Assessment of Algerian Maize Populations for Saccharification and Nutritive Value
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Identifying Promising Algerian Populations in Relation to Grain Nutritional Composition
3.2. Identifying a Saccharification Use of the Stover under Stressed Conditions
3.3. Effects of Agronomic Traits and Grain Nutrients on Saccharification
3.4. Effects of Grain Nutrients on Plant Development
- i.
- For early vigor under drought stress: Early vigor = 31.15 − 0.39 × Starch, R2 = 0.33 (p = 0.0491).
- ii.
- For pollen shedding under control conditions: Pollen shedding = 61.10 − 17.26 × Ash − 3.88 × Lipids + 4.12 × Proteins, R2 = 0.27 (p = 0.0875) for ash, 0.32 (p = 0.0284) for proteins; and 0.11 (p = 0.1243) for lipids.
- iii.
- For plant height under control conditions: Plant height = 636.75 − 7.00 × Starch, R2 = 0.34 (p = 0.0468); and plant height under drought stress: Plant height = 878.82 − 11.29 × Starch, R2 = 0.65 (p = 0.0016).
- iv.
- For ear height under control conditions: Ear height = 279.20 − 4.52 × Starch − 60.08 × Ash + 15.11 × Proteins, R2 = 0.34 (p = 0.0450) for proteins, 0.33 (p = 0.0142) for ash; and 0.08 (p = 0.1435) for starch; and ear height under drought stress: Ear height = 569.31 − 7.63 × Starch, R2 = 0.58 (p = 0.0041).
- v.
- For grain yield under drought stress: Grain yield = −2.81 + 0.79 × Lipids, R2 = 0.34 (p = 0.0479).
- vi.
- For grain moisture under control conditions: Grain moisture = 27.65 − 8.23 × Ash, R2 = 0.40 (p = 0.0277).
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Choudhary, M.; Singh, A.; Gupta, M.; Rakshit, S. Enabling technologies for utilization of maize as a bioenergy feedstock. Biofuels Bioprod. Biorefining 2019, 14, 402–416. [Google Scholar] [CrossRef]
- Fisher, M.; Tsedeke, A.Y.; Lunduka, R.W.; Asnake, W.; Alemayehu, Y.; Madulu, R.B. Drought tolerant maize for farmer adaptation to drought in sub-Saharan Africa: Determinants of adoption in eastern and southern Africa. Clim. Chang. 2015, 133, 283–299. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.P.; Xu, W.W.; Velten, J.; Xin, Z.G.; Stout, J. Characterization of maize inbred lines for drought and heat tolerance. J. Soil Water Conserv. 2012, 67, 354–364. [Google Scholar] [CrossRef] [Green Version]
- Djemel, A.; Revilla, P.; Hanifi-Mekliche, L.; Malvar, R.A.; Álvarez, A.; Khelifi, L. Maize (Zea mays L.) from the Saharan oasis: Adaptation to temperate areas and agronomic performance. Genet. Res. Crop Evol. 2012, 59, 1493–1504. [Google Scholar] [CrossRef] [Green Version]
- Djemel, A.; Cherchali, Z.F.; Benchikh, L.H.M.; Malvar, R.A.; Revilla, P. Assessment of drought tolerance among Algerian maize populations from oases of the Saharan. Euphytica 2018, 214, 149. [Google Scholar] [CrossRef]
- Djemel, A.; Álvarez-Iglesias, L.; Santiago, R.; Malvar, R.A.; Pedrol, N.; Revilla, P. Algerian maize populations from the Sahara Desert as potential sources of drought tolerance. Acta Physiol. Plant. 2019, 41, 12. [Google Scholar] [CrossRef]
- Sarwar, M.H.; Sarwar, M.F.; Sarwar, M.; Qadri, N.A.; Moghal, S. The importance of cereals (Poaceae: Gramineae) nutrition in human health: A review. J. Cereals Oilseeds 2013, 4, 32–35. [Google Scholar] [CrossRef]
- Inglett, G.E. Kernel structure, composition, and quality. In Corn: Culture, Processing, Products; AviPublishing: Westport, CT, USA, 1970; pp. 123–137. [Google Scholar]
- Brown, W.L.; Bressani, R.; Glover, D.V.; Hallauer, A.R.; Johnson, V.A.; Qualset, C.O. Quality-Protein Maize: Report of an Ad Hoc Panel of the Advisory Committee on Technology Innovation. Board on Science and Technology for International Development, National Research Council, in Cooperation with the Board on Agriculture, National Research Council; National Academy Press: Washington, DC, USA, 1988. [Google Scholar]
- Mertz, E.T. Nutritive value of corn and its products. In Corn: Culture, Processing, Products; Inglett, G.E., Ed.; AviPublishing: Westport, CT, USA, 1970; pp. 350–359. [Google Scholar]
- Dhugga, K.S. Maize biomass yield and composition for biofuels. Crop Sci. 2007, 47, 2211–2227. [Google Scholar] [CrossRef]
- Vermerris, W.; Saballos, A.; Ejeta, G.; Mosier, N.S.; Ladisch, M.R.; Carpita, N.C. Molecular breeding to enhance ethanol production from corn and sorghum Stover. Crop Sci. 2007, 47, 142–153. [Google Scholar] [CrossRef]
- Lorenz, A.J.; Coors, J.G.; De Leon, N.; Wolfrum, E.J.; Hames, B.R.; Sluiter, A.D.; Weimer, P.J. Characterization, genetic variation, and combining ability of maize traits relevant to the production of cellulosic ethanol. Crop Sci. 2009, 49, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Kadam, K.L.; McMillan, J.D. Availability of corn stover as a sustainable feedstock for bioethanol production. Bioresour. Technol. 2003, 88, 17–25. [Google Scholar] [CrossRef]
- Graham, R.L.; Nelson, R.; Sheehan, J.; Perlack, R.D.; Wright, L.L. Current and potential U.S. corn stover supplies. Agron. J. 2007, 99, 1–11. [Google Scholar] [CrossRef]
- Tenenbaum, D.J. Food vs. fuel: Diversion of crops could cause more hunger. Environ. Health Perspect. 2008, 116, A254–A257. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Han, J.; Dunn, J.B.; Cai, H.; Elgowainy, A. Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use. Environ. Res. Lett. 2012, 7, 45905. [Google Scholar] [CrossRef] [Green Version]
- Aci, M.M.; Revilla, P.; Morsli, A.; Djemel, A.; Belalia, N.; Kadri, Y.; Khelifi-Saloui, M.; Ordás, B.; Khelifi, L. Genetic diversity in Algerian maize (Zea mays L.) landraces using SSR markers. Maydica 2013, 58, 304–310. [Google Scholar]
- Cherchali, F.Z.; Ordás, B.; Revilla, P.; Pedrol, N.; Djemel, A. Heterotic Patterns among Algerian, US Corn Belt, and European Flint Maize Populations under the Mediterranean Conditions of North Africa. Crop Sci. 2018, 58, 2422–2432. [Google Scholar] [CrossRef]
- Maafi, O.; Djemel, A.; Álvarez-Iglesias, L.; Malvar, R.A.; Revilla, P. Adaptation assessment of drought tolerant maize populations from the Sahara in both shores of the Mediterranean Sea. Euphytica 2020. under revision. [Google Scholar]
- BOE 17/02/2000. ORDEN de 16 de Febrero de 2000 por la que se Modifica el Anexo del Real Decreto2257/1994, de 25 de Noviembre, por el que se Aprueban los Métodos Oficiales de Análisis de Piensos o Alimentos para Animales y sus Primeras Materias y el Real Decreto 1999/1995, de 7 de Diciembre, Relativo a los Alimentos Para Animales Destinados a Objetivos de Nutrición Específicos; State Agency of Official State Gazette: Madrid, Spain, 2000. [Google Scholar]
- BOE 02/03/1995. Real Decreto2257/1994, de 25 de Noviembre, por el que se Aprueban los Métodos Oficiales de Análisis de Piensos o Alimentos para Animales y sus Primeras Materias; State Agency of Official State Gazette: Madrid, Spain, 1995. [Google Scholar]
- Gomez, L.D.; Whitehead, C.; Barakate, A.; Halpin, C.; McQueen-Mason, S.J. Auto-mated saccharification assay for determination of digestibility in plant materials. Biotechnol. Biofuel 2010, 3, 23. [Google Scholar] [CrossRef] [Green Version]
- SAS Institute Inc. SAS/STAT® 9.2 User’s Guide; SAS Institute Inc.: Cary, NC, USA, 2008. [Google Scholar]
- Blandino, M.; Mancini, M.C.; Alessandro, P.; Luca, R.; Francesca, V.; Amedeo, R. Determination of maize kernel hardness: Comparison of different laboratory tests to predict dry-milling performance. J. Sci. Food Agric. 2010, 90, 1870–1878. [Google Scholar] [CrossRef]
- Moore, J.P.; Vicré-Gibouin, M.; Farrant, J.M.; Driouich, A. Adaptations of higher plant cell walls to water loss: Drought vs. desiccation. Physiol. Plant. 2008, 134, 237–245. [Google Scholar] [CrossRef]
- Pauly, M.; Keegstra, K. Plant cell wall polymers as precursors for biofuels. Curr. Opin. Plant Biol. 2010, 13, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Li, W.C.; Xu, Y.Q.; Li, G.J.; Liao, Y.; Fu, F.L. Differential expression of candidate genes for lignin biosynthesis under drought stress in maize leaves. J. Appl. Genet. 2009, 50, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Meibaum, B.; Riede, S.; Schröder, B.; Manderscheid, R.; Weigel, H.J.; Breves, G. Elevated CO2 and drought stress effects on the chemical composition of maize plants, their ruminal fermentation and microbial diversity in vitro. Arch. Anim. Nutr. 2012, 66, 473–489. [Google Scholar] [CrossRef] [PubMed]
- Emerson, R.; Hoover, A.; Ray, A.; Lacey, J.; Cortez, M.; Payne, C.; Karlen, D.; Birrell, S.; Laird, D.; Kallenbach, R.; et al. Drought effects on composition and yield for corn stover, mixed grasses, and Miscanthus as bioenergy feedstocks. Biofuels 2014, 5, 275–291. [Google Scholar] [CrossRef] [Green Version]
- El Hage, F.; Legland, D.; Borrega, N.; Jacquemot, M.P.; Griveau, Y.; Coursol, S.; Mechin, V.; Reymond, M. Tissue lignification, cell wall p-coumaroylation and degradability of maize stems depend on water status. J. Agric. Food Chem. 2018, 66, 4800–4808. [Google Scholar] [CrossRef] [PubMed]
- Van der Weijde, T.; Huxley, L.M.; Hawkins, S.; Sembiring, E.H.; Farrar, K.; Dolstra, O.; Visser, R.G.F.; Trindade, L.M. Impact of drought stress on growth and quality of miscanthus for biofuel production. GCB Bioenergy 2017, 9, 770–782. [Google Scholar] [CrossRef] [Green Version]
- Barros-Rios, J.; Romani, A.; Peleteiro, S.; Garrote, G.; Ordás, B. Second-generation bioethanol of hydrothermally pretreated stover biomass from maize genotypes. Biomass Bioenergy 2016, 90, 42–49. [Google Scholar] [CrossRef]
Population | Starch | Ash | Lipids | Proteins |
---|---|---|---|---|
EPS13(FR)C3 | 76.82 c | 1.97 ab | 6.23 a | 14.98 a |
PI527465 | 78.71 a | 1.56 b | 6.12 a | 13.61 a |
PI527467 | 77.83 abc | 1.62 b | 5.95 a | 14.61 a |
PI527469 | 77.04 abc | 1.78 ab | 6.48 a | 14.70 a |
PI527470 | 77.91 ab | 1.66 b | 6.01 a | 14.42 a |
PI527472 | 77.38 abc | 1.76 ab | 6.24 a | 14.62 a |
PI527473 | 77.31 bc | 1.80 ab | 6.58 a | 14.31 a |
PI527474 | 77.20 abc | 1.71 ab | 6.27 a | 14.82 a |
PI527475 | 76.56 bc | 1.73 ab | 6.68 a | 15.02 a |
PI527478 | 76.96 abc | 2.17 a | 5.81 a | 15.06 a |
PI542683 | 75.77 bc | 1.80 ab | 6.38 a | 16.06 a |
PI542689 | 78.41 abc | 1.62 b | 5.80 a | 14.17 a |
Control Conditions | Drought Conditions | |||
---|---|---|---|---|
Population | Per Unit Dry Matter (nmol Sugar mg−1 h−1) | Yield (mmol Sugar ha−1 h−1) | Per Unit Dry Matter (nmol Sugar mg−1 h−1) | Yield (mmol Sugar ha−1 h−1) |
EPS13(FR)C3 | 78.46 a | 372.3 bc | 89.64 a | 359.5 a |
PI542683 | 75.91 a | 464.7 bc | 85.75 ab | 302.3 ab |
PI542685 | 86.73 a | 1025.6 a | 83.08 ab | 237.6 ab |
EPS14FRC3 | 69.56 a | 282.8 c | 80.81 abc | 313.4 ab |
PI527472 | 80.76 a | 470.6 bc | 77.45 abc | 303.1 ab |
PI542684 | 68.45 a | 609.4 b | 77.28 abc | 310.2 ab |
PI527473 | 88.09 a | 318.0 bc | 72.57 bc | 167.8 b |
PI527467 | 79.13 a | 419.8 bc | 65.64 c | 173.9 b |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
López-Malvar, A.; Djemel, A.; Gomez, L.; Santiago, R.; Revilla, P. Assessment of Algerian Maize Populations for Saccharification and Nutritive Value. Agronomy 2020, 10, 646. https://doi.org/10.3390/agronomy10050646
López-Malvar A, Djemel A, Gomez L, Santiago R, Revilla P. Assessment of Algerian Maize Populations for Saccharification and Nutritive Value. Agronomy. 2020; 10(5):646. https://doi.org/10.3390/agronomy10050646
Chicago/Turabian StyleLópez-Malvar, Ana, Abderahmane Djemel, Leonardo Gomez, Rogelio Santiago, and Pedro Revilla. 2020. "Assessment of Algerian Maize Populations for Saccharification and Nutritive Value" Agronomy 10, no. 5: 646. https://doi.org/10.3390/agronomy10050646
APA StyleLópez-Malvar, A., Djemel, A., Gomez, L., Santiago, R., & Revilla, P. (2020). Assessment of Algerian Maize Populations for Saccharification and Nutritive Value. Agronomy, 10(5), 646. https://doi.org/10.3390/agronomy10050646