Success Rate of Individual Pollinizers for the Pear Cultivars “Ingeborg” and “Celina” in a Nordic Climate
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Climate Conditions Phenology
2.3. Flowering and Fruit Set
2.4. Pollen Germination In Vitro
2.5. Pollination Treatments In Vivo
2.6. Pollen Tube Growth In Vivo
2.7. Statistical Analysis
3. Results
3.1. Air Temperature, Rain Precipitation and Time of Flowering
3.2. Pollen Germination In Vitro
3.3. Pollen Tube Growth in the Pistil
3.4. Fruit Set
3.5. Correlation among Reproductive Parameters
4. Discussion
4.1. Pollen Germination In Vitro
4.2. Pollen Tube Growth in Pistils
4.3. Fruit Set
4.4. Overlapping in Flowering Time
4.5. Correlation among Reproductive Parameters
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- FAOStat. 2019. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 17 March 2020).
- Gasi, F.; Pojskić, N.; Kurtović, M.; Kaiser, C.; Hjeltnes, S.H.; Fotirić Akšić, M.; Meland, M. Pollinizer efficacy of several ʿIngeborgʾ pear pollinizers in Hardanger, Norway, examined using microsatellite markers. HortScience 2017, 52, 1722–1727. [Google Scholar] [CrossRef]
- Meland, M.; Frøynes, O. Evaluation of new Norwegian pear cultivars in a Nordic climate. In Proceedings of the ISHS 12th Pear Symposium, Leuven, Belgium, 14–18 July 2014; p. 56. [Google Scholar]
- Meland, M.; Frøynes, O.; Akšić, M.F.; Maas, F.M. Performance of ‘Celina’, ‘Ingeborg’ and ‘Kristina’ pear cultivars on Quince rootstocks growing in a Nordic Climate. Acta Hortic. 2020, in press. [Google Scholar]
- Hjeltnes, S.H.; Vercammen, J.; Gomand, A.; Måge, F.; Røen, D. High potential new Norwegian bred pear cultivars. Acta Hortic. 2015, 1094, 111–116. [Google Scholar] [CrossRef]
- Vilegen-Verschure, A. Celina, the new pear variety. Eur. Fruitg. Mag. 2013, 55, 14–17. [Google Scholar]
- Meland, M.; Frøynes, O.; Kalamujić-Stroil, B.; Lasic, L.; Gasi, F. Pollinizer efficacy of several ‘Celina’ pollinizers in Norway, examined using microsatellite markers. Acta Hortic. 2020, in press. [Google Scholar]
- Meland, M.; Kurtovic, M.; Kalamujic, B.; Pojskic, N.; Lasic, L.; Gasi, F. Microsatellites as a tool for identifying successful pollinators of the pear cultivar ‘Ingeborg’ in Ullensvang, Norway. Acta Hortic. 2018. [Google Scholar] [CrossRef]
- Granger, A.R. Gene flow in cherry orchards. Theor. Appl. Genet. 2004, 108, 497–500. [Google Scholar] [CrossRef]
- Jacquemart, A.L.; Michotte-Van der, A.A.; Raspe, O. Compatibility and pollinator efficiency test on the Pyrus communis L-Cv “Conference”. J. Hortic. Sci. Biotechnol. 2006, 81, 827–830. [Google Scholar] [CrossRef]
- Ketchie, D.O.; Fairchie, E.D.; Drake, F.R. Viability of different pear pollen and the effect on fruit set of ‘Anjou’ pear (Pyrus communis L.). Fruit Var. J. 1996, 50, 118–124. [Google Scholar]
- Sanzol, J.; Rallo, P.; Herrero, M. Asynchronous development of stigmatic receptivity in the pear (Pyrus communis, Rosaceae) flower. Am. J. Bot. 2003, 90, 78–84. [Google Scholar] [CrossRef] [Green Version]
- Sanzol, J.; Herrero, M. The effective pollination period in fruit trees. Sci. Hortic. 2001, 90, 1–17. [Google Scholar] [CrossRef]
- Phillips, W.D.; Ranney, T.G.; Touchell, D.H.; Eaker, T.A. Fertility and reproductive pathways of triploid flowering pears (Pyrus sp.). HortScience 2016, 51, 968–971. [Google Scholar] [CrossRef] [Green Version]
- Quinet, M.; Jacquemart, A.L. Cultivar placement affects pollination efficiency and fruit production in European pear (Pyrus communis) orchards. Eur. J. Agron. 2017, 91, 84–92. [Google Scholar] [CrossRef]
- Cerović, R.; Mićić, N. Oprašivanje i oplodnja jabučastih i koštičavih voćaka. Jugosl. Voćarstvo 1996, 30, 73–98. [Google Scholar]
- Vasilikis, M.D.; Porzingis, I.C. Effect of temperature on pollen germination, pollen tube growth, effective pollination period, and fruit set of pear. HortScience 1985, 20, 733–735. [Google Scholar]
- Petropoulou, S.P.; Alston, F.H. Selecting for improved pollination at low temperature in apple. J. Hortic. Sci. Biotechnol. 1998, 73, 507–512. [Google Scholar] [CrossRef]
- Sanzol, J. Pistil-function breakdown in a new S-allele of European pear, S21°, confers self-compatibility. Plant Cell Rep. 2009, 28, 457–467. [Google Scholar] [CrossRef]
- Claessen, H.; Keulemans, W.; Van de Poel, B.; De Storme, N. Finding a Compatible Partner: Self-Incompatibility in European Pear (Pyrus communis); Molecular Control, Genetic Determination, and Impact on Fertilization and Fruit Set. Front. Plant Sci. 2019, 10, 407. [Google Scholar] [CrossRef] [Green Version]
- Sassa, H.; Nishio, T.; Kowyama, Y.; Hirano, H.; Koba, T.; Ikehashi, H. Self-incompatibility (S) alleles of the Rosaceae encode members of a distinct class of the T2/S ribonuclease superfamily. Mol. Gen. Genet. 1996, 250, 547–557. [Google Scholar]
- Silva, L.; Sanzol, J.; Herrero, M.; Olivera, C.M. Study of pollen-pistil interactions on crosses between ʿRochaʾ pear an potential pollinators. Acta Hortic. 2008, 800. [Google Scholar] [CrossRef] [Green Version]
- Shaheen, M.A.; Essa, M.A.; Sayed, R.A.; Abd El-Aziz, Y.S.G. Sexual Compatibility of Le Conte pear cultivar. J. Hortic. Sci. Orn. Plant 2011, 3, 99–105. [Google Scholar]
- Herrera, S.; Rodrigo, J.; Hormaza, J.I.; Lora, J. Identification of Self-Incompatibility Alleles by Specific PCR Analysis and S-RNase Sequencing in Apricot. Int. J. Mol. Sci. 2018, 19, 3612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goldway, M.; Takasaki-Yasuda, T.; Sanzol, J.; Mota, M.; Zisovich, A.H.; Stern, R.A.; Sansavini, S. Renumbering the S-Rnase alleles of European pears (Pyrus communis L.) and cloning the S109 RNase allele. Sci. Hortic. 2009, 119, 417–422. [Google Scholar] [CrossRef]
- Hedhly, A.; Hormaza, J.I.; Herrero, M. Global warming and sexual plant reproduction. Trends Plant Sci. 2009, 14, 30–36. [Google Scholar] [CrossRef] [PubMed]
- Hedhly, A. Sensitivity of flowering plant gametophytes to temperature fluctuations. Environ. Exp. Bot. 2011, 74, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Radičević, S.; Cerović, R.; Đorđević, M. Ovule senescence and unusual pollen tube growth in the ovary of sweet cherry as affected by pistilar genotype and temperature. Span. J. Agric. Res. 2018, 16, 1–12. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Cerović, R.; Slavković, D.; Hjeltnes, S.H.; Meland, M. Selection of the best pollinizer of ʿCelinaʾ pear. Acta Hortic. 2018, 1229, 365–370. [Google Scholar] [CrossRef]
- Meier, U. Growth stages of mono-and dicotyledonous plants. In Federal Biological Research Centre for Agriculture and Forestry, 2nd ed.; BBCH Monograph: Berlin & Brunswick, Germany, 2001. [Google Scholar]
- Preil, W. Observing of pollen tube in pistil and ovarian tissue by means of fluorescence microscopy. Zeiss Inf. 1970, 75, 24–25. [Google Scholar]
- Kho, Y.O.; Baër, J. Fluorescence microscopy in botanical research. Zeiss Inf. 1971, 76, 54–57. [Google Scholar]
- Sanzol, J.; Herrero, M. Identification of self-incompatibility alleles in pear cultivars (Pyrus communis L.). Euphytica 2002, 128, 325–331. [Google Scholar] [CrossRef]
- Sanzol, J.; Herrero, M. Self-incompatibility and self-fruitfulness in pear cv. Agua de Aranjuez. J. Am. Soc. Hortic. Sci. 2007, 132, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Sharafi, Y. Investigation on pollen viability and longevity in Malus pumila L.; Pyrus commonis L.; and Cydonia oblonga L.; In Vitro. J. Med. Plants Res. 2011, 5, 2232–2236. Available online: https://academicjournals.org/journal/JMPR/article-full-text-pdf/E65178D21212 (accessed on 28 May 2020).
- Bhat, Z.A.; Dhillon, W.S.; Shafi, R.H.S.; Rather, J.A.; Mir, A.H.; Shafi, W.; Rashid, R.; Bhat, J.A.; Rather, T.R.; Wani, T.A. Influence of Storage Temperature on Viability and In Vitro Germination Capacity of Pear (Pyrus spp.) Pollen. J. Agric. Sci. 2012, 4, 128. [Google Scholar] [CrossRef] [Green Version]
- Bieniasz, M.; Necas, T.; Dziedzic, E.; Ondrasek, I.; Pawłowska, B. Evaluation of Pollen Quality and Self-Fertility in Selected Cultivars of Asian and European Pears. Not. Bot. Hortic. Agrobo. Cluj-Napoca 2017, 45, 375–382. [Google Scholar] [CrossRef] [Green Version]
- Pacini, E.; Dolferus, R. Pollen Developmental Arrest: Maintaining Pollen Fertility in a World with a Changing Climate. Front. Plant Sci. 2019, 10, 679. [Google Scholar] [CrossRef]
- Zheng, R.H.; Su, S.H.; Xiao, H.; Tian, H.Q. Calcium: A Critical Factor in Pollen Germination and Tube Elongation. Int. J. Mol. Sci. 2019, 20, 420. [Google Scholar] [CrossRef] [Green Version]
- Hormaza, J.I.; Herrero, M. Dynamics of pollen tube growth under different competition regimes. Sex. Plant Reprod. 1996, 9, 153–160. [Google Scholar] [CrossRef]
- Herrero, M. Ovary signals for directional pollen tube growth. Sex. Plant Reprod. 2001, 14, 3–7. [Google Scholar] [CrossRef]
- Hormaza, J.I.; Herrero, M. Pollen selection. Theor. Appl. Genet. 1992, 83, 663–672. [Google Scholar] [CrossRef]
- Kumar, A.; McClure, B. Pollen-pistil interactions and the endomembrane system. J. Exp. Bot. 2010, 61, 2001–2013. [Google Scholar] [CrossRef] [Green Version]
- Heslop-Harrison, J. Pollen germination and pollen tube growth. Int. Rev. Cytol. 1987, 107, 1–78. [Google Scholar]
- Marcucci, M.C.; Visser, T. Pollen tube growth in apple and pear styles in relation to self-incompatibility, incongruity and pollen load. Adv. Hortic. Sci. 1987, 1, 90–94. [Google Scholar]
- Rohitha, B.H.; Klinac, D.J. Some observations on the influence oftemperature on the germination of pollen on excised nashi (Pyrus serotina Rehder var. culta Rehder) flowers New Zealand. J. Crop. Hortic. Sci. 1994, 22, 339–342. [Google Scholar] [CrossRef]
- Hedhly, A.; Hormaza, J.I.; Hererro, M. Influence of genotype-temperature interaction on pollen performance. J. Evol. Biol. 2005, 18, 1494–1502. [Google Scholar] [CrossRef] [Green Version]
- Sanzol, J. Genomic characterization of self-incompatibility ribonucleases in European pear cultivars and development of PCR detection for 20 alleles. Tree Gen. Genomes 2009, 5, 393–405. [Google Scholar] [CrossRef]
- De Nettancourt, D. Incompatibility and Incongruity in Wild and Cultivated Plants; Springer: Berlin, Germany, 2001. [Google Scholar]
- Hiratsuka, S.; Zung, S.L. Relationships between fruit set, pollen-tube growth, and S-RNase concentration in the self-incompatible Japanese pear. Sci. Hortic. 2002, 95, 309–318. [Google Scholar] [CrossRef]
- Moriya, Y.; Okada, K.; Yamamoto, K.; Iwanami, H.; Bessho, H.; Takasaki-Yasuda, T. Characterisation of partial self-compatibility in the European pear cultivar, “Grand Champion”. J. Hortic. Sci. Biotechnol. 2009, 84, 77–82. [Google Scholar] [CrossRef]
- Stösser, R.; Anvari, S.F. On the senescence of ovules in cherries. Sci. Hortic. 1982, 16, 29–38. [Google Scholar]
- Cerović, R.; Ruzic, Đ.; Mićić, N. Viability of plum ovules at different temperatures. Ann. Appl. Biol. 2000, 137, 53–59. [Google Scholar] [CrossRef]
- Wiliams, R.R. Factors affecting pollination in fruit trees. In Physiology of Tree Crops; Luckwill, L.C., Cutting, C.V., Eds.; Academic Press: London, UK; New York, NY, USA, 1970; pp. 193–207. [Google Scholar]
- Pratt, C. Apple Flower and Fruit Morphology and Anatomy. Hortic. Rev. 1988, 10, 273–280. [Google Scholar] [CrossRef]
- Falk Kühn, B.; Bertelsen, M. Pollination Experiment with the Pear Cultivar ‘Clara Frijs’. Acta Hortic. 2004, 636, 375–379. [Google Scholar] [CrossRef]
- Sheiki, H.; Arzani, A.; Kousheshsaba, M. Determination of self and cross-(in) compatibility of some Asian Pear (Pyrus serotina Rehd.) and European Pear (Pyrus communis L.) cultivars native to Iran. Seed Plant Imp. J. 2016, 32, 383–400. [Google Scholar]
- Quinet, M.; Buyens, C.; Dobrev, P.I.; Motyka, V.; Jacquemart, A.L. Hormonal Regulation of Early Fruit Development in European Pear (Pyrus communis cv. ‘Conference’). Horticulturae 2019, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Shalan, A.M.N. Impact of boric acid spraying date with different concentrations on yield and fruit quality of Pyrus communis cv. ‘Leconte’ pear trees. J. Plant Prod. 2013, 4, 1479–1491. [Google Scholar] [CrossRef] [Green Version]
- Tatari, M.; Ghasemi, A.; Mousavi, A.; Bahrami, H. Study on pollination and selection of the most suitable pollinizers for commercial Pear cultivars (Pyrus communis L.) in Iran. J. Hortic. Res. 2017, 25, 49–57. [Google Scholar] [CrossRef] [Green Version]
- Sønsteby, A.; Heide, O.M.; Rivero, R.; Måge, F.; Remberg, S.F. Phenology, flowering and fruit-set performance of six recent pear cultivars of Nordic origin. Acta Agric. Scand. Sect. B Soil Plant Sci. 2019, 69, 578–587. [Google Scholar] [CrossRef]
- Fotirić Akšić, M.; Rakonjac, V.; Nikolić, D.; Zec, G. Reproductive biology traits affecting productivity of sour cherry. Pesqui. Agropecuária Bras. 2013, 48, 33–41. [Google Scholar] [CrossRef] [Green Version]
- Jahed, K.R.; Hirst, P.M. Pollen Tube Growth and Fruit Set in Apple. HortScience 2017, 52, 1054–1059. [Google Scholar] [CrossRef] [Green Version]
- Radičević, S.; Cerović, R.; Nikolić, D.; Ðorđević, M. The effect of genotype and temperature on pollen tube growth and fertilization in sweet cherry (Prunus avium L.). Euphytica 2016, 209, 121–136. [Google Scholar] [CrossRef]
- Zhang, C.; Tateishi, N.; Tanabe, K. Pollen density on the stigma affects endogenous gibberellin metabolism, seed and fruit set, and fruit quality in Pyrus pyrifolia. J. Exp. Bot. 2010, 61, 4291–4302. [Google Scholar] [CrossRef] [Green Version]
Parameter | PG | STU | OVR | FOV | IFS | FFS |
---|---|---|---|---|---|---|
PG | / | |||||
STU | −0.11 (p = 0.244) | / | ||||
OVR | 0.33 (p = 0.062) | 0.11 (p = 0.244) | / | |||
FOV | 0.20 (p = 0.121) | −0.07 (p = 0.301) | 0.51 * (p = 0.009) | / | ||
IFS | −0.01 (p = 0.393) | −0.30 (p = 0.088) | 0.58 * (p = 0.005) | 0.33 (p = 0.062) | / | |
FFS | −0. 39 * (p = 0.038) | −0.46 * (p = 0.021) | 0.62 * (p = 0.001) | 0.51 * (p = 0.009) | 0.57 * (p = 0.005) | / |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cerović, R.; Fotirić Akšić, M.; Meland, M. Success Rate of Individual Pollinizers for the Pear Cultivars “Ingeborg” and “Celina” in a Nordic Climate. Agronomy 2020, 10, 970. https://doi.org/10.3390/agronomy10070970
Cerović R, Fotirić Akšić M, Meland M. Success Rate of Individual Pollinizers for the Pear Cultivars “Ingeborg” and “Celina” in a Nordic Climate. Agronomy. 2020; 10(7):970. https://doi.org/10.3390/agronomy10070970
Chicago/Turabian StyleCerović, Radosav, Milica Fotirić Akšić, and Mekjell Meland. 2020. "Success Rate of Individual Pollinizers for the Pear Cultivars “Ingeborg” and “Celina” in a Nordic Climate" Agronomy 10, no. 7: 970. https://doi.org/10.3390/agronomy10070970
APA StyleCerović, R., Fotirić Akšić, M., & Meland, M. (2020). Success Rate of Individual Pollinizers for the Pear Cultivars “Ingeborg” and “Celina” in a Nordic Climate. Agronomy, 10(7), 970. https://doi.org/10.3390/agronomy10070970