Phosphorus and Zinc Fertilization Improve Productivity and Profitability of Rice Cultivars under Rice-Wheat System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Weather Condition
2.3. Experimentation
2.4. Data Recording and Handling
2.5. Statistical Analysis
2.6. Economic Analysis
3. Results and Discussion
3.1. Rice Productivity
3.1.1. Rice Yield Component
3.1.2. Rice Grain Yield and Hulling Percentage
3.2. Wheat Productivity
3.3. Profitability (Grower’s Income)
3.3.1. Impact of Phosphorus on Grower’s Income
3.3.2. Impact of Zinc on Grower’s Income
3.3.3. Impact of Rice Genotypes on Grower’s Income
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amanullah, S.; Tamraiz, A. Iqbal and S. Fahad. Growth and productivity response of hybrid rice to application of animal manures, plant residues and phosphorus. Front. Plant Sci. 2016, 7, 1440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Belder, P.; Bouman, B.A.; Cabangon, M.R.; Guoan, L.; Quilang, E.J.P.; Yuanhua, L.; Spiertz, J.H.J.; Tuong, T.P. Effect of water saving irrigation on rice yield and water use in typical low land conditions in Asia. Agric. Water Manag. 2004, 65, 193–210. [Google Scholar] [CrossRef]
- Metwally, T.F.; Gewaily, E.E.; Naeem, S.S. Nitrogen response curve and nitrogen use efficiency of Egyptian hybrid rice. J. Agric. Res. Kafer El-Sheikh Univ. 2011, 37, 73–84. [Google Scholar]
- Confalonieri, R.; Bocchi, S. Evaluation of crop syst for simulating the yield of flooded rice in northern Italy. Eur. J. Agron. 2005, 23, 315–332. [Google Scholar] [CrossRef]
- Tumrani, S.A.; Pathan, P.A.; Suleman, B.M. Economic contribution of rice production and food security in Indonesia. Asia Pac. Res. J. 2015, 33, 63–74. [Google Scholar]
- IRRI (International Rice Research Institute). Rice Facts; IRRI: Los Banos, Philippines, 1995. [Google Scholar]
- Swaminathan, M.S. Can science and technology feed the world in 2025? Field Crops Res. 2007, 104, 3–9. [Google Scholar] [CrossRef]
- Federal Bureau of Statistics Pakistan statistical Year Book 2008; Federal Bureau of Statistics, Statistics Division, Government of Pakistan: Islamabad, Pakistan, 2008.
- Ito, S.; Peterson, W.F.; Grant, W.R. Rice in Asia: Is it becoming an inferior good. Am. J. Agric. Econ. 1989, 71, 32–42. [Google Scholar] [CrossRef] [Green Version]
- Amanullah, H. Influence of organic and inorganic nitrogen on grain yield and yield components of hybrid rice in Northwestern Pakistan. Rice Sci. 2016, 23, 326–333. [Google Scholar] [CrossRef] [Green Version]
- Amanullah, I. Dry matter partitioning and harvest index differ in rice genotypes with variable rates of phosphorus and zinc nutrition. Rice Sci. 2016, 23, 78–87. [Google Scholar] [CrossRef] [Green Version]
- Ismail, A.M.; Heuer, S.; Thomson, J.T.; Wissuwa, M. Genetic and genomic approaches to develop rice germplasm for problem soils. Plant Mol. Biol. 2007, 65, 547–570. [Google Scholar] [CrossRef]
- Amanullah, I. Residual phosphorus and zinc influence wheat productivity under rice-wheat cropping system. SpringerPlus 2016, 5, 255. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson-Beebout, S.E.; Lauren, J.G.; Duxbury, J.M. Immobilization of zinc fertilizer in flooded soils monitored by adapted DTPA soil test. Commun. Soil Sci. Plant Anal. 2009, 40, 1842–1861. [Google Scholar] [CrossRef]
- Mirvat, E.G.; Mohamed, M.H.; Tawfik, M.M. Effect of phosphorus fertilizer and foliar spraying with zinc on growth, yield and quality of groundnut under recLAPHmed sandy soils. J. Appl. Sci. Res. 2006, 2, 491–496. [Google Scholar]
- Alloway, B.J. Soil factors associated with zinc deficiency in crops and humans. Environ. Geochem. Health 2009, 31, 537–548. [Google Scholar] [CrossRef]
- Cakmak, I. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species. New Phytol. 2000, 146, 185–205. [Google Scholar] [CrossRef]
- Das, K.; Dang, R.; Shivananda, T.N.; Sur, P. Interaction between phosphorus and zinc on the GY and yield attributes of the medicinal plant stevia (Stevia rebaudiana). Sci. World J. 2005, 5, 390–395. [Google Scholar] [CrossRef] [Green Version]
- Khorgamy, A.; Farnia, A. Effect of phosphorus and zinc fertilisation on yield and yield components of chick pea cultivars. In Proceedings of the 9th African Crop Science, Conference Proceedings, Cape Town, South Africa, 28 September–2 October 2009; pp. 205–208. [Google Scholar]
- Salimpour, S.; Khavazi, K.; Nadian, H.; Besharati, H.; Miransari, H. Enhancing phosphorous availability to canola (Brassica napus L.) using P solubilizing and sulfur oxidizing bacteria. Aust. J. Crop Sci. 2010, 4, 330–334. [Google Scholar]
- Impa, S.M.; Johnson-Beebout, S.E. Mitigating zinc deficiency and achieving high grain Zn in rice through integration of soil chemistry and plant physiology research. Plant Soil 2012, in press. [Google Scholar] [CrossRef]
- Marschner, H. Mineral Nutrition of Higher Plants, 2nd ed.; Academic Press: San Diego, CA, USA, 2002. [Google Scholar]
- Quijano-Guerta, C.; Kirk, G.J.D.; Portugal, A.M.; Bartolome, V.I.; McLaren, G.C. Tolerance of rice germplasm to zinc deficiency. Field Crops Res. 2002, 76, 123–130. [Google Scholar] [CrossRef]
- Singh, B.; Natesan, S.K.A.; Singh, B.K.; Usha, K. Improving zinc efficiency of cereals under zinc deficiency. Curr. Sci. 2003, 88, 36–44. [Google Scholar]
- Rose, T.J.; Impa, S.M.; Rose, M.T.; Pariasca-Tanaka, J.; Mori, A.; Heuer, S.; Johnson-Beebout, S.E.; Wissuwa, M. Enhancing phosphorus and zinc acquisition efficiency in rice: A critical review of root traits and their potential utility in rice breeding. Ann Bot. 2013, 112, 331–345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Amanullah, I.; Shah, Z.; Khalil, S.K. Phosphorus and zinc interaction influence leaf area index in fine versus coarse rice (Oryza sativa L.) genotypes in Northwest Pakistan. J. Plant Stress Physiol. 2016, 2, 1–8. [Google Scholar]
- Khan, A., Jr.; Almas, L.K.; Al-Noaim, M.I. Nitrogen rates and sources affect yield and profitability of maize in Pakistan. Crop Forage Turfgrass Manag. 2015. [Google Scholar] [CrossRef] [Green Version]
- Almas, L.K.; Shah, P. Timing and rate of nitrogen application influence profitability of maize planted at low and high densities in Northwest Pakistan. Agron. J. 2010, 102, 575–579. [Google Scholar]
- Amanullah, A.M.; Almas, L.K. Agronomic efficiency and profitability of P-fertilizers applied at different planting densities of maize in Northwest Pakistan. J. Plant. Nutr. 2012, 35, 331–341. [Google Scholar] [CrossRef]
- Tahir, M.; Kausar, M.A.; Ahmad, R.; Bhatti, S.A. Micronutrient status of Faisalabad and Sheikhupura soils. Pak. J. Agric. Res. 1991, 12, 134–140. [Google Scholar]
- Qadar, A. Selecting rice genotypes tolerant to zinc deficiency and sodicity stresses. I. Differences in zinc, iron, manganese, copper, phosphorus concentrations, and phosphorus/zinc ratio in their leaves. J. Plant Nutr. 2002, 25, 457–473. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D. Principles and Procedures of Statistics; McGraw-Hill: New York, NY, USA, 1996. [Google Scholar]
- Rahman, K.M.M.; Chowdhury, M.A.K.; Sharmeen, F.; Sarkar, A.; Hye, M.A.; Biswas, G.C. Effect of zinc and phosphorus on yield of Oryza sativa (cv. br-11). Bangladesh. Res. Pub. J. 2011, 5, 351–358. [Google Scholar]
- Lal, B.; Majumdar, B.; Venkatesh, M.S. Individual and interactive effects of phosphorus and zinc in lowland rice. Indian J. Hill Farm. 2000, 13, 44–46. [Google Scholar]
- Mafi, S.; Sadeghi, S.M.; Doroodian, H. Effect of zinc and phosphorus ~ fertilizers on yield and component yield of rice (Hashemi). Persian Gulf Crop Protect. 2013, 2, 30–36. [Google Scholar]
- Fageria, N.K.; Slaton, N.A.; Baligar, V.C. Nutrient management for improving lowland rice productivity and sustainability. Adv. Agron. 2003, 80, 63–152. [Google Scholar]
- Shivay, Y.S.; Kumar, D.; Prasad, R. Effect of zinc fertilization on physical grain quality of basmati rice. Int. Rice Res. Notes 2007, 32, 41–42. [Google Scholar] [CrossRef]
- Maqsood, M.; Irshad, M.; Wajid, S.A.; Hussain, A. Growth and yield response of Basmati-85 (Oryza sativa L.) to ZnSO4 application. Pak. J. Biol. Sci. 1999, 2, 1632–1633. [Google Scholar]
- Khan, P.; Memon, M.Y.; Imtiaz, M.; Depar, N.; Aslam, M.; Memon, M.S.; Shah, J.A. Determining the zinc requirements of rice genotype sarshar evolved at NIA Tandojam. Sarhad. J. Agric. 2012, 28, 1–7. [Google Scholar]
- Grzebisz, W.; Wrońska, M.; Diatta, J.B.; Szczepaniak, W. Effect of zinc foliar application at an early stage of maize growth on patterns of nutrients and dry matter accumulation by the canopy. Part II: Nitrogen uptake and dry matter accumulation patterns. J. Elementol. 2008, 13, 29–39. [Google Scholar]
- Yadi, R. Role of zinc fertilizer on GY and some qualities parameters in Iranian rice genotypes. Ann. Biol. 2012, 3, 4519–4527. [Google Scholar]
- Fageria, N.K. Yield physiology of rice. J. Plant Nutr. 2007, 30, 843–879. [Google Scholar] [CrossRef]
- Power, J.F.; Alessi, J. Tiller development and yield of standard and semi dwarf spring wheat varieties as affected by nitrogen fertilizer. J. Agric. Sci. 1978, 90, 97–108. [Google Scholar] [CrossRef]
- Nerson, H. Effects of population density and number of ears on wheat yield and its components. Field Crops Res. 1980, 3, 225–234. [Google Scholar] [CrossRef]
- Black, A.L.; Siddoway, F.H. Hard red and durum spring wheat responses to seeding date and NP-fertilization on fallow. Agron. J. 1977, 69, 885–888. [Google Scholar] [CrossRef]
- Masle, J. Competition among tillers in winter wheat: Consequence for growth and development of the crop. In Wheat Growth and Modelling; Day, W., Atkin, R.K., Eds.; Plenum Press: New York, NY, USA, 1985; pp. 33–54. [Google Scholar]
- Fageria, N.K.; Baligar, V.C. Nutrient availability. In Encyclopedia of Soils in the Environment; Hillel, D., Ed.; Elsevier: San Diego, CA, USA, 2005; pp. 63–71. [Google Scholar]
- Wiangsamut, B.; Lafarge, T.A.; Mendoza, T.C.; Pasuquin, E.M. Agronomic traits and yield components associated with broadcasted and transplanted high-yielding rice genotypes. eSci. J. Crop Prod. 2013, 2, 19–30. [Google Scholar]
- Kato, T. Selection response for the characters related to yield sink capacity of rice. Crop Sci. 1997, 37, 1472–1475. [Google Scholar] [CrossRef]
- Jennings, P.R.; Coffman, W.R.; Kauffman, H.E. Rice Improvements; International Rice Research Institute: Los Banos, Philippines, 1979; p. 186. [Google Scholar]
- Shimono, H. Impact of global warming on yield fluctuation in rice in the northern part of Japan. Jpn. J. Crop Sci. 2008, 77, 489–497. [Google Scholar] [CrossRef] [Green Version]
- Hayase, H.; Satake, T.; Nishiyama, I.; Ito, N. Male Sterility Caused by Cooling Treatment at the Meiotic Stage in Rice Plants: II. The most sensitive stage to cooling and the fertilizing ability of pistils. Jpn. J. Crop Sci. 1969, 38, 706–711. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, S. Fundamentals of Rice Crop Science; IRRI: Los Baños, Philippines, 1981; p. 269. [Google Scholar]
- Amanullah, F.S.; Anwar, S.; Baloch, S.K.; Saud, S.; Alharby, H.; Alghabari, F.; Ihsan, M.Z. Rice Crop Responses to Global Warming: An Overview. In Rice-Technology and Production; Amanullah, F.S., Anwar, S., Eds.; In Tech: Rijeka, Croatia, 2017. [Google Scholar]
- Fageria, N.K.; Filho, M.P.B. Dry-matter and GY, nutrient uptake, and phosphorus use-efficiency of lowland rice as influenced by phosphorus fertilization. Comm. Soil Sci. Plant Anal. 2007, 38, 1289–1297. [Google Scholar] [CrossRef]
- Fageria, N.K.; dos Santos, A.B.; Heinemann, A.B. Lowland rice genotypes evaluation for phosphorus use efficiency in tropical lowland. J. Plant Nutr. 2011, 34, 1087–1109. [Google Scholar] [CrossRef]
- Fageria, N.K.; dos Santos, A.B.; Cobucci, T. Zinc nutrition of lowland rice. Commun. Soil Sci. Plant Anal. 2011, 42, 1719–1727. [Google Scholar] [CrossRef]
- Foy, C.D. Soil chemical factors limiting plant root growth. Adv. Soil Sci. 1992, 19, 97–149. [Google Scholar]
- Amanullah Khan, N.; Khan, I. Wheat biomass and harvest index increases with integrated use of phosphorus, zinc and beneficial microbes under semiarid climates. J. Microbiol. Biotechnol. Food Sci. 2019, 9, 242–247. [Google Scholar]
- Donald, C.M.; Hamblin, J. The biological yield and harvest index of cereals as agronomic and plant breeding criteria. Adv. Agron. 1976, 28, 361–405. [Google Scholar]
- Tanaka, A.; Osaki, M. Growth and behavior of photosynthesized 14C in various crops in relation to productivity. Soil Sci. Plant Nutr. 1983, 29, 147–158. [Google Scholar] [CrossRef]
- Amanullah. Source and rate of nitrogen application influence agronomic N-use efficiency and harvest index in maize (Zea mays L.) genotypes. Maydica 2014, 59, 80–89. [Google Scholar]
- Amanullah, I. Preceding rice genotypes, residual phosphorus and zinc influence harvest index and biomass yield of subsequent wheat crop under rice-wheat system. Pak. J. Bot. 2015, 47, 265–273. [Google Scholar]
- Epstein, E.; Bloom, A.J. Mineral Nutrition of Plants: Principles and Perspectives; Sinauer Associates, Inc. Publishers: Sunderland, MA, USA, 2005. [Google Scholar]
- Fageria, N.K.; Baligar, V.C.; Clark, R.B. Root Architecture. In Physiology of Crop Production; The Haworth Press: Binghamton, NY, USA, 2006; pp. 23–59. [Google Scholar]
- Peng, S.; Cassman, K.G.; Virmani, S.S.; Sheehy, J.; Khush, G.S. Yield potential trends of tropical rice since the release of IR8 and the challenge of increasing rice yield potential. Crop Sci. 1999, 39, 152–1559. [Google Scholar] [CrossRef] [Green Version]
- Akita, S. Improving Yield Potential in Tropical Rice. In Progress in Irrigated Rice Research; Int Rice Res Inst: Manila, Philippines, 1989; pp. 41–73. [Google Scholar]
- Amano, T.; Zhu, Q.; Tanaka, H. Case studies on high yields of paddy rice in Jiangsu Province China: I. Characteristics of grain production. Jpn. J. Crop Sci. 1993, 62, 267–274. [Google Scholar] [CrossRef] [Green Version]
- Amanullah. Integrated use of organic carbon, plant nutrients and bio-fertilizers is key to improve field crops productivity under arid and semiarid climates. In FAO Proceedings of the Global Symposium on Soil Organic Carbon 2017; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; pp. 480–481. [Google Scholar]
- Mottaleb, K.A.; Mohanty, S. Farm size and profitability of rice farming under rising input costs. J. Land Use Sci. 2015, 10, 243–255. [Google Scholar] [CrossRef]
kg P ha−1 | Number of Panicles Hill−1 | Number of Filled Grains Panicle−1 | Thousand Grains Weight (g) | Grain Yield (kg ha−1) | Hulling Percentage (%) |
---|---|---|---|---|---|
0 | 9.8 c | 122 c | 26.2 b | 6199 c | 78 c |
40 | 10.8 b | 129 b | 27.0 a | 7222 b | 81 a,b |
80 | 11.3 a | 134 a | 27.3 a | 7852 a | 80 b |
120 | 11.2 a | 136 a | 27.5 a | 8039 a | 82 a |
LSD0.05 | 0.28 | 4.64 | 0.65 | 236 | 1.1 |
kg Zn ha−1 | |||||
0 | 10.4 c | 124 c | 26.5 b | 6843 c | 79 c |
5 | 10.8 b | 128 b | 26.9 a,b | 7276 b | 80 b |
10 | 10.8 b | 133 a | 27.2 a | 7635 a | 81 a |
15 | 11.1 a | 135 a | 27.4 a | 7557 a | 81 a |
LSD0.05 | 0.25 | 3.68 | 0.51 | 162 | 1.0 |
Genotypes | |||||
B-385 | 10.5 b | 114 c | 21.3 c | 4443 c | 78 b |
F-Malakand | 10.9 a | 126 b | 28.3 b | 8207 b | 81 a |
Pukhraj | 10.9 a | 150 a | 31.4 a | 9334 a | 81 a |
LSD0.05 | 0.24 | 4.01 | 0.56 | 205 | 1.0 |
Years | |||||
2011 | 10.1 b | 126 b | 25.6 b | 6935 b | 79 b |
2012 | 11.4 a | 134 a | 28.3 a | 7721 a | 81 a |
Significance | ** | ** | ** | ** | 1.0 |
Interactions | |||||
P × Zn | * (Figure 2) | ns | ns | ** | ns |
P × G | ns | ns | ns | *** | ns |
Zn × G | ns | ns | ns | *** | ns |
P × Zn × G | ns | ns | ns | ** (Figure 3) | ns |
P (kg ha−1) | Value of Rice Grains (PKR) | Value of Rice Straw (PKR) | Gross Value of Rice (PKR) | Increase over Control (PKR) | P Cost (PKR) | Net Returns (PKR) | Value Cost Ratio |
---|---|---|---|---|---|---|---|
0 | 219,752 | 118,434 | 338,185 | - | - | - | - |
40 | 256,010 | 122,583 | 378,594 | 40,409 | 5217 | 35,192 | 7.7 |
80 | 278,363 | 124,717 | 403,081 | 64,896 | 10,434 | 54,461 | 6.2 |
120 | 284,975 | 124,593 | 409,568 | 71,383 | 15,652 | 55,731 | 4.6 |
LSD0.05 | 8366 | ns | - | - | - | - | - |
P (kg ha−1) | Value of Wheat Grains (PKR) | Value of Wheat Straw (PKR) | Gross Value of Wheat (PKR) | Increase over Control (PKR) | P Cost (PKR) | Net Returns |
---|---|---|---|---|---|---|
0 | 103,020 | 46,920 | 149,940 | - | - | Rice-Wheat System |
40 | 119,220 | 56,950 | 176,170 | 26,230 | - | 61,422 |
80 | 125,820 | 60,150 | 185,970 | 36,030 | - | 90,491 |
120 | 128,730 | 63,920 | 192,650 | 42,710 | - | 98,441 |
LSD0.05 | 2170 | 5139 | - | - | - | - |
Zn (kg ha−1) | Value of Rice Grains (PKR) | Value of Rice Straw (PKR) | Gross Value of Rice (PKR) | Increase over Control (PKR) | Zn Cost (PKR) | Net Returns (PKR) | Value Cost Ratio |
---|---|---|---|---|---|---|---|
0 | 242,601 | 112,584 | 355,186 | - | - | - | - |
5 | 257,922 | 112,322 | 370,245 | 7018 | 3150 | 11,909 | 4.8 |
10 | 270,667 | 117,594 | 388,260 | 25,033 | 6300 | 26,774 | 5.2 |
15 | 267,910 | 115,139 | 383,049 | 19,822 | 9450 | 18,413 | 2.9 |
LSD0.05 | 5743 | ns | - | - | - | - | - |
Zn (kg ha−1) | Value of Wheat Grains (PKR) | Value of Wheat Straw (PKR) | Gross Value of Wheat (PKR) | Increase over Control (PKR) | Zn Cost | Net Returns (PKR) |
---|---|---|---|---|---|---|
0 | 114,000 | 53,220 | 167,220 | - | - | Rice-Wheat System |
5 | 118,950 | 56,750 | 175,700 | 8480 | - | 20,389 |
10 | 120,300 | 58,520 | 178,820 | 11,600 | - | 38,374 |
15 | 123,540 | 59,450 | 182,990 | 15,770 | - | 34,183 |
LSD0.05 | 2271 | 5136 | - | - | - | - |
Rice Genotypes | Value of Rice Grains (PKR) | Value of Rice Straw (PKR) | Gross Value of Rice (PKR) | Seed Cost of Rice Genotypes (PKR) | Net Returns Rice (PKR) | Percent Increase over B-385 | Percent Increase over F-Malakand |
---|---|---|---|---|---|---|---|
Basmati-385 (fine) | 161,549 | 124,509 | 286,058 | 4000 | 282,058 | - | - |
F-Malakand (coarse) | 283,475 | 109,182 | 392,658 | 2500 | 390,158 | 27.71 | - |
Pukhraj (hybrid) | 322,382 | 104,512 | 426,895 | 10,000 | 416,895 | 32.34 | 6.41 |
LSD0.05 | 7267 | 5030 | - | - | - | - | - |
Wheat Grown after Rice Genotypes | Value of Wheat Grains (PKR) | Value of Wheat Straw (PKR) | Gross Value of Wheat (PKR) | Grass Value of Rice (PKR) | Total Value of Rice-Wheat System (PKR) | Percent Increase Over B-385 | PERCENT Increase Over F-Malakand |
---|---|---|---|---|---|---|---|
Basmati-385 (fine) | 127,009 | 57,742 | 184,751 | 282,058 | 466,809 | - | - |
F-Malakand (coarse) | 122,564 | 57,511 | 180,075 | 390,158 | 570,232 | 18.14 | - |
Pukhraj (hybrid) | 108,032 | 55,700 | 163,732 | 416,895 | 580,626 | 19.60 | 1.79 |
LSD0.05 | 1880 | 4449 | - | - | - | - | - |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amanullah; Inamullah; Alkahtani, J.; Elshikh, M.S.; Alwahibi, M.S.; Muhammad, A.; Imran; Khalid, S. Phosphorus and Zinc Fertilization Improve Productivity and Profitability of Rice Cultivars under Rice-Wheat System. Agronomy 2020, 10, 1085. https://doi.org/10.3390/agronomy10081085
Amanullah, Inamullah, Alkahtani J, Elshikh MS, Alwahibi MS, Muhammad A, Imran, Khalid S. Phosphorus and Zinc Fertilization Improve Productivity and Profitability of Rice Cultivars under Rice-Wheat System. Agronomy. 2020; 10(8):1085. https://doi.org/10.3390/agronomy10081085
Chicago/Turabian StyleAmanullah, Inamullah, Jawaher Alkahtani, Mohamed Soliman Elshikh, Mona S. Alwahibi, Asim Muhammad, Imran, and Shah Khalid. 2020. "Phosphorus and Zinc Fertilization Improve Productivity and Profitability of Rice Cultivars under Rice-Wheat System" Agronomy 10, no. 8: 1085. https://doi.org/10.3390/agronomy10081085
APA StyleAmanullah, Inamullah, Alkahtani, J., Elshikh, M. S., Alwahibi, M. S., Muhammad, A., Imran, & Khalid, S. (2020). Phosphorus and Zinc Fertilization Improve Productivity and Profitability of Rice Cultivars under Rice-Wheat System. Agronomy, 10(8), 1085. https://doi.org/10.3390/agronomy10081085