Assessment of the Suitability of 10 Winter Triticale Cultivars (x Triticosecale Wittm. ex A. Camus) for Organic Agriculture: Polish Case Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Characteristics, Experimental Design, and Agronomic Practices
2.2. Meteorological Conditions
2.3. Weed Infestation Analyses
2.4. Assessment of Plant Infestation by Pathogens
2.5. Biometric Analyses and Grain Yield
2.6. Statistical Analyses
3. Results and Discussion
3.1. Competitiveness against Weeds
3.2. Infestation by Fungal Pathogens
3.3. Yield
3.4. Suitability for Organic Farming
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Grądzielewska, A.; Gruszecka, D.; Paczos-Grzęda, E. Evaluation of hybrids between triticale and Aegilops crassa 4× Boiss applying RAPD and ISSR methods. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech. 2010, 276, 19–30. (In Polish) [Google Scholar]
- Food and Agriculture Organization of the United Nations. Crops. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 20 May 2020).
- Łączyński, A. Land Use and Sown Area in 2018; Central Statistical Office: Poland, Warsaw, 2019; p. 74. Available online: http://www.stat.gov.pl (accessed on 20 May 2020).
- EU Common Catalogue of Varieties of Agricultural Plant Species. 2019. Consolidated Version, 20 September2019. Available online: https://ec.europa.eu/food/sites/food/files/plant/docs/plant_variety_catalogues_agricultural-plant-species.pdf (accessed on 20 May 2020).
- Research Centre for Cultivar Testing (COBORU), 2020. Available online: www.coboru.pl/Polska/Rejestr/odm_w_rej.aspx?kodgatunku=PZZO (accessed on 20 May 2020).
- Łysoń, E.; Biel, W. The effect of the cultivation system of selected winter triticale grain (× Triticosecale Wittm. ex A. Camus) cultivars on the nutritional value. Ann. UMCS Sec. E Agric. 2016, LXXI, 53–63. (In Polish) [Google Scholar]
- Parylak, D.; Pytlarz, E.; Paluch, M. Changes of weed infestation in the long-term continuous cropping of winter triticale. Fragm. Agron. 2016, 33, 63–70. (In Polish) [Google Scholar]
- Tratwal, A.; Roik, K.; Kardasz, P.; Bocianowski, J. Yielding varieties of winter triticale in Post Registration Trials. Zagadnienia Doradztwa Rolniczego 2018, 4, 73–88. (In Polish) [Google Scholar]
- Kronberga, A. Selection criteria in triticale breeding for organic farming. Agron. Vestis (Latvian J. Agron.) 2008, 11, 89–94. [Google Scholar]
- Paluch, M.; Parylak, D.; Ogórek, R.; Tendziagolska, E. The possibility of the limitation of brown rust (Puccinia recondita) occurrence infection on winter triticale grown as continuous crop by application of soil conditioners and effective microorganisms. Zesz. Nauk. UP Wroc. Agric. CII 2012, 588, 137–144. (In Polish) [Google Scholar]
- Bielski, S. Effect of nitrogen fertilization and fungicide protection on winter triticale wholesomeness. Acta Sci. Pol. Agric. 2015, 14, 3–14. [Google Scholar]
- Cantale, C.; Petrazzuolo, F.; Correnti, A.; Farneti, A.; Felici, F.; Latini, A.; Galeffi, P. Triticale for bioenergy production. Agric. Agric. Sci. Procedia 2016, 8, 609–616. [Google Scholar] [CrossRef]
- Iwański, R.; Wianecki, M.; Tokarczyk, G.; Stankowski, S. The influence of conventional and ecological tillage system method of triticale on bakery value of flour and quality of bread. Folia Pomer. Univ. Technol. Stetin. Agric. Aliment. Pisc. Zootech. 2009, 269, 19–32. (In Polish) [Google Scholar]
- Paluch, M.; Parylak, D.; Giemza-Mikoda, M.; Jabłońska, M. The influence of proecological practices in winter triticale growing in the continuous crop on physical soils properties. Episteme 2012, 15, 197–202. [Google Scholar]
- Jaśkiewicz, B.; Szczepanek, M. Amino acids content in triticale grain depending on meteorological, agrotechnical and genetic factors. Res. Rural Dev. 2018, 2, 28–34. [Google Scholar] [CrossRef]
- Jaśkiewicz, B. Chemical composition of winter triticale grain depending on type of tillage in crop rotation. Eng. Rural Dev. Jelgava 2019, 319–323. [Google Scholar] [CrossRef]
- Siekaniec, Ł.; Bereś, P.K.; Kaniuczak, Z. Chemical control of winter triticale leaves against diseases and leaf beetle larvae and its influence on economic indicators of cultivation in Podkarpacie voivodeship. Prog. Plant Prot. 2018, 58, 306–313. (In Polish) [Google Scholar] [CrossRef]
- Labudda, M.; Machczyńska, J.; Woś, H.; Bednarek, P.T. Selected aspects of biological progress in the breeding of triticale(×Triticosecale WITTM. ex A. CAMUS)]. Post. Nauk Roln. 2011, 4, 3–10. (In Polish) [Google Scholar]
- Jaśkiewicz, B. Specification of agrotechnics of semi-dwarf winter triticale. Stud. Rep. IUNG—PIB 2007, 9, 77–87. Available online: http://www.iung.pulawy.pl/images/wyd/pib/zesz9.pdf (accessed on 20 May 2020). (In Polish).
- Sullivan, Z.M.; Honeyman, M.S.; Gibson, L.R.; Prusa, K.J. Effects of triticale-based diets on finishing pig performance and pork quality in deep-bedded hoop barns. Meat Sci. 2007, 76, 428–437. [Google Scholar] [CrossRef] [Green Version]
- Brzozowska, I.; Brzozowski, J. Macronutrient contents in spring triticale grain depending on weed control method and level of nitrogen application. Fragm. Agron. 2016, 33, 15–22. (In Polish) [Google Scholar]
- Wyszyński, Z.; Michalska-Klimczak, B.; Kamińska, S.; Leśniewska, J. Evaluation of winter triticale cultivation technology in production plantations in Łódź Voivodship. Ann. UMCS Sec. E Agric. 2017, LXXII, 113–123. [Google Scholar] [CrossRef]
- Zhu, F. Triticale: Nutritional composition and food uses. Food Chem. 2018, 241, 468–479. [Google Scholar] [CrossRef]
- Kronberga, A.; Legzdina, L.; Strazdina, V.; Vicupe, Z. Short communication comparison of selection results in organic and conventional environments for winter triticale. Proc. Latv. Acad. Sci. Sect. B 2013, 67, 268–271. [Google Scholar] [CrossRef]
- Achremowicz, B.; Ceglińska, A.; Gambuś, H.; Haber, T.; Obiedziński, M. Technological applicability of triticale grain. Postępy Techniki Przetwórstwa Spożywczego 2014, 1, 113–120. (In Polish) [Google Scholar]
- Jaśkiewicz, B. The impact of production technology on yields of spring triticale under varied percentages of cereals to total cropped area. Fragm. Agron. 2017, 34, 7–17. (In Polish) [Google Scholar]
- Lenc, L.; Jończyk, K. Fusarium ear blight and the occurrence and harmfulness of fungi colonizing the grain of selected varieties of winter triticale (Triticale) grown in the organic system. Prog. Plant Prot. 2019, 59, 244–251. [Google Scholar] [CrossRef]
- Dzienis, G. Winter rye—A species undervalued in Poland. A review. Agron. Sci. 2018, LXXIII, 19–28. [Google Scholar] [CrossRef]
- Cierpiała, R.; Wesołowski, M. The production system in relation to spring barley grain yield and quality. Fragm. Agron. 2014, 31, 7–14. (In Polish) [Google Scholar]
- Council Regulation (EC) No 834/2007 of 28th June 2007 on organic production and labelling of organic products and repealing Regulation (EEC) No 2092/91. Available online: http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32007R0834&from=EN> (accessed on 20 May 2020).
- Le Campion, A.; Oury, F.-X.; Heumez, E.; Rolland, B. Conventional versus organic farming systems: Dissecting comparisons to improve cereal organic breeding strategies. Org. Agric. 2020, 10, 63–74. [Google Scholar] [CrossRef] [Green Version]
- Kronberga, A. Formation of triticale crop ideotype for organic farming. In Cereal Science and Technology for Feeding Ten Billion People: Genomics Era and Beyond; Molina-Cano, J.L., Chistou, P., Graner, A., Hammer, K., Jouve, N., Keller, B., Lasa, J.M., Powell, W., Royo, C., Shewry, P., et al., Eds.; CIHEAM/IRTA: Zaragoza, Spain, 2008; pp. 391–393. [Google Scholar]
- Kuś, J.; Mróz, A.; Jończyk, K. Intensity of fungal diseases of selected varieties of winter wheat cultivated in the organic crop production systems. J. Res. App. Agric. Eng. 2006, 51, 88–93. (In Polish) [Google Scholar]
- Feledyn-Szewczyk, B. The evaluation of modern and old winter wheat varieties in the aspect of their competitiveness due to weeds in organic system. Pol. J. Agron. 2011, 6, 11–16. (In Polish) [Google Scholar]
- Tendziagolska, E.; Kuc, P. The formation of weed infestation of winter rye under organic farming system depending on the method of sowing and the use of seed dressing and mineral fertilizer. Prog. Plant Prot. 2014, 54, 56–60. (In Polish) [Google Scholar] [CrossRef] [Green Version]
- Finney, D.M.; Creamer, N.G. Weed Management on Organic Farms; The Organic Production Publication Series; Center for Environmental Farming Systems (CEFS), North Carolina Cooperative Extension Service: Raleigh, NC, USA, 2008; pp. 1–34. [Google Scholar]
- Feledyn-Szewczyk, B. The weed infestation of spring wheat varieties cultivated in organic system. J. Res. App. Agric. Eng. 2011, 56, 71–76. (In Polish) [Google Scholar]
- Urban, M.; Adamczewski, K.; Dobrzański, A. Ecological niche of weeds in spring cereals cultivars grown after winter oilseed rape. Prog. Plant Prot. 2013, 53, 105–109. (In Polish) [Google Scholar]
- Feledyn-Szewczyk, B. Comparison of the competitiveness of modern and old winter wheat varieties in relation to weeds. J. Res. App. Agric. Eng. 2009, 54, 60–67. (In Polish) [Google Scholar]
- Feledyn-Szewczyk, B.; Berbeć, A.K. Ranking of the competitive ability against weeds of 13 spring wheat varieties cultivated in organic system in different regions of Poland. J. Res. App. Agric. Eng. 2013, 58, 104–110. [Google Scholar]
- Feledyn-Szewczyk, B.; I Kuś, J.; Jończyk, K.; Stalenga, J. The suitability of different winter and spring wheat varieties for cultivation in organic farming. In Organic Agriculture towards Sustainability; Pilipavicius, V., Ed.; InTech: Rijeka, Croatia, 2014; Volume 9, pp. 197–225. [Google Scholar] [CrossRef] [Green Version]
- Feledyn-Szewczyk, B.; Berbeć, A.K.; Jończyk, K. The comparison of competitive ability against weeds of 10 varieties of rye cultivated in organic system. J. Res. App. Agric. Eng. 2014, 59, 35–40. [Google Scholar]
- Feledyn-Szewczyk, B.; Jończyk, K. Assessment of the suitability of oat varieties (Avena sativa L.) for cultivation in organic system. J. Res. App. Agric. Eng. 2016, 61, 82–87. [Google Scholar]
- Tottman, D.R.; Broad, H. The decimal code for the growth stages of cereals, with illustrations. Ann Appl Biol. 1987, 110, 441–454. [Google Scholar] [CrossRef]
- Rutkowski, L. Key to identification of vascular plants in Lowland Poland; PWN: Warsaw, Poland, 2007; p. 822. [Google Scholar]
- EPPO Standards. Guidelines for the Efficacy Evaluation of Plant Protection Products: PP 1/26, PP 1/28; EPPO: Paris, France, 1999; Volume 1, pp. 187–195. [Google Scholar]
- Mahajan, G.; Hickey, L.; Chauhan, B.S. Response of barley genotypes to weed interference in Australia. Agronomy 2020, 10, 99. [Google Scholar] [CrossRef] [Green Version]
- Szeleźniak, E.; Grabiński, J.; Nieróbca, P. Weed infestation of three grain species cultivated under cereal crop rotation and three technologies varying in production intensity. Acta Sci. Pol. Agric. 2007, 6, 83–90. (In Polish) [Google Scholar]
- Starczewski, J.; Żołądek, J. Control of weed infestation by regulation of closeness of cultivated plants and herbicide application on the example of triticale. Zeszyty Problemowe Postępów Nauk Rolniczych 2003, 490, 235–240. (In Polish) [Google Scholar]
- Przystalski, M.; Osman, A.; Thiemt, E.M.; Rolland, B.; Ericson, L.; Østergård, H.; Levy, L.; Wolfe, M.; Büchse, A.; Piepho, H.-P.; et al. Comparing the performance of cereal varieties in organic and non-organic cropping systems in different European countries. Euphytica 2008, 163, 417–433. [Google Scholar] [CrossRef]
- Wolfe, M.S.; Baresel, J.P.; Desclaux, D.; Goldringer, I.; Hoad, S.; Kovacs, G.; Löschenberger, F.; Miedaner, T.; Östergård, H.; Lammerts van Bueren, E.T. Developments in breeding cereals for organic agriculture. Euphytica 2008, 163, 323–346. [Google Scholar] [CrossRef] [Green Version]
- Wróbel, E.; Jabłoński, H. Effect of fungal diseases control methods on winter triticale yield. Acta Sci. Pol. Agric. 2004, 3, 55–61. (In Polish) [Google Scholar]
- Brzozowska, I.; Kurowska, A. Health status of spring triticale as dependent on weed control, nitrogen fertilization and protection against pathogens. Ann. UMCS Sec. E 2010, LXV, 38–47. (In Polish) [Google Scholar] [CrossRef]
- Czajkowski, G.; Czembor, P. Pathogenicity of Blumeria graminis f. sp. tritici and Blumeria graminis f. sp. triticale the causal agents of wheat and triticale powdery mildew. Prog. Plant Prot. 2016, 56, 360–365. (In Polish) [Google Scholar] [CrossRef]
- Kramek, A.; Kociuba, W. Characteristics of winter triticale genetic resources regarding field resistance to fungal diseases. Ann. UMCS, Sec. E 2014, LXIX, 112–119. (In Polish) [Google Scholar]
- Korbas, M.; Mrówczyński, M. Methods of Integrated Protection of Winter and Spring Triticale for Producers; IOR-PIB: Poznań, Poland, 2012; p. 33. (In Polish) [Google Scholar]
- Bujak, H.; Tratwal, A.; Walczak, F. Winter triticale yielding and value traits variability in Winna Góra. Ann. UMCS Sec. E 2012, LXVII, 1–11. (In Polish) [Google Scholar]
- Jaśkiewicz, B.; Grabiński, J.; Ochmian, I. Productivity of winter triticale depending on type of tillage in crop rotation. Eng. Rural Dev. Jelgava 2018, 491–496. [Google Scholar] [CrossRef]
- Jaśkiewicz, B.; Jasińska, M. The impact of tillage system on the yields of selected winter triticale cultivars. Fragm. Agron. 2018, 35, 61–70. (In Polish) [Google Scholar] [CrossRef]
- Wenda-Piesik, A.; Wasilewski, P. Responses of spring wheat ‘Monsun’ and spring rye ‘Bojko’ to late autumn terms of sowing. Zeszyty Problemowe Postępów Nauk Rolniczych 2015, 580, 149–159. (In Polish) [Google Scholar]
- Dekić, V.; Milovanović, M.; Popović, V.; Milivojević, J.; Staletić, M.; Jelić, M.; Perisić, V. Effects of fertilization on yield and grain quality in winter triticale. Rom. Agric. Res. 2014, 31, 1–9. [Google Scholar]
- Koziara, W.; Panasiewicz, K.; Sulewska, H.; Sobieszczański, R. Effect of selected factors on yield and seed value of winter triticale var. Gniewko. Fragm. Agron. 2015, 32, 73–81. (In Polish) [Google Scholar]
Parameter | Characteristics |
---|---|
Type of soil | Cambisol |
Soil texture | loamy sand |
Content of: | |
humus (%) | 2.3 |
P2O5 (mg·100 g−1 soil) | 6.8 |
K2O (mg·100 g−1 soil) | 7.1 |
Mg (mg·100 g−1 soil) | 5.8 |
pH w KCl | 5.8 |
Pre-crop | Cereal-legume mixture |
Month | Sum of Precipitation (mm) | Temperature (°C) | ||||||
---|---|---|---|---|---|---|---|---|
2014/2015 | 2015/2016 | 2016/2017 | Long-Term Data 1951–2013 | 2014/2015 | 2015/2016 | 2016/2017 | Long-Term Data 1951–2013 | |
IX | 15.9 | 93.9 | 20.3 | 50.0 | 17.9 | 150 | 15.7 | 13.0 |
X | 28.5 | 12.2 | 78.5 | 42.0 | 9.8 | 6.8 | 7.4 | 8.0 |
XI | 25.7 | 38.7 | 30.4 | 52.0 | 4.7 | 5.0 | 2.8 | 3.0 |
XII | 36.3 | 24.0 | 66.4 | 26.0 | 0.5 | 3.9 | 0.6 | −0.8 |
I | 40.3 | 32.1 | 33.0 | 42.0 | 1.0 | −3.6 | 4.8 | −3.7 |
II | 15.1 | 64.1 | 37.0 | 29.0 | 0.5 | 3.4 | −1.2 | −3.0 |
III | 63.2 | 52.3 | 36.0 | 32.0 | 5.0 | 3.9 | 5.7 | 0.8 |
IV | 34.8 | 45.1 | 69.0 | 42.0 | 8.1 | 9.2 | 7.5 | 7.5 |
V | 107.0 | 39.4 | 34.0 | 53.0 | 12.7 | 14.9 | 13.9 | 12.4 |
VI | 30.3 | 60.1 | 33.0 | 110.0 | 16.9 | 18.7 | 18.1 | 16.7 |
VII | 51.7 | 81.9 | 86.0 | 105.0 | 19.7 | 19.2 | 18.6 | 17.8 |
VIII | 6.2 | 53.6 | 55.0 | 72.0 | 22.1 | 18.1 | 19.6 | 17.1 |
Cultivar | Number of Weeds (Plants·m−2) | Dry Weight of Weeds (g·m−2) | ||||||
---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | Mean | 2015 | 2016 | 2017 | Mean | |
Algoso | 84.0 ab 1 | 106.0 a | 142.5 a | 110.8 a | 52.5 abc | 99.9 a | 46.7 a | 66.4 ab |
Borowik | 52.5 a | 81.5 a | 139.5 a | 91.2 a | 26.5 a | 65.0 a | 26.6 a | 39.4 a |
Fredro | 85.0 ab | 98.0 a | 167.5 a | 116.8 a | 40.6 abc | 87.0 a | 52.9 a | 60.2 ab |
Grenado | 85.5 ab | 86.0 a | 154.0 a | 108.5 a | 74.8 bc | 89.4 a | 75.8 a | 80.0 b |
Leontyno | 117.0 b | 82.5 a | 160.5 a | 120.0 a | 84.5 c | 68.4 a | 40.0 a | 64.3 ab |
Pizarro | 78.5 ab | 95.0 a | 157.5 a | 110.3 a | 40.4 abc | 48.7 a | 74.3 a | 54.5 ab |
Subito | 63.0 ab | 78.5 a | 150.5 a | 97.3 a | 42.2 abc | 57.1 a | 53.6 a | 51.0 ab |
Tomko | 88.5 ab | 72.5 a | 141.0 a | 100.7 a | 49.6 abc | 46.4 a | 24.8 a | 40.3 ab |
Tulus | 86.5 ab | 83.5 a | 166.5 a | 112.2 a | 65.4 bc | 55.6 a | 62.3 a | 61.1 ab |
Twingo | 59.0 ab | 80.0 a | 173.0 a | 104.0 a | 30.5 ab | 66.1 a | 55.8 a | 50.8 ab |
Mean | 80.0 A | 86.4 A | 155.3 B | 107.2 | 50.7 A | 68.3 B | 51.3 A | 56.8 |
Cultivar | Number of Tillers Per Plant | Height (cm) | ||||||
---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | Mean | 2015 | 2016 | 2017 | Mean | |
Algoso | 1.8 a 1 | 1.4 a | 1.1 a | 1.4 a | 112 def | 109 c | 94 d | 105 c |
Borowik | 1.5 a | 1.4 a | 1.2 a | 1.4 a | 121 f | 108 bc | 97 d | 108 c |
Fredro | 1.6 a | 1.4 a | 1.3 a | 1.4 a | 112 def | 109 c | 76 ab | 99 c |
Grenado | 1.8 a | 1.4 a | 1.3 a | 1.5 a | 88 ab | 88 a | 76 ab | 84 ab |
Leontyno | 1.6 a | 1.3 a | 1.1 a | 1.3 a | 108 cde | 105 abc | 92 cd | 102 c |
Pizarro | 1.6 a | 1.3 a | 1.3 a | 1.4 a | 120 ef | 113 c | 89 cd | 107 c |
Subito | 1.7 a | 1.5 a | 1.2 a | 1.5 a | 105 cd | 102 abc | 86 cd | 98 bc |
Tomko | 1.6 a | 1.4 a | 1.3 a | 1.4 a | 97 bc | 102 abc | 83 bc | 94 abc |
Tulus | 1.6 a | 1.3 a | 1.1 a | 1.4 a | 112 def | 110 c | 91 cd | 104 c |
Twingo | 1.8 a | 1.5 a | 1.4 a | 1.6 a | 86 a | 89 ab | 72 a | 82 a |
Mean | 1.7 C | 1.4 B | 1.2 A | 1.4 | 106 B | 104 B | 97 A | 102 |
Cultivar | Plant Density (Plants·m−2) | Dry Matter of Above-Ground Parts (g·m−2) | ||||||
---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | Mean | 2015 | 2016 | 2017 | Mean | |
Algoso | 211 ab 1 | 217 ab | 339 a | 256 ab | 1110 ab | 1351 a | 976 a | 1146 a |
Borowik | 230 ab | 233 ab | 347 a | 270 ab | 1377 ab | 1346 a | 892 a | 1205 a |
Fredro | 238 ab | 213 ab | 303 a | 251 ab | 1119 ab | 1168 a | 774 a | 1020 a |
Grenado | 228 ab | 257 ab | 310 a | 265 ab | 1224 ab | 1275 a | 886 a | 1128 a |
Leontyno | 179 a | 207 a | 269 a | 218 a | 1019 a | 1186 a | 807 a | 1004 a |
Pizarro | 278 b | 293 b | 347 a | 306 b | 1616 b | 1646 a | 857 a | 1373 a |
Subito | 220 ab | 222 ab | 327 a | 256 ab | 1292 ab | 1232 a | 913 a | 1146 a |
Tomko | 212 ab | 256 ab | 351 a | 273 ab | 1311 ab | 1454 a | 1011 a | 1259 a |
Tulus | 200 ab | 225 ab | 338 a | 254 ab | 1158 ab | 1432 a | 952 a | 1181 a |
Twingo | 242 ab | 247 ab | 281 a | 257 ab | 1312 ab | 1340 a | 776 a | 1143 a |
Mean | 224 A | 237 A | 321 B | 261 | 1253 B | 1343 B | 884 A | 1160 |
Dry Matter of Weeds | Tillering | Height | Triticale Plant Density | Dry Matter of Above-Ground Parts | |
---|---|---|---|---|---|
Number of weeds | 0.126 | −0.420 * | −0.478 * | −0.409 * | −0.358 * |
Dry matter of weeds | 0.075 | −0.003 | −0.180 * | 0.124 |
Cultivar | 2016 | 2017 | Mean Infestation of Cultivarss (2016–2017) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Drechslera tritici-repentis | Puccinia recondita | Puccinia striiformis | Septoria sp. | SUM | Drechslera tritici-repentis | Puccinia recondita | Puccinia striiformis | Septoria sp. | SUM | ||
Algoso | 6.7 ab 1 | 4.7 c | 11.9 c | 3.8 ab | 27.1 | 2.8 a | 14.0 b | 18.5 c | 0.7 a | 36.0 | 31.6 |
Borowik | 10.0 b | 0.5 a | 5.8 bc | 4.0 ab | 20.3 | 2.4 a | 3.4 a | 19.5 c | 2.4 ab | 27.7 | 24.0 |
Fredro | 3.3 b | 2.0 ab | 10.0 c | 14.1 c | 29.4 | 2.4 a | 9.5 ab | 7.4 ab | 2.9 ab | 22.2 | 25.8 |
Grenado | 4.3 ab | 0.3 a | 2.6 ab | 3.0 ab | 10.2 | 1.9 a | 11.4 b | 4.6 a | 1.8 ab | 19.7 | 15.0 |
Leontyno | 2.5 a | 2.4 b | 7.4 bc | 2.8 ab | 15.1 | 2.2 a | 7.7 ab | 11.3 b | 2.2 ab | 23.4 | 19.3 |
Pizarro | 3.9 ab | 3.0 bc | 1.3 ab | 7.1 b | 15.3 | 0.8 a | 10.0 ab | 2.4 a | 1.0 ab | 14.2 | 14.8 |
Subito | 22.0 c | 0.5 b | 1.4 ab | 6.5 ab | 30.4 | 3.2 a | 2.7 a | 10.3 b | 1.2 ab | 19.2 | 24.8 |
Tomko | 4.9 ab | 3.9 bc | 4.9 b | 3.2 ab | 16.9 | 3.2 a | 3.7 ab | 12.1 a | 2.0 ab | 21.0 | 19.0 |
Tulus | 4.8 ab | 2.8 bc | 1.5 ab | 3.8 ab | 12.9 | 0.9 a | 10.0 ab | 3.4 a | 5.1 b | 19.4 | 16.2 |
Twingo | 9.4 b | 0.7 ab | 0.3 a | 0.7 ab | 11.1 | 2.2 a | 6.0 ab | 3.0 a | 2.7 ab | 13.9 | 12.5 |
Mean | 7.2 | 2.1 | 4.7 | 4.9 | 18.9 | 2.2 | 7.8 | 9.2 | 2.2 | 21.7 | 20.3 |
Cultivar | Grain Yield (t·ha−1) | 1000 Grain Weight (g) | ||||||
---|---|---|---|---|---|---|---|---|
2015 | 2016 | 2017 | Mean | 2015 | 2016 | 2017 | Mean | |
Algoso | 5.30 ab 1 | 5.62 b | 3.65 a | 4.86 ab | 43.3 b | 49.3 b | 42.7 a | 45.1 b |
Borowik | 6.27 bcd | 6.13 c | 3.54 a | 5.31 bc | 48.6 c | 51.7 b | 50.3 b | 50.2 c |
Fredro | 6.61 d | 5.25 a | 3.40 a | 5.09 b | 44.1 bc | 46.2 a | 42.2 a | 44.2 b |
Grenado | 5.59 abc | 5.00 a | 3.73 a | 4.77 ab | 32.5 a | 44.1 a | 40.5 a | 39.0 a |
Leontyno | 5.19 a | 5.05 a | 3.28 a | 4.51 a | 43.2 b | 48.4 ab | 46.7 b | 46.1 b |
Pizarro | 6.69 d | 6.26 c | 3.60 ab | 5.52 c | 42.7 b | 45.6 a | 39.7 a | 42.7 ab |
Subito | 6.32 cd | 6.21 c | 3.95 b | 5.49 c | 41.4 b | 45.7 ab | 46.9 b | 44.7 b |
Tomko | 6.39 cd | 5.76 b | 3.70 ab | 5.28 bc | 44.2 bc | 49.7 b | 48.4 b | 47.4 bc |
Tulus | 6.07 abcd | 5.78 b | 3.61 ab | 5.15 b | 43.5 b | 46.2 a | 45.3 b | 45.0 b |
Twingo | 6.55 cd | 5.41 ab | 3.11 a | 5.02 b | 42.5 b | 44.1 a | 46.6 b | 44.4 b |
Mean | 6.10 A | 5.65 A | 3.56 B | 5.10 | 42.6 A | 47.1 A | 44.9 A | 44.9 |
Country | Study | Years | Cultivar/Genotype | Organic System | Conventional System |
---|---|---|---|---|---|
Grain Yield (t·ha−1) | |||||
Poland | presented study | 2014–2017 | average for 10 cultivars; range (min-max) | 5.10; 4.51 (Leontyno)–5.52 (Pizarro) | |
Latvia | Kronberga [9] | 2005–2007 | 9402–32 | 3.11–5.89 | 4.56–6.11 |
9540–1 | 2.73–5.62 | 4.74–5.48 | |||
Poland | presented study | 2014–2017 | Borowik | 5.31 | |
Tratwal et al. [8] | 2013–2016 | 10.6 *–11.8 ** | |||
Poland | presented study | 2014–2017 | Twingo | 5.02 | |
Tratwal et al. [8] | 2013–2016 | 7.55 *–8.39 ** | |||
Poland | presented study | 2015 | Tulus | 6.07 | |
Tratwal et al. [8] | 15.81 ** | ||||
Poland | presented study | 2016 | Tulus | 5.78 | |
Tratwal et al. [8] | 5.76 *–6.59 ** | ||||
Poland | Paluch et al. [10] | 2008–2010 | Grenado | 3.42 in monoculture; 4.53 in crop rotation | |
Thousand Kernel Weight (TKW) (g) | |||||
Poland | presented study | 2014–2017 | average for 10 cultivars; range (min-max) | 44.9; 39.0 (Grenado)–50.2 (Borowik) | |
Latvia | Kronberga [9] | 2005–2007 | 9402–32 | 43.7–51.0 | 48.0–52.3 |
9540–1 | 34.4–42.7 | 35.6–39.3 | |||
Poland | presented study | 2014–2017 | Grenado | 39.0 | |
Bujak et al. [57] | 2008–2010 | 37.94 *–36.65 ** | |||
presented study | 2014–2017 | Borowik | 50.2 | ||
Tratwal et al. [8] | 2013–2016 | 49.42 ** |
Cluster | Cultivars | Number of Weeds Per 1 m2 | Dry Matter of Weeds (g·m−2) | Infestation by Pathogens (% Leaf Area) | Yield (t·ha−1) |
---|---|---|---|---|---|
1 | Algoso, Fredro, Grenado, Leontyno | 114.0 | 67.7 | 22.9 | 4.81 |
2 | Borowik, Subito, Tomko | 96.4 | 43.5 | 22.6 | 5.36 |
3 | Pizarro, Tulus, Twingo | 108.8 | 55.5 | 14.5 | 5.23 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Feledyn-Szewczyk, B.; Nakielska, M.; Jończyk, K.; Berbeć, A.K.; Kopiński, J. Assessment of the Suitability of 10 Winter Triticale Cultivars (x Triticosecale Wittm. ex A. Camus) for Organic Agriculture: Polish Case Study. Agronomy 2020, 10, 1144. https://doi.org/10.3390/agronomy10081144
Feledyn-Szewczyk B, Nakielska M, Jończyk K, Berbeć AK, Kopiński J. Assessment of the Suitability of 10 Winter Triticale Cultivars (x Triticosecale Wittm. ex A. Camus) for Organic Agriculture: Polish Case Study. Agronomy. 2020; 10(8):1144. https://doi.org/10.3390/agronomy10081144
Chicago/Turabian StyleFeledyn-Szewczyk, Beata, Małgorzata Nakielska, Krzysztof Jończyk, Adam Kleofas Berbeć, and Jerzy Kopiński. 2020. "Assessment of the Suitability of 10 Winter Triticale Cultivars (x Triticosecale Wittm. ex A. Camus) for Organic Agriculture: Polish Case Study" Agronomy 10, no. 8: 1144. https://doi.org/10.3390/agronomy10081144
APA StyleFeledyn-Szewczyk, B., Nakielska, M., Jończyk, K., Berbeć, A. K., & Kopiński, J. (2020). Assessment of the Suitability of 10 Winter Triticale Cultivars (x Triticosecale Wittm. ex A. Camus) for Organic Agriculture: Polish Case Study. Agronomy, 10(8), 1144. https://doi.org/10.3390/agronomy10081144