Introduction of Cardoon (Cynara cardunculus L.) in a Rainfed Rotation to Improve Soil Organic Carbon Stock in Marginal Lands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Farm Management and Soil Sampling of Cardoon
2.3. Assessment of Plant Residue Inputs
2.4. Agricultural Systems Models
2.4.1. IPCC for Italy at the Farm Level
2.4.2. The SOMBIT Model
2.4.3. RothC Model
2.5. Scenarios Configuration
- Scenario S0 represented by 2-year rainfed FB-DW rotation (FB–DW) commonly cultivated in the study area under conventional tillage (annual ploughing).
- Scenario S1 represented by the introduction of CAR cultivation in the conventional 2-year FB–DW rotation with this succession: CAR (7 years)–FB–DW–CAR (7 years)–FB–DW–CAR (2 years). Thus, the S1 represents a biorefinery-feed-food cropping system.
- In both scenarios, the referred year is the year in which the crop was harvested. To explore the maximum potential for SOC sequestration, scenarios were run assuming all FB-DW and 30% CAR plant straws returned to the soil.
2.6. Statistical Analysis
- The root mean square error of prediction (RMSE) indicates the difference between observed and model-estimated values (range 0-∞). RMSE close to 0 shows a perfect agreement between observed and model-estimated values. The better is the simulation, and the lower is the value of RMSE [71].
- The relative error (RE) is the mean difference between measured and simulated data giving an indication of the bias in the simulation weighted as a percentage of the mean value of observed data (Ō). Positive values indicate an underestimation and negative an overestimation of predicted vs. measured data [72].
3. Results
3.1. Soil Characteristics
3.2. Plant and C Inputs
3.3. SOC Stock Change and Model Performance
3.4. SOC Stock Predictions by Modeling
3.5. Potential SOC Sequestration
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- EC. A Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment—Updated Bioeconomy Strategy. 2018. Available online: https://ec.europa.eu/research/bioeconomy/pdf/ec_bioeconomy_strategy_2018.pdf (accessed on 25 May 2020).
- Keegan, D.; Kretschmer, B.; Elbersen, B.; Panoutsou, C. Cascading use: A systematic approach to biomass beyond the energy sector. Biofuels Bioprod. Biorefin. 2013, 7, 193–206. [Google Scholar] [CrossRef]
- EC. Final Report of the High-Level Panel of the European Decarbonisation Pathways Initiative. 2018. Available online: https://ec.europa.eu/info/publications/final-report-high-level-panel-european-decarbonisation-pathways-initiative_en (accessed on 25 May 2020).
- D’Avino, L.; Dainelli, R.; Lazzeri, L.; Spugnoli, P. The role of co-products in biorefinery sustainability: Energy allocation versus substitution method in rapeseed and carinata biodiesel chains. J. Clean. Prod. 2015, 94, 108–115. [Google Scholar] [CrossRef]
- Notarnicola, B.; Sala, S.; Anton, A.; McLaren, S.J.; Saouter, E.; Sonesson, U. The role of life cycle assessment in supporting sustainable agri-food systems: A review of the challenges. J. Clean. Prod. 2017, 140, 399–409. [Google Scholar] [CrossRef]
- Montanarella, L.; Scholes, R.; Brainich, A. (Eds.) The IPBES Assessment Report on Land Degradation and Restoration; Secretariat of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services: Bonn, Germany, 2018; p. 744. Available online: https://ipbes.net/sites/default/files/2018_ldr_full_report_book_v4_pages.pdf (accessed on 26 May 2020).
- Gomiero, T. Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability 2016, 8, 281. [Google Scholar] [CrossRef] [Green Version]
- Scherr, S.J. Soil Degradation: A Threat to Developing Country Food Security by 2020? Vision 2020: Food, Agriculture, and the Environment Discussion Paper 27. 1999, p. 71. Available online: http://cdm15738.contentdm.oclc.org/utils/getfile/collection/p15738coll2/id/125787/filename/125818.pdf (accessed on 26 May 2020).
- Ondrasek, G.; Begic, H.B.; Zovko, M.; Filipovic, L.; Merino-Gergichevich, C.; Savic, R.; Rengel, Z. Biogeochemistry of soil organic matter in agroecosystems & environmental implications. Sci. Total Environ. 2019, 658, 1559–1573. [Google Scholar] [CrossRef]
- Nelson, P.W.; Sommers, C.E. Total C, organic C and organic matter. In Methods of Soil Analysis, Part 2: Chemical and Microbiological Properties; Page, A.L., Miller, R.H., Keeney, D.R., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA, 1982; pp. 539–579. [Google Scholar]
- Paustian, K.; Lehmann, J.; Ogle, S.; Reay, D.; Robertson, G.P.; Smith, P. Climate-smart soils. Nature 2016, 532, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Cherlet, M.; Hutchinson, C.; Reynolds, J.; Hill, J.; Sommer, S.; von Maltitz, G. World Atlas of Desertification; Publication Office of the European Union: Luxembourg, 2018; Available online: https://wad.jrc.ec.europa.eu/download (accessed on 27 January 2020).
- Turco, R.; Tesser, R.; Cucciolito, M.E.; Fagnano, M.; Ottaiano, L.; Mallardo, S.; Malinconico, M.; Santagata, G.; Di Serio, M. Cynara cardunculus biomass recovery: An eco-sustainable, nonedible resource of vegetable oil for the production of poly (lactic acid) bioplasticizers. ACS Sustain. Chem. Eng. 2019, 7, 4069–4077. [Google Scholar] [CrossRef]
- Ronga, D.; Villecco, D.; Zaccardelli, M. Effects of compost and defatted oilseed meals as sustainable organic fertilisers on cardoon (Cynara cardunculus L.) production in the Mediterranean basin. J. Hortic. Sci. Biotech. 2019, 94, 664–675. [Google Scholar] [CrossRef]
- Pimentel, D.; Cerasale, D.; Stanley, R.C.; Perlman, R.; Newman, E.M.; Brent, L.C.; Mullan, A.; Chang, A.T.I. Annual vs. perennial grain production. Agric. Ecosyst. Environ. 2012, 161, 1–9. [Google Scholar] [CrossRef]
- Ferchaud, F.; Vitte, G.; Mary, B. Changes in soil carbon stocks under perennial and annual bioenergy crops. GCB. Bioenergy 2016, 8, 290–306. [Google Scholar] [CrossRef]
- Manzoni, S.; Porporato, A. Soil carbon and nitrogen mineralization: Theory and models across scales. Soil Biol. Biochem. 2009, 41, 1355–1379. [Google Scholar] [CrossRef]
- Campbell, E.E.; Paustian, K. Current developments in soil organic matter modelling and the expansion of model applications: A review. Environ. Res. 2015, 10, 123004. [Google Scholar] [CrossRef]
- Eggleston, H.S.; Buendia, L.; Miwa, K.; Ngara, T.; Tanabe, K. (Eds.) 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme; IGES: Hayama, Kanagawa, Japan, 2006. [Google Scholar]
- Calvo Buendia, E.; Tanabe, K.; Kranjc, A.; Baasansuren, J.; Fukuda, M.; Ngarize, S.; Osako, A.; Pyrozhenko, Y.; Shermanau, P.; Federici, S. (Eds.) Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories; IPCC: Genève, Switzerland, 2019. [Google Scholar]
- Hénin, S.; Dupuis, M. Essai de bilan de la matière organique du sol. Ann. Agron. 1945, 15, 17–19. [Google Scholar]
- Janssen, B.H. A simple method for calculating decomposition and accumulation of ‘young’ soil organic matter. Plant Soil 1984, 76, 297–304. [Google Scholar] [CrossRef]
- Shibu, M.E.; Leffelaar, P.A.; Van Keulen, H.; Aggarwal, P.K. Quantitative description of soil organic matter dynamics—A review of approaches with reference to rice-based cropping systems. Geoderma 2006, 137, 1–18. [Google Scholar] [CrossRef]
- Razza, F.; D’Avino, L.; L’Abate, G.; Lazzeri, L. The role of compost in bio-waste management and circular economy. In Designing Sustainable Technologies, Products and Policies; Benetto, E., Gericke, K., Guiton, M., Eds.; Springer: Cham, Switzerland, 2018; pp. 133–143. [Google Scholar] [CrossRef] [Green Version]
- Coleman, K.; Jenkinson, D.S. RothC-26.3—A model for the turnover of carbon in soil. In Evaluation of Soil Organic Matter Models Using Existing Long-Term Datasets; NATO ASI Series, I; Powlson, D.S., Smith, P., Smith, J.U., Eds.; Springer-Verlag: Heidelberg, Germany, 1996; pp. 237–246. [Google Scholar]
- Villarino, S.H.; Studdert, G.A.; Laterra, P.; Cendoya, M.G. Agricultural impact on soil organic carbon content: Testing the IPCC carbon accounting method for evaluations at county scale. Agric. Ecosyst. Environ. 2014, 185, 118–132. [Google Scholar] [CrossRef]
- Sperow, M. Estimating carbon sequestration potential on US agricultural topsoils. Soil Tillage Res. 2016, 155, 390–400. [Google Scholar] [CrossRef]
- Ogle, S.M.; Domke, G.; Kurz, W.A.; Rocha, M.T.; Huffman, T.; Swan, A.; Smith, J.E.; Woodall, C.; Krug, T. Delineating managed land for reporting national greenhouse gas emissions and removals to the United Nations framework convention on climate change. Carbon Balance Manag. 2018, 13, 9. [Google Scholar] [CrossRef]
- FAO. Measuring and Modelling Soil Carbon Stocks and Stock Changes in Livestock Production Systems—A Scoping Analysis for the LEAP Work Stream on Soil Carbon Stock Changes; FAO: Rome, Italy, 2019; p. 84. [Google Scholar]
- Andriulo, A.; Mary, B.; Guerif, J. Modelling soil carbon dynamics with various cropping sequences on the rolling pampas. Agronomie 1999, 19, 365–377. [Google Scholar] [CrossRef]
- Bayer, C.; Lovato, T.; Dieckow, J.; Zanatta, J.; Mielniczuk, J. A method for estimating coefficients of soil organic matter dynamics based on long-term experiments. Soil Tillage Res. 2006, 91, 217–226. [Google Scholar] [CrossRef]
- Bockstaller, C.; Guichard, L.; Makowski, D.; Aveline, A.; Girardin, P.; Plantureux, S. Agri-environmental indicators to assess cropping and farming systems. A review. Agron. Sustain. Dev. 2008, 28, 139–149. [Google Scholar] [CrossRef]
- Jenkinson, D.S.; Meredith, J.; Kinyamario, J.I.; Warren, G.P.; Wong, M.T.F.; Harkness, D.D.; Bol, R.; Coleman, K. Estimating net primary production from measurements made on soil organic-matter. Ecology 1999, 80, 2762–2773. [Google Scholar] [CrossRef]
- Kaonga, M.L.; Coleman, K. Modelling soil organic carbon turnover in improved fallows in eastern Zambia using the RothC-26.3 model. Ecol. Manag. 2008, 256, 1160–1166. [Google Scholar] [CrossRef]
- Ludwig, B.; Hu, K.L.; Niu, L.A.; Liu, X.J. Modelling the dynamics of organic carbon in fertilization and tillage experiments in the North China Plain using the Rothamsted Carbon Model-initialization and calculation of C inputs. Plant Soil 2010, 332, 193–206. [Google Scholar] [CrossRef]
- Bertora, C.; Zavattaro, L.; Sacco, D.; Monaco, S.; Grignani, C. Soil organic matter dynamics and losses in manured maize-based forage systems. Eur. J. Agron. 2009, 30, 177–186. [Google Scholar] [CrossRef]
- Bechini, L.; Castoldi, N.; Stein, A. Sensitivity to information upscaling of agro-ecological assessments: Application to soil organic carbon management. Agric. Syst. 2011, 104, 480–490. [Google Scholar] [CrossRef]
- Di Bene, C.; Tavarini, S.; Mazzoncini, M.; Angelini, L.G. Changes in soil chemical parameters and organic matter balance after 13 years of ramie [Boehmeria nivea (L.) Gaud.] cultivation in the Mediterranean region. Eur. J. Agron. 2011, 35, 154–163. [Google Scholar] [CrossRef]
- Marraccini, E.; Debolini, M.; Di Bene, C.; Bonari, E. Factors affecting soil organic matter conservation in Mediterranean hillside winter cereals-legumes cropping sys-tems. Ital. J. Agron. 2012, 3, 283–292. [Google Scholar] [CrossRef] [Green Version]
- Farina, R.; Marchetti, A.; Francaviglia, R.; Napoli, R.; Di Bene, C. Modeling regional soil C stocks and CO2 emissions under Mediterranean cropping systems and soil types. Agric. Ecosyst. Environ. 2017, 238, 128–141. [Google Scholar] [CrossRef]
- Jebari, A.; Del Prado, A.; Pardo, G.; Martín, J.A.R.; Álvaro-Fuentes, J. Modeling regional effects of climate change on soil organic carbon in Spain. J. Environ. Qual. 2018, 47, 644–653. [Google Scholar] [CrossRef] [Green Version]
- CORINE Land Cover. Copernicus Programme, European Environment Agency. Available online: https://land.copernicus.eu/pan-european/corine-land-cover/clc2018 (accessed on 26 May 2020).
- Fernando, A.L.; Costa, J.; Barbosa, B.; Monti, A.; Rettenmaier, N. Environmental impact assessment of perennial crops cultivation on marginal soils in the Mediterranean Region. Biomass Bioenergy 2018, 111, 174–186. [Google Scholar] [CrossRef]
- ISTAT. Sassari Province Mean of Agricultural Production and Area of Durum Wheat 2012–2018. 2019. Available online: http://dat.istat.it (accessed on 25 March 2020).
- ISTAT. Italian Mean of Agricultural Production and Area of Durum Wheat and Field Bean 2013–2019. 2020. Available online: http://dat.istat.it (accessed on 25 March 2020).
- Costantini, E.A.C.; Barbetti, R.; Fantappié, M.; L’Abate, G.; Lorenzetti, R.; Magini, S. Pedodiversity. In The Soils of Italy; Costantini, E.A.C., Dazzi, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2013; pp. 105–178. [Google Scholar]
- Pellegrini, S.; Vignozzi, N.; Costantini, E.A.C.; L’Abate, G. A new pedotransfer function for estimating soil bulk density. In The Soils of Tomorrow. Soils Changing in a Changing World; Dazzi, C., Ed.; Catena Verlag: Reiskirchen, Germany, 2008; p. 728. [Google Scholar]
- Giunta, F.; Motzo, R.; Pruneddu, G. Trends since 1900 in the yield potential of Italian-bred durum wheat cultivars. Eur. J. Agron. 2007, 27, 12–24. [Google Scholar] [CrossRef]
- Bolinder, M.A.; Janzen, H.H.; Gregorich, E.G.; Angers, D.A.; van den Bygaart, A.J. An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agric. Ecosyst. Environ. 2007, 118, 29–42. [Google Scholar] [CrossRef]
- Hu, T.; Sørensen, P.; Wahlström, E.M.; Chirinda, N.; Sharif, B.; Li, X.; Olesen, J.E. Root biomass in cereals, catch crops and weeds can be reliably estimated without considering aboveground biomass. Agric. Ecosyst. Environ. 2018, 251, 141–148. [Google Scholar] [CrossRef]
- Raccuia, S.A.; Melilli, M.G. Seasonal dynamics of biomass, inulin, and water-soluble sugars in roots of Cynara cardunculus L. Field Crop. Res. 2010, 116, 147–153. [Google Scholar] [CrossRef]
- Pausch, J.; Kuzyakov, Y. Carbon input by roots into the soil: Quantification of rhizodeposition from root to ecosystem scale. Glob. Chang. Biol. 2018, 24, 1–12. [Google Scholar] [CrossRef]
- Raccuia, S.A.; (CNR-ISAFOM, Catania, Italy). Personal communication, 2016.
- BIT3G (3rd Generation Biorefinery Integrated into the Territory). Development of a Biorefinery Integrated into the Local Area 2014–2017. Available online: https://www.novamont.it/bit3g (accessed on 27 May 2020).
- Brock, C.; Franko, U.; Oberholzer, H.R.; Kuka, K.; Leithold, G.; Kolbe, H.; Reinhold, J. Humus balancing in Central Europe—Concepts, state of the art, and further challenges. J. Plant Nutr. Soil Sci. 2013, 176, 3–11. [Google Scholar] [CrossRef]
- Tremblay, M.E.; Nduwamungu, C.; Parent, L.E.; Bolinder, M.A. Biological stability of carbon and nitrogen in organic products and crop residues using Fourier-transform near-infrared reflectance spectroscopy. Commun. Soil Sci. Plant 2010, 41, 917–934. [Google Scholar] [CrossRef]
- Fernández-Tirado, F.; Parra-López, C.; Calatrava-Requena, J. A methodological proposal for Life Cycle Inventory of fertilization in energy crops: The case of Argentinean soybean and Spanish rapeseed. Biomass Bioenergy 2013, 58, 104–116. [Google Scholar] [CrossRef]
- Bouajila, K.; Jeddi, F.B.; Jedidi, N.; Rezgui, S.; Sanaa, M. Chemical and biochemical characterization of four crop residues and farmyard manure. Rev. Des. Biol. Ressour. 2016, 6, 13. Available online: https://journals.univ-ouargla.dz/index.php/RBR/article/view/616/423 (accessed on 10 February 2020).
- Delphin, J.E. Etat organique du sol selon quelques systèmes de culture en Alsace. In Fertilité et Système de Production; Sebillote, M., Ed.; INRA: Paris, France, 1989; pp. 249–253. [Google Scholar]
- Mary, B.; Guérif, J. Intérêts et limites des modèles de prevision de l’évolution des matières organiques et de l’azote dans le sol. Cah. Agric. 1994, 3, 247–257. [Google Scholar]
- Saffih-Hdadi, K.; Mary, B. Modeling consequences of straw residues export on soil organic carbon. Soil Biol. Biochem. 2008, 40, 594–607. [Google Scholar] [CrossRef]
- D’Avino, L.; L’Abate, G.; Chiarini, F.; Correale, F.; Morari, F. SOC Sequestration in a 4-Year Conventional and Conservative Rotation. 2017. Available online: http://www.fao.org/3/a-bs081e.pdf (accessed on 10 February 2020).
- Priori, S.; D’Avino, L.; Agnelli, A.E.; Valboa, G.; Knapič, M.; Schroers, H.J.; Akca, E.; Tangolar, S.; Kiraz, M.E.; Giffard, B.; et al. Effect of organic treatments on soil carbon and nitrogen dynamics in vineyard. Int. J. Environ. Qual. 2018, 31, 1–10. [Google Scholar] [CrossRef]
- Falloon, P.; Smith, P. Simulating SOC changes in long-term experiments with RothC and CENTURY: Model evaluation for a regional scale application. Soil Use Manag. 2002, 18, 101–111. [Google Scholar] [CrossRef]
- Francaviglia, R.; Coleman, K.; Whitmore, A.P.; Doro, L.; Urracci, G.; Rubino, M.; Ledda, L. Changes in soil organic carbon and climate change—Application of the RothC model in agro-silvo-pastoral Mediterranean systems. Agric. Syst. 2012, 112, 48–54. [Google Scholar] [CrossRef]
- Mishra, G.; Jangir, A.; Francaviglia, R. Modeling soil organic carbon dynamics under shifting cultivation and forests using Rothc model. Ecol. Model. 2019, 396, 33–41. [Google Scholar] [CrossRef]
- Jones, C.; McConnell, C.; Coleman, K.; Cox, P.; Falloon, P.; Jenkinson, D.; Powlson, D. Global climate change and soil carbon stocks: Predictions from two contrasting models for the turnover of organic carbon in soil. Glob. Chang. Biol. 2005, 11, 154–166. [Google Scholar] [CrossRef]
- Farina, R.; Coleman, K.; Whitmore, A.P. Modification of the RothC model for simulations of soil organic C dynamics in dryland regions. Geoderma 2013, 200–201, 18–30. [Google Scholar] [CrossRef]
- Heitkamp, F.; Wendland, M.; Offenberger, K.; Gerold, G. Implications of input estimation, residue quality and carbon saturation on the predictive power of the Rothamsted Carbon Model. Geoderma 2012, 170, 168–175. [Google Scholar] [CrossRef]
- Farina, R.; Testani, E.; Campanelli, G.; Leteo, F.; Napoli, R.; Canali, S.; Tittarelli, F. Potential carbon sequestration in a Mediterranean organic vegetable cropping system. A model approach for evaluating the effects of compost and Agro-ecological Service Crops (ASCs). Agric. Syst. 2018, 162, 239–248. [Google Scholar] [CrossRef]
- Smith, P.; Smith, J.U.; Powlson, D.S.; McGill, W.B.; Arah, J.R.M.; Chertov, O.G.; Coleman, K.; Franko, U.; Frolking, S.; Jenkinson, D.S.; et al. A comparison of the performance of nine soil organic matter models using datasets from seven long-term experiments. Geoderma 1997, 81, 153–225. [Google Scholar] [CrossRef]
- Addiscott, T.M.; Whitmore, A.P. Computer simulation of changes in soil mineral nitrogen and crop nitrogen during autumn, winter and spring. J. Agric. Sci. 1987, 109, 141–157. [Google Scholar] [CrossRef]
- Cotana, F.; Cavalaglio, G.; Gelosia, M.; Coccia, V.; Petrozzi, A.; Ingles, D.; Pompili, E. A comparison between SHF and SSSF processes from cardoon for ethanol production. Ind. Crop. Prod. 2015, 69, 424–432. [Google Scholar] [CrossRef]
- Gominho, J.; Curt, M.D.; Lourenço, A.; Fernández, J.; Pereira, H. Cynara cardunculus L. as a biomass and multi-purpose crop: A review of 30 years of research. Biomass Bioenergy 2018, 109, 257–275. [Google Scholar] [CrossRef]
- Raccuia, S.A.; Piscioneri, I.; Sharma, N.; Melilli, M.G. Genetic variability in Cynara cardunculus L. domestic and wild types for grain oil production and fatty acids composition. Biomass Bioenergy 2011, 35, 3167–3173. [Google Scholar] [CrossRef]
- Fernández, J.; Curt, M.D.; Aguado, P.L. Industrial applications of Cynara cardunculus L. for energy and other uses. Ind. Crop. Prod. 2006, 24, 222–229. [Google Scholar] [CrossRef]
- Cosentino, S.L.; Copani, V.; Mantineo, M.; Patané, C.; D’Agosta, G. Agronomic, energetic and environmental aspects of biomass energy crops suitable for Italian environments. Ital. J. Agron. 2008, 2, 81–95. [Google Scholar] [CrossRef] [Green Version]
- Grammelis, P.; Malliopoulou, A.; Basinas, P.; Danalatos, N.G. Cultivation and characterization of Cynara cardunculus for solid biofuels production in the Mediterranean region. Int. J. Mol. Sci. 2008, 9, 1241–1258. [Google Scholar] [CrossRef]
- Neri, U.; Pennelli, B.; Simonetti, G.; Francaviglia, R. Biomass partition and productive aptitude of wild and cultivated cardoon genotypes (Cynara cardunculus L.) in a marginal land of Central Italy. Ind. Crop. Prod. 2017, 95, 191–201. [Google Scholar] [CrossRef]
- Portis, E.; Barchi, L.; Acquadro, A.; Macua, J.I.; Lanteri, S. Genetic diversity assessment in cultivated cardoon by AFLP (amplified fragment length polymorphism) and microsatellite markers. Plant Breed. 2005, 124, 299–304. [Google Scholar] [CrossRef]
- Sonnante, G.; Pignone, D.; Hammer, K. The domestication of artichoke and cardoon: From Roman times to the genomic age. Ann. Bot. 2007, 100, 1095–1100. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cravero, V.; Martin, E.; Crippa, I.; López Anido, F.; García, S.M.; Cointry, E. Fresh biomass production and partition of aboveground growth in the threebotanical varieties of Cynara cardunculus L. Ind. Crop. Prod. 2012, 37, 253–258. [Google Scholar] [CrossRef]
- Pandino, G.; Lombardo, S.; Mauro, R.P.; Mauromicale, G. Variation in polyphenol profile and head morphology am ong clones of globe artichoke selected from a landrace. Sci. Hortic. 2012, 138, 259–265. [Google Scholar] [CrossRef]
- Raccuia, S.A.; Melilli, M.G. Biomass and grain oil yields in Cynara cardunculus L. genotypes grown in a Mediterranean environment. Field Crop. Res. 2007, 101, 187–197. [Google Scholar] [CrossRef]
- Angelini, L.G.; Ceccarini, L.; Nassi o Di Nasso, N.; Bonari, E. Long-term evaluation of biomass production and quality of two cardoon (Cynara cardunculus L.) cultivars for energy use. Biomass Bioenergy 2009, 33, 810–816. [Google Scholar] [CrossRef]
- Piscioneri, I.; Sharma, N.; Baviello, G.; Orlandini, S. Promising industrial energy crop, Cynara cardunculus: A potential source for biomass production and alternative energy. Energy Convers. Manag. 2000, 41, 1091–1105. [Google Scholar] [CrossRef]
- Ledda, L.; Deligios, P.A.; Farci, R.; Sulas, L. Biomass supply for energetic purposes from some Cardueae species grown in Mediterranean farming systems. Ind. Crop. Prod. 2013, 47, 218–226. [Google Scholar] [CrossRef]
- Francaviglia, R.; Bruno, A.; Falcucci, M.; Farina, R.; Renzi, G.; Russo, D.E.; Sepe, L.; Neri, U. Yields and quality of Cynara cardunculus L. wild and cultivated cardoon genotypes. A case study from a marginal land in Central Italy. Eur. J. Agron. 2016, 72, 10–19. [Google Scholar] [CrossRef]
- Gominho, J.; Lourenço, A.; Curt, M.D.; Fernández, J.; Pereira, H. Cynara cardunculus in large scale cultivation: A case study in Portugal. Chem. Eng. Trans. 2014, 37, 529–534. [Google Scholar] [CrossRef]
- Vasilakoglou, I.; Dhima, K. Potential of two cardoon varieties to produce biomass and oil under reduced irrigation and weed control inputs. Biomass Bioenergy 2014, 63, 177–186. [Google Scholar] [CrossRef]
- Cioffi, A. Rilievo Indici di Relazione tra Produzioni Agricole e Biomassa Residuale Associata, Analisi del Mercato della Biomassa Residuale nelle Province delle Regioni: Molise, Campania, Puglia, Basilicata, Calabria, Sicilia, Sardegna. ENEA Report RSE/2009/50. 2009, p. 74. Available online: http://aida.casaccia.enea.it/aida/file/RSE50.pdf (accessed on 10 February 2020).
- Boiffin, J.; Keli Zagbahi, J.; Sebillotte, M. Systèmes de culture et statut organique des sols dans le Noyonnais: Application du modèle de Hénin–Dupuis. Agronomie 1986, 6, 437–446. [Google Scholar] [CrossRef] [Green Version]
- Kätterer, T.; Bolinder, M.A.; Andrén, O.; Kirchmann, H.; Menichetti, L. Roots contribute more to refractory soil organic matter than above-ground crop residues, as revealed by a long-term field experiment. Agric. Ecosyst. Environ. 2011, 141, 184–192. [Google Scholar] [CrossRef] [Green Version]
- Mazzoncini, M.; Antichi, D.; Di Bene, C.; Risaliti, R.; Petri, M.; Bonari, E. Soil carbon and nitrogen changes after 28 years of no-tillage management under Mediterranean conditions. Eur. J. Agron. 2016, 77, 156–165. [Google Scholar] [CrossRef]
- Cocco, D.; Deligios, P.A.; Ledda, L.; Sulas, L.; Virdis, A.; Carboni, G. LCA study of oleaginous bioenergy chains in a Mediterranean environment. Energies 2014, 7, 6258–6281. [Google Scholar] [CrossRef]
- EU (European Union). Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the Promotion of the Use of Energy from Renewable Sources. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32018L2001&from=EN (accessed on 27 January 2020).
- Priori, S.; Barbetti, R.; Meini, L.; Morelli, A.; Zampolli, A.; D’Avino, L. Towards economic land evaluation at the farm scale based on soil physical-hydrological features and ecosystem services. Water 2019, 11, 1527. [Google Scholar] [CrossRef] [Green Version]
- Minasny, B.; Malone, B.P.; McBratney, A.B.; Angers, D.A.; Arrouays, D.; Chambers, A.; Chaplot, V.; Chen, Z.S.; Cheng, K.; Das, B.S.; et al. Soil carbon 4 per mille. Geoderma 2017, 292, 59–86. [Google Scholar] [CrossRef]
- Baveye, P.C.; Berthelin, J.; Tessier, D.; Lemaire, G. The “4 per 1000” initiative: A credibility issue for the soil science community? Geoderma 2019, 309, 118–123. [Google Scholar] [CrossRef]
- Chinthapalli, R.; Skoczinski, P.; Carus, M.; Baltus, W.; de Guzman, D.; Käb, H.; Raschka, A.; Ravenstijn, J. Biobased building blocks and polymers—Global capacities, production and trends, 2018–2023. Ind. Biotechnol. 2019, 15, 237–241. [Google Scholar] [CrossRef]
Months | Temperature (°C) | Rainfall (mm) | Evapotranspiration (mm) |
---|---|---|---|
January | 10.1 | 52.1 | 33.8 |
February | 10.0 | 69.4 | 41.8 |
March | 11.7 | 41.0 | 68.2 |
April | 14.1 | 47.8 | 89.5 |
May | 17.9 | 38.9 | 128.7 |
June | 21.9 | 16.9 | 147.5 |
July | 24.6 | 4.8 | 197.7 |
August | 25.0 | 11.6 | 163.1 |
September | 21.8 | 45.3 | 109.0 |
October | 18.7 | 68.0 | 71.9 |
November | 14.3 | 100.7 | 43.6 |
December | 11.3 | 71.3 | 34.3 |
Annual mean | 16.8 | 568.0 | 1129.0 |
Residues * | FB and DW Crops | CAR Crop |
---|---|---|
Rag | ||
Rbg | ||
Rw |
Farms | Clay (%) | Silt (%) | Coarse Fragment (%) | Bulk Density (kg m−3) | Total Carbonate (%) | Initial SOC (%) |
---|---|---|---|---|---|---|
1 | 52.3 | 16.1 | 13.3 | 1.26 | 8.5 | 1.46 |
2 | 48.8 | 20.5 | 8.1 | 1.27 | 12.6 | 1.42 |
3 | 47.7 | 21.9 | 16.9 | 1.24 | 1.0 | 1.69 |
Crop a | Case Study | Total Biomass b | Residues c | |||||
---|---|---|---|---|---|---|---|---|
Above Ground | Below Ground | Rag | Rw | Rbg | Total R d | C Inputs e | ||
CAR (YR1) | 1 | 8.01 | 1.20 | 2.69 | 0.49 | 1.20 | 4.38 | 1.96 |
2 | 10.05 | 1.51 | 3.38 | 0.60 | 1.51 | 5.49 | 2.45 | |
3 | 11.54 | 1.73 | 3.88 | 0.69 | 1.73 | 6.30 | 2.81 | |
CAR (YR2–6) | 1 | 13.62 | 10.14 | 4.58 | - | 10.14 | 14.71 | 7.90 |
2 | 13.03 | 7.74 | 4.38 | - | 9.70 | 14.08 | 6.64 | |
3 | 11.08 | 6.58 | 3.72 | - | 8.24 | 11.97 | 5.64 | |
CAR (Y7) | 1 | 12.87 | 16.02 | 4.32 | - | 17.96 | 22.28 | 10.62 |
2 | 13.36 | 16.63 | 4.49 | - | 18.63 | 23.12 | 11.04 | |
3 | 10.93 | 13.61 | 3.67 | - | 15.25 | 18.92 | 9.02 | |
FB | - | 3.80 | 1.55 | 2.80 | 0.28 | 1.55 | 4.62 | 2.08 |
DW | - | 6.10 | 2.38 | 3.66 | 0.37 | 2.38 | 6.41 | 2.88 |
IPCC Tool | SOMBIT | RothC | |
---|---|---|---|
RMSE | 14.7 | 10.5 | 7.1 |
RE (%) | 15.1 | 4.6 | 5.3 |
SOMBIT | RothC | |||
---|---|---|---|---|
S0 | S1 | S0 | S1 | |
SOCfinal–SOCinitial | −5.33 | 18.10 | −1.20 | 20.20 |
I | 49.39 | 111.59 | 49.39 | 111.59 |
SR | −0.11 | 0.16 | −0.02 | 0.18 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
D’Avino, L.; Di Bene, C.; Farina, R.; Razza, F. Introduction of Cardoon (Cynara cardunculus L.) in a Rainfed Rotation to Improve Soil Organic Carbon Stock in Marginal Lands. Agronomy 2020, 10, 946. https://doi.org/10.3390/agronomy10070946
D’Avino L, Di Bene C, Farina R, Razza F. Introduction of Cardoon (Cynara cardunculus L.) in a Rainfed Rotation to Improve Soil Organic Carbon Stock in Marginal Lands. Agronomy. 2020; 10(7):946. https://doi.org/10.3390/agronomy10070946
Chicago/Turabian StyleD’Avino, Lorenzo, Claudia Di Bene, Roberta Farina, and Francesco Razza. 2020. "Introduction of Cardoon (Cynara cardunculus L.) in a Rainfed Rotation to Improve Soil Organic Carbon Stock in Marginal Lands" Agronomy 10, no. 7: 946. https://doi.org/10.3390/agronomy10070946
APA StyleD’Avino, L., Di Bene, C., Farina, R., & Razza, F. (2020). Introduction of Cardoon (Cynara cardunculus L.) in a Rainfed Rotation to Improve Soil Organic Carbon Stock in Marginal Lands. Agronomy, 10(7), 946. https://doi.org/10.3390/agronomy10070946