Native Pollinators (Hymenoptera: Anthophila) in Cotton Grown in the Gulf South, United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Systems
2.2. Bee Collections
2.3. Specimen Identification
2.4. Data Analyses
3. Results
3.1. Species Richness
3.2. Similarity of Fauna between Locations
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Westphal, C.; Steffan-Dewenter, I.; Tscharntke, T. Mass flowering crops enhance pollinator densities at a landscape scale. Ecol. Lett. 2003, 6, 961–965. [Google Scholar] [CrossRef]
- Cook, D.; Cutts, M. Cotton Insect Losses 2018. Available online: https://www.biochemistry.msstate.edu/resources/2018loss.php (accessed on 5 January 2020).
- Luttrell, R.G.; Teague, T.G.; Brewer, M.J. Cotton insect pest management. In Ag Monograph 57; Cotton Fang, D.D., Percey, R.G., Eds.; American Society of Agronomy, Crop Science Society, Soil Science Society of America: Madison, WI, USA,, 2015; pp. 509–546. [Google Scholar]
- Parys, K.A.; Luttrell, R.G.; Snodgrass, G.L.; Portilla, M. Patterns of tarnished plant bug (Hemiptera: Miridae) resistance to pyrethroid insecticides in the lower Mississippi Delta for 2008–2015: Linkage to pyrethroid use and cotton insect management. J. Insect Sci. 2018, 18, 29. [Google Scholar] [CrossRef]
- Parys, K.A.; Luttrell, R.G.; Snodgrass, G.L.; Portilla, M.; Copes, J.T. Longitudinal measurements of tarnished plant bug (Hemiptera: Miridae) susceptibility to insecticides in the Delta Region of Arkansas, Louisiana and Mississippi: Associations with insecticide use and insect control recommendations. Insects 2017, 8, 109. [Google Scholar] [CrossRef] [Green Version]
- Naranjo, S.E. Impact of Bt transgenic cotton on integrated pest management. J. Agric. Food Chem. 2011, 59, 5842–5851. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, K.; Jiang, Y.; Guo, Y.; Desneux, N. Widespread adoption of Bt cotton and insecticide decrease promotes biocontrol services. Nature 2012, 487, 362–365. [Google Scholar] [CrossRef]
- Brewer, M.J.; Anderson, D.J.; Armstrong, J.S. Plant growth stage-specific injury and economic injury level for verde plant bug, Creontiades signatus (Hemiptera: Miridae), on cotton: Effect of bloom period of infestation. J. Econ. Entomol. 2013, 106, 2077–2083. [Google Scholar] [CrossRef] [Green Version]
- NASS National Agricultural Statistics Service: Quick Stats. Available online: http://www.nass.usda.gov/Quick_Stats/Lite/ (accessed on 1 January 2020).
- Moffett, J.O.; Stith, L.S.; Burkardt, C.C.; Shipman, C.W. Insect visitors to cotton flowers. J. Arizona Acad. Sci. 1976, 11, 47–48. [Google Scholar] [CrossRef]
- Moffett, J.O.; Stith, L.S.; Curkhardt, C.C.; Shipman, C.W. Fluctuation of wild bee and wasp visits to cotton flowers. Ibid 1976, 11, 64–68. [Google Scholar] [CrossRef]
- Berger, L.A. Agapostemon Angelicus Cockerell and Other Wild Bees of Potential Pollinators of Male-Sterile Cotton on the Texas High Plains. Master’s Thesis, Oklahoma State University, Stillwater, OK, USA, 1980. [Google Scholar]
- Moffett, J.O.; Cobb, H.B.; Rummel, D.R. Bees of potential value as pollinators in the production of hybrid cottonseed on the High Plains of Texas. Proc. Beltwide Cotton Conf. 1980, 268–270. [Google Scholar]
- Berger, L.A.; Moffett, J.O.; Rummel, D.R. Seasonal cycles of Agapostemon angelicus Cockerell relative to hybrid cottonseed production in Texas (Hymenoptera: Halictidae). J. Kansas Entomol. Soc. 1985, 58, 1–8. [Google Scholar]
- Waller, G.D.; Vaissiere, B.E.; Moffett, J.O.; Martin, J.H. Comparison of carpenter bees (Xylocopa varipuncta Patton) (Hymenoptera: Anthophoridae) and honey bees (Apis mellifera L.) (Hymenoptera: Apidae) as pollinators of male-sterile cotton in cages. J. Econ. Entomol. 1985, 78, 558–561. [Google Scholar] [CrossRef]
- Berger, L.A.; Vassiére, B.E.; Moffett, J.O.; Merritt, S.J. Bombus spp. (Hymenoptera: Apidae) as pollinators of male-sterile upland cotton on the Texas High Plains. Environ. Entomol. 1988, 17, 789–794. [Google Scholar] [CrossRef]
- Vaissière, B.E. Honey bee stocking rate, pollinator visitation, and pollination effectiveness in upland cotton grown for hybrid seed production. In VI International Symposium on Pollination, Tilburg, Netherlands; Heemert, C.V., Ruijter, A.D., Eds.; Acta Horticulturae 288: Tilburg, The Netherlands, 1991; pp. 359–363. [Google Scholar]
- Cusser, S.; Grando, C.; Zucchi, M.I.; López-Uribe, M.M.; Pope, N.S.; Ballare, K.; Luna-Lucena, D.; Almeida, E.A.B.; Neff, J.L.; Young, K.; et al. Small but critical: Semi-natural habitat fragments promote bee abundance in cotton agroecosystems across both Brazil and the United States. Landsc. Ecol. 2019, 34, 1825–1836. [Google Scholar] [CrossRef]
- Cusser, S.; Neff, J.L.; Jha, S. Land-use history drives contemporary pollinator community similarity. Landsc. Ecol. 2018, 33, 1335–1351. [Google Scholar] [CrossRef]
- Wheelock, M.J.; Rey, K.P.; O’Neal, M.E. Defining the insect pollinator community found in Iowa corn and soybean fields: Implications for pollinator conservation. Environ. Entomol. 2016, 45, 1099–1106. [Google Scholar] [CrossRef] [PubMed]
- Tuell, J.K.; Isaacs, R. Community and species-specific responses of wild bees to insect pest control programs applied to a pollinator-dependent crop. J. Econ. Entomol. 2010, 103, 668–675. [Google Scholar] [CrossRef]
- Le Féon, V.; Poggio, S.L.; Torretta, J.P.; Bertrand, C.; Molina, G.A.R.; Burel, F.; Baudry, J.; Ghersa, C.M. Diversity and life-history traits of wild bees (Insecta: Hymenoptera) in intensive agricultural landscapes in the Rolling Pampa, Argentina. J. Nat. Hist. 2015, 50, 1175–1196. [Google Scholar] [CrossRef]
- Le Féon, V.; Burel, F.; Chifflet, R.; Henry, M.; Ricroch, A.; Vaissière, B.E.; Baudry, J. Solitary bee abundance and species richness in dynamic agricultural landscapes. Agric. Ecosyst. Environ. 2013, 166, 94–101. [Google Scholar] [CrossRef]
- Wilson, J.S.; Griswold, T.; Messinger, O.J. Sampling bee communities (Hymenoptera: Apiformes) in a desert landscape: Are pan traps sufficient? J. Kansas Entomol. Soc. 2008, 81, 288–300. [Google Scholar] [CrossRef]
- Roulston, T.H.; Smith, S.A.; Brewster, A.L. A comparison of pan trap and intensive net sampling techniques for documenting a bee (Hymenoptera: Apiformes) fauna. J. Kansas Entomol. Soc. 2007, 80, 179–181. [Google Scholar] [CrossRef]
- Toler, T.R.; Evans, E.W.; Tepedino, V.J. Pan-trapping for bees (Hymenoptera: Apiformes) in Utah’s West Desert: The importance of color diversity. Pan Pac. Entomol. 2005, 81, 103–113. [Google Scholar]
- Westphal, C.; Bommarco, R.; Carré, G.; Lamborn, E.; Morison, N.; Petanidou, T.; Potts, S.G.; Roberts, S.P.M.; Szentgyörgyi, H.; Tscheulin, T.; et al. Measuring bee diversity in different European habitats and biogeographical regions. Ecolog. Monogr. 2008, 78, 653–671. [Google Scholar] [CrossRef] [Green Version]
- Droege, S. The Very Handy Manual: How to Catch and Identify Bees and Manage a Collection. Available online: https://www.pwrc.usgs.gov/nativebees/Handy%20Bee%20Manual/The%20Very%20Handy%20Manual%20-%202015.pdf (accessed on 23 March 2017).
- Michener, C.D. The Bees of the World; The Johns Hopkins University Press: Baltimore, MD, USA, 2007. [Google Scholar]
- Mitchell, T.B. Bees of the Eastern United States (I). North Carolina Ag. Exp. Sta. Bull. 1960, 141, 1–538. [Google Scholar]
- Mitchell, T.B. Bees of the Eastern United States (II). North Carolina Ag. Exp. Sta. Bull. 1962, 152, 1–557. [Google Scholar]
- Michener, C.D.; McGinley, R.J.; Danforth, B.N. The bee genera of North and Central America; Hymenoptera Apoidea; Smithsonian Inst Press: Washington, DC, USA, 1994; p. 304. [Google Scholar]
- Roberts, R.B. Revision of the bee genus Agapostemon (Hymenoptera: Halictidae). Univ. Kansas Sci. Bull. 1972, 49, 437–590. [Google Scholar]
- Cresson, E.T. A list of the North American species of the genus Anthophora, with descriptions of new species. Trans. Am. Entomol. Soc. 1868, 2, 289–293. [Google Scholar] [CrossRef]
- Sandhouse, G.A. The bees of the genera Augochlora, Augochloropsis, and Augochlorella (Hymenoptera: Apoidae) occurring in the United States. J. Wash. Acad Sci. 1937, 27, 65–79. [Google Scholar]
- Ordway, E. Systematics of the genus Augochlorella (Hymenoptera, Halictidae) North of Mexico. Univ. Kansas Sci. Bull. 1966, 46, 509–624. [Google Scholar]
- Coelho, B.W.T. A review of the bee genus Augochlorella (Hymenoptera: Halictidae: Augochlorini). Syst. Entomol. 2004, 29, 282–323. [Google Scholar] [CrossRef]
- Williams, P.H.; Thorp, R.W.; Richardson, L.L.; Colla, S.R. Bumble Bees of North America: An Identification Guide; Princeton University Press: Princeton, NJ, USA, 2014; p. 208. [Google Scholar]
- Rehan, S.M.; Sheffield, C.S. Morphological and molecular delineation of a new species in the Ceratina dupla species-group (Hymenoptera: Apidae: Xylocopinae) of eastern North America. Zootaxa 2011, 2873, 35–50. [Google Scholar] [CrossRef]
- Daly, H.V. Bees of the genus Ceratina in America north of Mexico (Hymenoptera: Apoidea). Univ. Calif. Pub. Entomol. 1973, 74, 1–131. [Google Scholar]
- Sipes, S. Phylogenetic Relationships, Taxonomy, and Evolution of Host Choice in Diadasia (Hymenoptera: Apidae); Utah State University: Logan, UT, USA, 2001. [Google Scholar]
- Gibbs, J.; Packer, L.; Dumesh, S.; Danforth, B.N. Revision and reclassification of Lasioglossum (Evylaeus), L. (Hemihalictus) and L. (Sphecodogastra) in eastern North America (Hymenoptera: Apoidea: Halictidae). Zootaxa 2013, 3672, 1–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibbs, J. Revision of the metallic Lasioglossum (Dialictus) of eastern North America (Hymenoptera: Halictidae: Halictini). Zootaxa 2011, 3073, 1–216. [Google Scholar] [CrossRef] [Green Version]
- Sheffield, C.S.; Ratti, S.; Packer, L.; Griswold, T. Leafcutter and mason bees of the genus Megachile Laterille (Hymenoptera: Megachidae) in Canada and Alaska. Can. J. Arthropod Ident. 2011, 18, 1–107. [Google Scholar]
- LaBerge, W.E. A revision of the bees of the genus Melissodes in North and Central America. Part I. (Hymenoptera, Apidae). Univ. Kansas Sci. Bull. 1956, 37, 911–1194. [Google Scholar]
- LaBerge, W.E. A revision of the bees of the genus Melissodes in North and Central America. (Part II) (Hymenoptera: Apidae). Univ. Kansas Sci. Bull. 1956, 38, 533. [Google Scholar]
- Cockerell, T.D.A. The North American bees of the genus Nomia. Proc. United States Nat. Mus. 1910, 38, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Hurd, P.D., Jr. The carpenter bees of California (Hymenoptera: Apoidea). Bull. Calif. Insect Surv. 1955, 4, 35–72. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Oksanen, J.; Blanchet, F.G.; Friendly, M.; Kindt, R.; Legendre, P.; McGlinn, D.; Minchin, P.R.; O’Hara, R.B.; Simpson, G.L.; Solymos, P.; et al. VEGAN: Community Ecology Package. R Package Version 2, 5–6. 2019. Available online: https://CRAN.R-project.org/package=vegan (accessed on 14 May 2020).
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016. [Google Scholar]
- Sheffield, C.S.; Frier, S.D.; Dumesh, S. The bees (Hymenoptera: Apoidea, Apiformes) of the prairies ecozone with comparison to other grasslands of Canada. In Arthropods of Canadian Grasslands (Volume 4): Biodiversity and Systematics Part 2; Giberson, D.J., Cárcamo, H.A., Eds.; Biological Survey of Canada: Ottawa, ON, Canada, 2014; pp. 427–467. [Google Scholar]
- Hannon, L.E.; Sisk, T.D. Hedgerows in an agri-natural landscape: Potential habitat value for native bees. Biol. Conserv. 2009, 142, 2140–2154. [Google Scholar] [CrossRef]
- Roulston, T.H.; Cane, J.H. The effect of diet breadth and nesting ecology on body size variation in bees (Apiformes). J. Kansas Entomol. Soc. 2000, 73, 129–142. [Google Scholar]
- Ordway, E. The Life History of Diadasia rinconis Cockerell (Hymenoptera: Anthophoridae). J. Kansas Entomol. Soc. 1987, 60, 15–24. [Google Scholar]
- Fowler, J.; Droege, S. Pollen Specialist Bees of the Eastern United States. Available online: https://jarrodfowler.com/specialist_bees.html (accessed on 16 April 2020).
- Rust, R.W. The biology of Ptilothrix bombiformis (Hymenoptera: Anthophoridae). J. Kansas Entomol. Soc. 1980, 53, 427–436. [Google Scholar]
- Hurd, P.D., Jr.; Linsley, E.G.; Whitaker, T.W. Squash and gourd bees (Peponapis, Xenoglossa) and the origin of the cultivated Cucurbita. Evol. App. 1971, 25, 218–234. [Google Scholar]
- Lebuhn, G.; Droege, S.; Connor, E.F.; Gemmill-Herren, B.; Potts, S.G.; Minckley, R.L.; Griswold, T.; Jean, R.; Kula, E.; Roubik, D.W.; et al. Detecting insect pollinator declines on regional and global scales. Conserv. Biol. 2013, 27, 113–120. [Google Scholar] [CrossRef]
- Hallmann, C.A.; Sorg, M.; Jongejans, E.; Siepel, H.; Hofland, N.; Schwan, H.; Stenmans, W.; Müller, A.; Sumser, H.; Hörren, T.; et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas. PLoS ONE 2017, 12, 0185809. [Google Scholar] [CrossRef] [Green Version]
- Zawislak, J.; Adamczyk, J.; Johnson, D.R.; Lorenz, G.; Black, J.; Hornsby, Q.; Stewart, S.D.; Joshi, N. Comprehensive survey of area-wide agricultural pesticide use in southern United States row crops and potential impact on honey bee colonies. Insects 2019, 10, 280. [Google Scholar] [CrossRef] [Green Version]
- Schindler, M.; Diestelhorst, O.; Haertel, S.; Saure, C.; Scharnowski, A.; Schwenninger, H.R. Monitoring agricultural ecosystems by using wild bees as environmental indicators. BioRisk 2013, 8, 53–71. [Google Scholar] [CrossRef]
- Butler, G.D., Jr.; Todd, F.E.; MacGregor, S.E.; Werner, F.G. Melissodes bees in Arizona cotton fields. Ariz. Ag. Exp. Sta. Tech. Bull. 1960, 139, 1–11. [Google Scholar]
- Kearney, T.H. Self-fertilization and cross-fertilization in pima cotton. USDA Dept. Bull. No. 1923, 1134, 1–68. [Google Scholar]
- McGregor, S.E.; Rhyne, C.; Worley, S., Jr.; Todd, F.E. The role of honey bees in cotton pollination. Agron. J. 1955, 47, 23–25. [Google Scholar] [CrossRef] [Green Version]
- Allard, H.A. Some experimental observations concerning the behavior of various bees in their visits to cotton blossoms II. Am. Nat. 1911, 45, 668–685. [Google Scholar] [CrossRef]
- Allard, H.A. Some experimental observations concerning the behavior of various bees in their visits to cotton blossoms I. Am. Nat. 1911, 45, 607–622. [Google Scholar] [CrossRef]
- Cusser, S.; Neff, J.L.; Jha, S. Natural land cover drives pollinator abundance and richness, leading to reductions in pollen limitation in cotton agroecosystems. Agric. Ecosyst. Environ. 2016, 226, 33–42. [Google Scholar] [CrossRef] [Green Version]
- Grando, C.; Amon, N.D.; Clough, S.J.; Guo, N.; Wei, W.; Azevedo, P.; López-Uribe, M.M.; Zucchi, M.I. Two Colors, one species: The case of Melissodes nigroaenea (Apidae: Eucerini), an important pollinator of cotton fields in Brazil. Sociobiology 2018, 65, 645–653. [Google Scholar] [CrossRef]
- Krupke, C.H.; Hunt, G.J.; Eitzer, B.D.; Andino, G.; Given, K. Multiple routes of pesticide exposure for honey bees living near agricultural fields. PLoS ONE 2012, 7, 29268. [Google Scholar] [CrossRef] [PubMed]
- Williams, N.M.; Crone, E.E.; Roulston, T.H.; Minckley, R.L.; Packer, L.; Potts, S.G. Ecological and life-history traits predict bee species responses to environmental disturbances. Biol. Conserv. 2010, 143, 2280–2291. [Google Scholar] [CrossRef]
- Hodgson, E.W.; Pitts-Singer, T.L.; Barbour, J.D. Effects of the insect growth regulator, novaluron on immature alfalfa leafcutting bees, Megachile rotundata. J. Insect. Sci. 2011, 11, 43. [Google Scholar] [CrossRef] [Green Version]
- Hladik, M.L.; Vandever, M.; Smalling, K.L. Exposure of native bees foraging in an agricultural landscape to current-use pesticides. Sci. Total Environ. 2016, 542, 469–477. [Google Scholar] [CrossRef]
- Samson-Robert, O.; Labrie, G.; Mercier, P.-L.; Chagnon, M.; Derome, N.; Fournier, V. Increased acetylcholinesterase expression in bumble bees during neonicotinoid-coated corn sowing. Sci. Rep. 2015, 5, 12636. [Google Scholar] [CrossRef] [Green Version]
- Gill, K.A.; O’Neal, M.E. Survey of soybean insect pollinators: Community identification and sampling method analysis. Environ. Entomol. 2015, 44, 488–498. [Google Scholar] [CrossRef] [Green Version]
- Wheelock, M.J.; O’Neal, M.E. Insect pollinators in Iowa cornfields: Community identification and trapping method analysis. PLoS ONE 2016, 11, 0143479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gardiner, M.A.; Tuell, J.K.; Isaacs, R.; Gibbs, J.; Ascher, J.S.; Landis, D.A. Implications of three biofuel crops for beneficial arthropods in agricultural landscapes. Bio. Energy Res. 2010, 3, 6–19. [Google Scholar] [CrossRef] [Green Version]
- Kleijn, D.; Winfree, R.; Bartomeus, I.; Carvalheiro, L.G.; Henry, M.; Isaacs, R.; Klein, A.-M.; Kremen, C.; M’Gonigle, L.K.; Rader, R.; et al. Delivery of crop pollination services is an insufficient argument for wild pollinator conservation. Nat. Commun. 2015, 6, 7414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cunningham, S.A. Honey Bee Visitors to Cotton Flowers and their Role in Crop Pollination: A Literature Review; CSIRO Report: 2014; CSIRO: Canberra, Australia, 2014; p. 22.
- Pires, V.C.; Silveira, F.A.; Sujii, E.R.; Torezani, K.R.S.; Rodrigues, W.A.; Alburquerque, F.A.; Rodrigues, S.M.M.; Salomāo, A.N.; Pires, C.S.S. Importance of bee pollination for cotton production in conventional and organic farms in Brazil. J. Pollinat. Ecolog. 2014, 13, 151–160. [Google Scholar] [CrossRef]
- Rhodes, J. Cotton pollination by honey bees. Aust. J. Exp. Agric. 2002, 42, 513–518. [Google Scholar] [CrossRef]
- Keshlaf, M.H. An Assessment of Honey Bee Foraging Activity and Pollination Efficacy in Australian Bt Cotton; University of Western Sydney: Penrith, Australia, 2008. [Google Scholar]
- Tanda, A.S. Bee pollination increases yield of 2 interplanted varieties of Asiatic cotton (Gossypium arboretum L.). Am. Bee J. 1984, 124, 539–540. [Google Scholar]
- Tanda, A.S.; Goyal, N.P. Insect pollination in Asiatic cotton (Gossypium arboreum). J. Apic. Res. 1979, 18, 64–72. [Google Scholar] [CrossRef]
- Stein, K.; Coulibaly, D.; Stenchly, K.; Goetze, D.; Porembski, S.; Lindner, A.; Konate, S.; Linsenmair, E.K. Bee pollination increases yield quantity and quality of cash crops in Burkina Faso, West Africa. Sci. Rep. 2017, 7, 17691. [Google Scholar] [CrossRef] [Green Version]
Species of Bees Collected by Family | Abundance in MS | % of Pop in MS | Abundance in TX | % of Pop in TX | Oligolectic |
---|---|---|---|---|---|
COLLETIDAE | |||||
Hylaeinae | |||||
Hylaeus (Prosopis) nelumbonis (Robertson) | 1 | <1 | - | 0 | No [30] |
HALICTIDAE | |||||
Augochlorini | |||||
Augochlora aurifera Cockerell | - | 0 | 1 | <1 | No [30] |
Augochlora pura pura (Say) | 19 | 1.6 | - | 0 | No [30] |
Augochlorella aurata (Smith) | 11 | <1 | 9 | <1 | No [30] |
Augochloropsis metallica (F.) | 16 | 1.3 | - | 0 | No [30] |
Halictini | |||||
Agapostemon melliventris Cresson | - | 0 | 36 | <1 | No [52] |
Agapostemon sericeus (Forster) | 4 | <1 | - | 0 | No [30] |
Agapostemon splendens (Lepeletier) | - | 0 | 17 | <1 | No [30] |
Agapostemon texanus Cresson | 2 | <1 | 39 | <1 | No [30] |
Agapostemon virescens (F.) | 26 | 2.2 | - | 0 | No [30] |
Halictus (Nealictus) parallelus (Say) | 8 | <1 | - | 0 | No [30] |
Halictus (Odontalictus) ligatus Say | 23 | 1.9 | 7 | <1 | No [30] |
Lasioglossum (Dialictus) nr. coactum (Cresson) | - | 0 | 18 | <1 | Unknown |
Lasioglossum (Dialictus) connexum (Cresson) | - | 0 | 24 | <1 | Unknown |
Lasioglossum (Dialictus) disparile (Cresson) | - | 0 | 35 | <1 | No [43] |
Lasioglossum (Dialictus) hartii (Robertson) | 3 | <1 | - | 0 | No [43] |
Lasioglossum (Dialictus) spp.* | 49 | 4.1 | 883 | 16.8 | - |
Lasioglossum (Evyleaus) nelumbonis (Robertson) | 2 | <1 | - | 0 | Nymphaeaceae [42] |
Nomiini | |||||
Nomia (Acunomia) nortoni Cresson | 1 | <1 | 6 | <1 | No [30] |
MEGACHILIDAE | |||||
Megachilini | |||||
Coelioxys (Boreocoelioxys) sayi Robertson | 1 | <1 | - | 0 | No [31] |
Megachile (Leptorachis) petulans Cresson | 4 | <1 | - | 0 | No [31] |
Megachile (Litomegachile) brevis Say | 1 | <1 | 26 | <1 | No [31] |
Megachile (Litomegachile) lippiae Cockerell | - | 0 | 27 | <1 | No [44] |
Megachile (Litomegachile) gentilis Cresson | - | 0 | 26 | <1 | No [53] |
Megachile (Litomegachile) mendica Cresson | 1 | <1 | - | 0 | No [31] |
Megachile (Sayapis) policaris Say | - | 0 | 132 | 2.5 | No [31] |
APIDAE | |||||
Anthophorini | |||||
Anthophora californica Cresson | - | 0 | 1 | <1 | No [54] |
Apini | |||||
Apis mellifera L. | 11 | <1 | 47 | <1 | No [31] |
Bombini | |||||
Bombus pensylvanicus (DeGeer) | 1 | <1 | - | 0 | No [31] |
Ceratini | |||||
Ceratina (Zadontomerus) dupla Say | 1 | <1 | - | 0 | No [31] |
Ceratina (Zadontomerus) sp. | - | 0 | 21 | <1 | - |
Emphorini | |||||
Diadasia rinconis Cockerell | - | 0 | 14 | <1 | Opuntia spp. [55] |
Melitoma taurea (Say) | 2 | <1 | - | 0 | Ipomoea spp. Calystigia spp. [56] |
Melitoma sp. | - | 0 | 1 | <1 | - |
Ptilothrix bombiformis (Cresson) | 33 | 2.8 | - | 0 | Hibiscus spp. [56,57] |
Eucerini | |||||
Florilegus condignus (Cresson) | 8 | <1 | 12 | <1 | Pondenteria spp. [56] |
Melissodes (Eumelissodes) boltoniae Robertson | 1 | <1 | - | 0 | Asteraceae [56] |
Melissodes (Eumelissodes) trinodis Robertson | 2 | <1 | - | 0 | Asteraceae [56] |
Melissodes (Melissodes) bimaculatus (Lepeletier) | 129 | 10.8 | - | 0 | No [31] |
Melissodes (Melissodes) communis Cresson | 2 | <1 | 19 | <1 | No [31] |
Melissodes (Melissodes) comptoides Robertson | 24 | 2 | - | 0 | No [31] |
Melissodes (Melissodes) tepaneca Cresson | 803 | 66.9 | 3987 | 76 | No [31] |
Svastra (Epimelissodes) obliqua (Say) | 4 | <1 | 27 | <1 | Asteraceae [56] |
Svastra (Epimelissodes) petulca (Cresson) | - | 0 | 14 | <1 | Asteraceae [56] |
Xenoglossa strenua (Cresson) | 5 | <1 | - | 0 | Cucurbita spp. [56,58] |
Xylocopini | |||||
Xylocopa (Notoxylocopa) tabaniformis Smith | - | 0 | 2 | <1 | No [47] |
Xylocopa (Schonnherria) micans Lepeletier | 1 | <1 | - | 0 | No [31] |
Xylocopa (Xylocopoides) virginica (L.) | 1 | <1 | - | 0 | No [31] |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Parys, K.A.; Esquivel, I.L.; Wright, K.W.; Griswold, T.; Brewer, M.J. Native Pollinators (Hymenoptera: Anthophila) in Cotton Grown in the Gulf South, United States. Agronomy 2020, 10, 698. https://doi.org/10.3390/agronomy10050698
Parys KA, Esquivel IL, Wright KW, Griswold T, Brewer MJ. Native Pollinators (Hymenoptera: Anthophila) in Cotton Grown in the Gulf South, United States. Agronomy. 2020; 10(5):698. https://doi.org/10.3390/agronomy10050698
Chicago/Turabian StyleParys, Katherine A., Isaac L. Esquivel, Karen W. Wright, Terry Griswold, and Michael J. Brewer. 2020. "Native Pollinators (Hymenoptera: Anthophila) in Cotton Grown in the Gulf South, United States" Agronomy 10, no. 5: 698. https://doi.org/10.3390/agronomy10050698
APA StyleParys, K. A., Esquivel, I. L., Wright, K. W., Griswold, T., & Brewer, M. J. (2020). Native Pollinators (Hymenoptera: Anthophila) in Cotton Grown in the Gulf South, United States. Agronomy, 10(5), 698. https://doi.org/10.3390/agronomy10050698