The Effects of Wind Erosion Depending on Cropping System and Tillage Method in a Semi-Arid Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design and Crop Management
2.3. Measurement Indices and Methods
2.3.1. Description of Soil Samples
2.3.2. Wind Tunnel Tests
2.4. Data Analysis
3. Results
3.1. Erodibility of the Soils by Wind
3.1.1. Soil Wind Erosion Rate
3.1.2. Relationship between Soil Erosion Rate and Wind Velocity
3.2. Soil Aggregates
3.2.1. Non-Erodible Aggregates
3.2.2. Relationship between Non-Erodible Aggregates and Wind Velocity
3.3. Mass Flux Vertical Profile of Blown Soil
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ravi, S.; Zobeck, T.M.; Over, T.M.; Okin, G.S.; D’Odorico, P. On the effect of moisture bonding forces in air-dry soils on threshold friction velocity of wind erosion. Sedimentology 2006, 53, 597–609. [Google Scholar] [CrossRef]
- Foltz, G.R.; Mcphaden, M.J. Impact of Saharan Dust on Tropical North Atlantic SST. J. Clim. 2008, 21, 5048–5060. [Google Scholar] [CrossRef]
- Soukup, D.; Buck, B.; Goossens, D.; Ulery, A.; McLaurin, B.T.; Baron, D.; Teng, Y.X. Arsenic concentrations in dust emissions from wind erosion and off-road vehicles in the Nellis Dunes Recreational Area, Nevada, USA. Aeolian Res. 2012, 5, 77–89. [Google Scholar] [CrossRef]
- Santra, P.; Moharana, P.C.; Kumar, M.; Soni, M.L.; Pandey, C.B.; Chaudhari, S.K.; Sikka, A.K. Crop production and economic loss due to wind erosion in hot arid ecosystem of India. Aeolian Res. 2017, 28, 71–82. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Fan, J.W.; Cao, W.; Harris, W.; Li, Y.Z.; Chi, W.Y.; Wang, S.Z. Response of wind erosion dynamics to climate change and human activity in Inner Mongolia, China during 1990 to 2015. Sci. Total Environ. 2018, 639, 1038–1050. [Google Scholar] [CrossRef] [PubMed]
- Zobeck, T.M.; Baddock, M.; Scott, V.P.R.; Tatarko, J.; Acosta-Martinez, V. Soil property effects on wind erosion of organic soils. Aeolian Res. 2013, 10, 43–51. [Google Scholar] [CrossRef]
- Borrelli, P.; Ballabio, C.; Panagos, P.; Montanarella, L. Wind erosion susceptibility of European soils. Geoderma 2014, 232–234, 471–478. [Google Scholar] [CrossRef]
- Wang, X.; Wang, T.; Dong, Z.; Liu, X.; Qian, G. Nebkha development and its significance to wind erosion and land degradation in semi-arid northern China. J. Arid Environ. 2006, 65, 129–141. [Google Scholar] [CrossRef]
- Tang, Z.G.; Ma, J.H.; Peng, H.H.; Wang, S.H.; Wei, J.F. Spatiotemporal changes of vegetation and their responses to temperature and precipitation in upper Shiyang river basin. Adv. Space Res. 2017, 60, 969–979. [Google Scholar] [CrossRef]
- Li, F.R.; Zhao, L.Y.; Zhang, H.; Zhang, T.H.; Shirato, Y. Wind erosion and airborne dust deposition in farmland during spring in the Horqin Sandy Land of eastern Inner Mongolia, China. Soil Tillage Res. 2004, 75, 121–130. [Google Scholar] [CrossRef]
- Jia, H.L.; Gang, W.; Guo, L.; Zhuang, J.; Tang, L. Wind erosion control utilizing standing corn residue in Northeast China. Soil Tillage Res. 2015, 153, 112–119. [Google Scholar] [CrossRef]
- Pelt, R.S.V.; Hushmurodov, S.X.; Baumhardt, R.L.; Chappell, P.; Nearing, M.A.; Polyakov, V.O.; Strack, J.E. The reduction of partitioned wind and water erosion by conservation agriculture. Catena 2017, 148, 160–167. [Google Scholar] [CrossRef]
- Singh, P.; Sharratt, B.; Schillinger, W.F. Wind erosion and PM10 emission affected by tillage systems in the world’s driest rainfed wheat region. Soil Tillage Res. 2012, 124, 219–225. [Google Scholar] [CrossRef]
- Schlatter, D.C.; Schillinger, W.F.; Bary, A.I.; Sharratt, B.; Paulitz, T.C. Dust-associated microbiomes from dryland wheat fields differ with tillage practice and biosolids application. Atmos. Environ. 2018, 185, 29–40. [Google Scholar] [CrossRef]
- Mendez, M.J.; Buschiazzo, D.E. Soil coverage evolution and wind erosion risk on summer crops under contrasting tillage systems. Aeolian Res. 2015, 16, 117–124. [Google Scholar] [CrossRef]
- Liu, L.; Zhang, Z.D.; Zhang, K.L.; Liu, H.Y.; Fu, S.H. Magnetic susceptibility characteristics of surface soils in the Xilingele grassland and their implication for soil redistribution in wind-dominated landscapes: A preliminary study. Catena 2018, 163, 33–41. [Google Scholar] [CrossRef]
- Oro, L.A.D.; Colazo, J.C.; Buschiazzo, D.E. RWEQ–Wind erosion predictions for variable soil roughness conditions. Aeolian Res. 2016, 20, 139–146. [Google Scholar] [CrossRef]
- Wang, L.; Shi, Z.H.; Wu, G.L.; Fang, N.F. Freeze/thaw and soil moisture effects on wind erosion. Geomorphology 2014, 207, 141–148. [Google Scholar] [CrossRef]
- Webb, N.P.; Strong, C.L. Soil erodibility dynamics and its representation for wind erosion and dust emission models. Aeolian Res. 2012, 3, 165–179. [Google Scholar] [CrossRef]
- Pi, H.; Sharratt, B.; Schillinger, W.F.; Bary, A.L.; Cogger, C.G. Wind erosion potential of a winter wheat–summer fallow rotation after land application of biosolids. Aeolian Res. 2018, 32, 53–59. [Google Scholar] [CrossRef]
- Zhang, C.L.; Zou, X.Y.; Yang, P.; Dong, Y.X.; Li, S.; Wei, X.H.; Yang, S.; Pan, X.H. Wind tunnel test and 137Cs tracing study on wind erosion of several soils in Tibet. Soil Tillage Res. 2007, 94, 269–282. [Google Scholar] [CrossRef]
- Dong, Z.B.; Liu, X.P.; Wang, H.T.; Zhao, A.G.; Wang, X.M. The flux profile of a blowing sand cloud: A wind tunnel investigation. Geomorphology 2003, 49, 219–230. [Google Scholar] [CrossRef]
- Chepil, W.S.; Milne, R.A. Wind erosion of soil in relation to roughness of surface. Soil Sci. 1941, 52, 417–433. [Google Scholar] [CrossRef]
- Li, J.R.; Flagg, C.; Okin, G.S.; Painter, T.H.; Dintwe, K.; Belnap, J. On the prediction of threshold friction velocity of wind erosion using soil reflectance spectroscopy. Aeolian Res. 2015, 19, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Cui, H.M.; Wu, P.; Sun, Y.C. Study on the optimal intercropping width to control wind erosion in North China. Soil Tillage Res. 2010, 110, 230–235. [Google Scholar] [CrossRef]
- Liu, M.X.; Wang, J.A.; Yan, P.; Liu, L.Y.; Ge, Y.Q.; Li, X.Y.; Hu, X.; Yang, S.; Wang, L. Wind tunnel simulation of ridge-tillage effects on soil erosion from cropland. Soil Tillage Res. 2006, 90, 242–249. [Google Scholar] [CrossRef]
- Xie, S.B.; Qu, J.J.; Wang, T. Wind tunnel simulation of the effects of freeze-thaw cycles on soil erosion in the Qinghai-Tibet Plateau. Sci. Cold Arid Reg. 2016, 8, 187–195. [Google Scholar]
- Zamani, S.; Mahmoodabadi, M. Effect of particle-size distribution on wind erosion rate and soil erodibility. Arch. Agron. Soil Sci. 2013, 59, 1743–1753. [Google Scholar] [CrossRef]
- Zheng, X.J.; He, L.H.; Wu, J.J. Vertical profiles of mass flux for windblown sand movement at steady state. J. Geophys. Res. Solid Earth. 2004, 109, B01106. [Google Scholar] [CrossRef]
- Tanner, S.; Katra, I.; Argaman, E.; Ben-Hur, M. Erodibility of waste (Loess) soils from construction sites under water and wind erosional forces. Sci. Total Environ. 2018, 616–617, 1524–1532. [Google Scholar] [CrossRef]
Cropping System Abbreviation | Tillage Methods | Cropping Sequence | ||
---|---|---|---|---|
2016 | 2017 | 2018 | ||
W/M | Conventional tillage without wheat straw retention (CT) | wheat/maize | wheat/maize | wheat/maize |
WRM | wheat-winter rape | maize | wheat-winter rape | |
WM | wheat | maize | wheat | |
W/M | No tillage with 25–30 cm tall standing wheat straw (NT) | wheat/maize | wheat/maize | wheat/maize |
WRM | wheat-winter rape | maize | wheat-winter rape | |
WM | wheat | maize | wheat |
Treatments | Wind Velocity (m s−1) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | ||||||||||||
6 | 10 | 14 | 18 | 22 | Average | 6 | 10 | 14 | 18 | 22 | Average | ||
W/M | CT | 2.45 | 12.08 | 27.77 | 46.28 | 90.58 | 35.83 | 3.23 | 8.65 | 18.10 | 33.90 | 80.48 | 28.87 |
WRM | 2.11 | 11.64 | 25.33 | 37.29 | 86.51 | 32.58 | 2.89 | 9.72 | 17.56 | 36.63 | 82.91 | 29.94 | |
WM | 2.56 | 13.14 | 32.01 | 50.02 | 102.17 | 39.98 | 2.89 | 10.28 | 17.37 | 37.29 | 82.33 | 30.03 | |
W/M | NT | 3.38 | 8.42 | 15.35 | 27.13 | 58.43 | 22.54 | 2.46 | 6.07 | 7.35 | 24.71 | 61.16 | 20.35 |
WRM | 2.56 | 6.64 | 14.57 | 23.01 | 57.67 | 20.89 | 2.67 | 6.67 | 8.67 | 29.75 | 50.49 | 19.65 | |
WM | 2.78 | 9.58 | 16.67 | 26.84 | 76.67 | 26.51 | 2.68 | 4.81 | 7.17 | 26.67 | 63.45 | 20.96 | |
Cropping system (C) | NS | NS | NS | * | * | NS | NS | NS | * | * | NS | NS | |
Tillage method (T) | NS | * | ** | ** | ** | ** | NS | * | ** | ** | ** | ** | |
C × T | NS | * | * | * | * | * | NS | NS | * | * | * | * |
Treatment | Regression Equation | Correlation Coefficient | |
---|---|---|---|
W/M | CT | Q = 0.0291v2.5436 | 0.995 |
WRM | Q = 0.0247v2.5884 | 0.991 | |
WM | Q = 0.0256v2.6181 | 0.995 | |
W/M | NT | Q = 1.0057e0.1828v | 0.991 |
WRM | Q = 0.9158e0.1859v | 0.996 | |
WM | Q = 0.8756e0.1951v | 0.991 |
Treatments | Wind Velocity (m·s−1) | ||||
---|---|---|---|---|---|
18 | 22 | ||||
Regression Equation | Correlation Coefficient | Regression Equation | Correlation Coefficient | ||
W/M | CT | S = 0.0213e−0.131H | 0.988 | S = 0.0452e−0.18H | 0.997 |
WRM | S = 0.0216e−0.157H | 0.985 | S = 0.0399e−0.188H | 0.973 | |
WM | S = 0.0276e−0.158H | 0.975 | S = 0.0382e−0.208H | 0.969 | |
W/M | NT | S = −0.0005H + 0.0086 | 0.982 | S = −0.0006H + 0.0105 | 0.970 |
WRM | S = −0.0003H + 0.0066 | 0.993 | S = −0.0005H + 0.0099 | 0.965 | |
WM | S = −0.0006H + 0.0104 | 0.970 | S = −0.0007H + 0.0128 | 0.967 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, C.; Geng, Y.; Fu, X.Z.; Coulter, J.A.; Chai, Q. The Effects of Wind Erosion Depending on Cropping System and Tillage Method in a Semi-Arid Region. Agronomy 2020, 10, 732. https://doi.org/10.3390/agronomy10050732
Yang C, Geng Y, Fu XZ, Coulter JA, Chai Q. The Effects of Wind Erosion Depending on Cropping System and Tillage Method in a Semi-Arid Region. Agronomy. 2020; 10(5):732. https://doi.org/10.3390/agronomy10050732
Chicago/Turabian StyleYang, Caihong, Yanxiang Geng, Xing Zhou Fu, Jeffrey A. Coulter, and Qiang Chai. 2020. "The Effects of Wind Erosion Depending on Cropping System and Tillage Method in a Semi-Arid Region" Agronomy 10, no. 5: 732. https://doi.org/10.3390/agronomy10050732
APA StyleYang, C., Geng, Y., Fu, X. Z., Coulter, J. A., & Chai, Q. (2020). The Effects of Wind Erosion Depending on Cropping System and Tillage Method in a Semi-Arid Region. Agronomy, 10(5), 732. https://doi.org/10.3390/agronomy10050732