Rubber Cultivation in Yunnan; Yunnan University Press: Kunming, China, 2008; p. 176. [Google Scholar]
- Devakumar, A.S.; Rao, G.G.; Rajagopal, R.; Rao, P.S.; George, M.J.; Vijayakumar, K.R.; Sethuraj, M.R. Studies on soil-plant-atmosphere system in Hevea. II. Seasonal effects on water relations and yield. Indian J. Nat. Rubber Res. 1988, 1, 45–60. [Google Scholar]
- Rao, G.G.; Rao, P.S.; Rajagopal, R.; Devakumar, A.S.; Vijayakumar, K.R.; Sethuraj, M.R. Influence of soil, plant and meteorological factors on water relations and yield in Hevea brasiliensis. Int. J. Biometeorol. 1990, 34, 175–180. [Google Scholar] [CrossRef]
- Junjittakarn, J.; Limpinuntana, V.; Do, F.C.; Pannengpetch, K.; Isarangkool Na Ayutthaya, S.; Rocheteau, A.; Cochard, H. Vapour pressure deficit affects diurnal girth fluctuation of rubber trees (Hevea brasiliensis). Aust. J. Crop Sci. 2011, 5, 1622–1630. [Google Scholar]
Variable | Kota Tinggi Research Station (Southern Region) | Sungai Buloh Research Station (Central Region) |
---|---|---|
Latitude | 1.7294° N | 3.2093° N |
Longitude | 103.8992° E | 101.5613° E |
Elevation (m) | 14 | 31 |
Annual mean temperature (°C) | 27.0 | 27.5 |
Annual mean rainfall (mm) | 2755 | 2478 |
Soil series and class | Bungor, III | Holyrood, IV |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ali, M.F.; Abdul Aziz, A.; Williams, A. Assessing Yield and Yield Stability of Hevea Clones in the Southern and Central Regions of Malaysia. Agronomy 2020, 10, 643. https://doi.org/10.3390/agronomy10050643
Ali MF, Abdul Aziz A, Williams A. Assessing Yield and Yield Stability of Hevea Clones in the Southern and Central Regions of Malaysia. Agronomy. 2020; 10(5):643. https://doi.org/10.3390/agronomy10050643
Chicago/Turabian StyleAli, Muhammad Fadzli, Ammar Abdul Aziz, and Alwyn Williams. 2020. "Assessing Yield and Yield Stability of Hevea Clones in the Southern and Central Regions of Malaysia" Agronomy 10, no. 5: 643. https://doi.org/10.3390/agronomy10050643
APA StyleAli, M. F., Abdul Aziz, A., & Williams, A. (2020). Assessing Yield and Yield Stability of Hevea Clones in the Southern and Central Regions of Malaysia. Agronomy, 10(5), 643. https://doi.org/10.3390/agronomy10050643