Bacterial Community Tolerance to Tetracycline Antibiotics in Cu Polluted Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Soil Samples
2.3. Experimental Design
2.4. Data Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fernández-Calviño, D.; Soler-Rovira, P.; Polo, A.; Díaz-Raviña, M.; Arias-Estevez, M.; Plaza, C. Enzyme activities in vineyard soils long-term treated with copper-based fungicides. Soil Boil. Biochem. 2010, 42, 2119–2127. [Google Scholar] [CrossRef]
- Bååth, E. Measurement of heavy metal tolerance of soil bacteria using thymidine incorporation into bacteria extracted after homogenization-centrifugation. Soil Boil. Biochem. 1992, 24, 1167–1172. [Google Scholar] [CrossRef]
- Bruins, M.R.; Kapil, S.; Oehme, F.W. Microbial Resistance to Metals in the Environment. Ecotoxicol. Environ. Saf. 2000, 45, 198–207. [Google Scholar] [CrossRef]
- Bünemann, E.K.; Schwenke, G.; Van Zwieten, L. Impact of agricultural inputs on soil organisms—A review. Soil. Res. 2006, 44, 379–406. [Google Scholar] [CrossRef] [Green Version]
- Fernández-Calviño, D.; Bååth, E. Co-selection for antibiotic tolerance in Cu-polluted soil is detected at higher Cu-concentrations than increased Cu-tolerance. Soil Boil. Biochem. 2013, 57, 953–956. [Google Scholar] [CrossRef]
- European Commission. Commission Implementing Regulation (EU) 2018/1981 of 13 December 2018 Renewing the Approval of the Active Substances Copper Compounds, as Candidates for Substitution, in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market, and Amending the Annex to Commission Implementing Regulation (EU) No 540/2011; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Blanck, H. A Critical Review of Procedures and Approaches Used for Assessing Pollution-Induced Community Tolerance (PICT) in Biotic Communities. Hum. Ecol. Risk Assess. Int. J. 2002, 8, 1003–1034. [Google Scholar] [CrossRef]
- Díaz-Raviña, M.; De Anta, R.C.; Bååth, E. Tolerance (PICT) of the Bacterial Communities to Copper in Vineyards Soils from Spain. J. Environ. Qual. 2007, 36, 1760–1764. [Google Scholar] [CrossRef]
- Wakelin, S.; Gerard, E.; Black, A.; Hamonts, K.; Condron, L.; Yuan, T.; Van Nostrand, J.D.; Zhou, J.; O’Callaghan, M. Mechanisms of pollution induced community tolerance in a soil microbial community exposed to Cu. Environ. Pollut. 2014, 190, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, B.; Zhang, X.; Gao, M.; Wang, J. Effects of Cu exposure on enzyme activities and selection for microbial tolerances during swine-manure composting. J. Hazard. Mater. 2015, 283, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Calviño, D.; Bååth, E. Interaction between pH and Cu toxicity on fungal and bacterial performance in soil. Soil Boil. Biochem. 2016, 96, 20–29. [Google Scholar] [CrossRef]
- Berg, J.; Thorsen, M.K.; Holm, P.E.; Jensen, J.; Nybroe, O.; Brandt, K.K. Cu Exposure under Field Conditions Coselects for Antibiotic Resistance as Determined by a Novel Cultivation-Independent Bacterial Community Tolerance Assay. Environ. Sci. Technol. 2010, 44, 8724–8728. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Rensing, C.; Holm, P.E.; Virta, M.; Brandt, K.K. Comparison of Metals and Tetracycline as Selective Agents for Development of Tetracycline Resistant Bacterial Communities in Agricultural Soil. Environ. Sci. Technol. 2017, 51, 3040–3047. [Google Scholar] [CrossRef] [PubMed]
- Baker-Austin, C.; Wright, M.S.; Stepanauskas, R.; McArthur, J. Co-selection of antibiotic and metal resistance. Trends Microbiol. 2006, 14, 176–182. [Google Scholar] [CrossRef] [PubMed]
- Summers, A.O.; Wireman, J.; Vimy, M.J.; Lorscheider, F.L.; Marshall, B.; Levy, S.B.; Bennett, S.; Billard, L. Mercury released from dental “silver” fillings provokes an increase in mercury-and antibiotic-resistant bacteria in oral and intestinal floras of primates. Antimicrob. Agents Chemother. 1993, 37, 825–834. [Google Scholar] [CrossRef] [Green Version]
- Alonso, A.; Sánchez, P.; Martínez, J.L. Environmental selection of antibiotic resistance genes. Environ. Microbiol. 2001, 3, 1–9. [Google Scholar] [CrossRef]
- Cao, J.; Yang, G.; Mai, Q.; Zhuang, Z.; Zhuang, L. Co-selection of antibiotic-resistant bacteria in a paddy soil exposed to as (III) contamination with an emphasis on potential pathogens. Sci. Total Environ. 2020, 725, 138367. [Google Scholar] [CrossRef]
- Milenkovski, S.; Bååth, E.; Lindgren, P.-E.; Berglund, O. Toxicity of fungicides to natural bacterial communities in wetland water and sediment measured using leucine incorporation and potential denitrification. Ecotoxicology 2010, 19, 285–294. [Google Scholar] [CrossRef]
- Poole, K. At the Nexus of Antibiotics and Metals: The Impact of Cu and Zn on Antibiotic Activity and Resistance. Trends Microbiol. 2017, 25, 820–832. [Google Scholar] [CrossRef]
- Guo, T.; Lou, C.; Zhai, W.; Tang, X.; Hashmi, M.Z.; Murtaza, R.; Li, Y.; Liu, X.; Xu, J. Increased occurrence of heavy metals, antibiotics and resistance genes in surface soil after long-term application of manure. Sci. Total Environ. 2018, 635, 995–1003. [Google Scholar] [CrossRef]
- Liu, K.; Sun, M.; Ye, M.; Chao, H.; Zhao, Y.; Xia, B.; Jiao, W.; Feng, Y.; Zheng, X.; Liu, M.; et al. Coexistence and association between heavy metals, tetracycline and corresponding resistance genes in vermicomposts originating from different substrates. Environ. Pollut. 2019, 244, 28–37. [Google Scholar] [CrossRef]
- Liu, B.; Li, Y.; Gao, S.; Chen, X. Copper exposure to soil under single and repeated application: Selection for the microbial community tolerance and effects on the dissipation of antibiotics. J. Hazard. Mater. 2017, 325, 129–135. [Google Scholar] [CrossRef] [PubMed]
- European Medicines Agency. European Medicines Agency. European surveillance of veterinary antimicrobial consumption. In Sales of Veterinary Antimicrobial Agents in 29 European Countries in 2014, (EMA/61769/2016); European Union: Hague, The Netherlands, 2016. [Google Scholar]
- Daghrir, R.; Drogui, P. Tetracycline antibiotics in the environment: A review. Environ. Chem. Lett. 2013, 11, 209–227. [Google Scholar] [CrossRef]
- Stackelberg, P.E.; Gibs, J.; Furlong, E.T.; Meyer, M.; Zaugg, S.D.; Lippincott, R.L. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci. Total Environ. 2007, 377, 255–272. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Peñalver, J.J.; Pacheco, C.V.G.; Sánchez-Polo, M.; Utrilla, J.R. Degradation of tetracyclines in different water matrices by advanced oxidation/reduction processes based on gamma radiation. J. Chem. Technol. Biotechnol. 2012, 88, 1096–1108. [Google Scholar] [CrossRef]
- Arikan, O.A.; Rice, C.; Codling, E. Occurrence of antibiotics and hormones in a major agricultural watershed. Desalination 2008, 226, 121–133. [Google Scholar] [CrossRef]
- Conde-Cid, M.; Álvarez-Esmorís, C.; Paradelo, R.; Nóvoa-Muñoz, J.C.; Arias-Estevez, M.; Álvarez-Rodriguez, E.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A. Occurrence of tetracyclines and sulfonamides in manures, agricultural soils and crops from different areas in Galicia (NW Spain). J. Clean. Prod. 2018, 197, 491–500. [Google Scholar] [CrossRef]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Sumner, M.E.; Miller, W.P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis Part 3: Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 1996. [Google Scholar]
- Bertsch, P.M.; Bloom, P.R. Aluminium. In Methods of Soil Analysis Part 3: Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 1996. [Google Scholar]
- Olsen, S.R.; Sommers, L.E. Phosphorus. In Methods of Soil Analysis. Part 2. Chemical and Microbiological Propertie; Page, A.L., Miller, L.H., Keeney, D.R., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA, 1996. [Google Scholar]
- Díaz-Raviña, M.; Bååth, E.; Frostegård, Å. Multiple Heavy Metal Tolerance of Soil Bacterial Communities and Its Measurement by a Thymidine Incorporation Technique. Appl. Environ. Microbiol. 1994, 60, 2238–2247. [Google Scholar] [CrossRef] [Green Version]
- Bååth, E. Thymidine and leucine incorporation in soil bacteria with different cell size. Microb. Ecol. 1994, 27, 267–278. [Google Scholar] [CrossRef]
- Bååth, E.; Pettersson, M.; Söderberg, K. Adaptation of a rapid and economical microcentrifugation method to measure thymidine and leucine incorporation by soil bacteria. Soil Boil. Biochem. 2001, 33, 1571–1574. [Google Scholar] [CrossRef]
- Rousk, K.; Elyaagubi, F.K.; Jones, D.L.; Godbold, D.L. Bacterial salt tolerance is unrelated to soil salinity across an arid agroecosystem salinity gradient. Soil Boil. Biochem. 2011, 43, 1881–1887. [Google Scholar] [CrossRef]
- Sebaugh, J.L. Guidelines for accurate EC50/IC50 estimation. Pharm. Stat. 2011, 10, 128–134. [Google Scholar] [CrossRef] [PubMed]
- Rath, K.M.; Maheshwari, A.; Bengtson, P.; Rousk, K. Comparative Toxicities of Salts on Microbial Processes in Soil. Appl. Environ. Microbiol. 2016, 82, 2012–2020. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kunito, T.; Senoo, K.; Saeki, K.; Oyaizu, H.; Matsumoto, S. Usefulness of the Sensitivity–Resistance Index to Estimate the Toxicity of Copper on Bacteria in Copper-Contaminated Soils. Ecotoxicol. Environ. Saf. 1999, 44, 182–189. [Google Scholar] [CrossRef] [PubMed]
- Witter, E.; Gong, P.; Bååth, E.; Marstorp, H. A study of the structure and metal tolerance of the soil microbial community six years after cessation of sewage sludge applications. Environ. Toxicol. Chem. 2000, 19, 1983–1991. [Google Scholar] [CrossRef]
- Niklińska, M.; Chodak, M.; Laskowski, R. Pollution-induced community tolerance of microorganisms from forest soil organic layers polluted with Zn or Cu. Appl. Soil Ecol. 2006, 32, 265–272. [Google Scholar] [CrossRef]
- Komárek, M.; Čadková, E.; Chrastný, V.; Bordas, F.; Bollinger, J.-C. Contamination of vineyard soils with fungicides: A review of environmental and toxicological aspects. Environ. Int. 2010, 36, 138–151. [Google Scholar] [CrossRef]
- Demoling, L.A.; Bååth, E. Use of pollution-induced community tolerance of the bacterial community to detect phenol toxicity in soil. Environ. Toxicol. Chem. 2008, 27, 334–340. [Google Scholar] [CrossRef]
- Spark, K.M.; Wells, J.D.; Johnson, B.B. Sorption of heavy metals by mineral-humic acid substrates. Soil Res. 1997, 35, 113. [Google Scholar] [CrossRef]
- Bradl, H.B. Adsorption of heavy metal ions on soils and soils constituents. J. Colloid Interface Sci. 2004, 277, 1–18. [Google Scholar] [CrossRef]
- Flores-Vélez, L.; Ducaroir, J.; Jaunet, A.; Robert, M. Study of the distribution of copper in an acid sandy vineyard soil by three different methods. Eur. J. Soil Sci. 1996, 47, 523–532. [Google Scholar] [CrossRef]
- Mirlean, N.; Roisenberg, A.; Chies, J.O. Metal contamination of vineyard soils in wet subtopics (southern Brazil). Environ. Pollut. 2007, 149, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Calviño, D.; Garrido-Rodríguez, B.; López-Periago, E.; Paradelo, M.; Arias-Estevez, M. Spatial distribution of copper fractions in a vineyard soil. Land Degrad. Dev. 2011, 24, 556–563. [Google Scholar] [CrossRef]
- Pietrzak, U.; McPhail, D. Copper accumulation, distribution and fractionation in vineyard soils of Victoria, Australia. Geoderma 2004, 122, 151–166. [Google Scholar] [CrossRef]
Soil | |||
---|---|---|---|
Parameter | 1 | 2 | 3 |
Sand (%) | 70.4 | 40.6 | 48.9 |
Silt (%) | 11.9 | 25.8 | 19.2 |
Clay (%) | 17.7 | 33.6 | 32.0 |
Texture | Sandy Loam | Clay Loam | Sandy clay loam |
pHw | 4.8 | 4.7 | 4.5 |
C (%) | 1.1 | 5.3 | 10.9 |
N (%) | 0.1 | 0.5 | 0.8 |
Cae (cmolc kg−1) | 1.5 | 5.9 | 5.9 |
Mge (cmolc kg−1) | 0.4 | 1.7 | 1.5 |
Nae (cmolc kg−1) | 0.3 | 0.6 | 0.4 |
Ke (cmolc kg−1) | 1.3 | 3.0 | 1.1 |
Ale (cmolc kg−1) | 0.6 | 0.5 | 2.7 |
eCEC (cmolc kg−1) | 4.1 | 11.6 | 11.6 |
Pavailable (mg kg−1) | 225.4 | 261.9 | 135.9 |
CrT (mg kg−1) | 5.9 | 11.5 | 11.7 |
CoT (mg kg−1) | <DL | 2.7 | 3.4 |
NiT (mg kg−1) | 14.7 | 18.6 | 14.0 |
CuT (mg kg−1) | 10.7 | 19.2 | 21.6 |
AsT (mg kg−1) | 4.9 | 10.3 | 12.7 |
CdT (mg kg−1) | <DL | <DL | <DL |
PbT (mg kg−1) | 13.1 | 13.7 | 15.1 |
NaT (mg kg−1) | 25.3 | 131.4 | 115.8 |
KT (mg kg−1) | 1132.1 | 1877.6 | 2044.7 |
CaT (mg kg−1) | 318.9 | 2038.3 | 1461.9 |
MgT (mg kg−1) | 470.4 | 860.0 | 764.4 |
AlT (mg kg−1) | 9142.3 | 16,234.9 | 21,963.8 |
MnT (mg kg−1) | 54.5 | 50.9 | 47.1 |
FeT (mg kg−1) | 4072.3 | 5236.8 | 6082.0 |
ZnT (mg kg−1) | 63.8 | 141.3 | 126.1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santás-Miguel, V.; Arias-Estévez, M.; Díaz-Raviña, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A.; Fernández-Calviño, D. Bacterial Community Tolerance to Tetracycline Antibiotics in Cu Polluted Soils. Agronomy 2020, 10, 1220. https://doi.org/10.3390/agronomy10091220
Santás-Miguel V, Arias-Estévez M, Díaz-Raviña M, Fernández-Sanjurjo MJ, Álvarez-Rodríguez E, Núñez-Delgado A, Fernández-Calviño D. Bacterial Community Tolerance to Tetracycline Antibiotics in Cu Polluted Soils. Agronomy. 2020; 10(9):1220. https://doi.org/10.3390/agronomy10091220
Chicago/Turabian StyleSantás-Miguel, Vanesa, Manuel Arias-Estévez, Montserrat Díaz-Raviña, María José Fernández-Sanjurjo, Esperanza Álvarez-Rodríguez, Avelino Núñez-Delgado, and David Fernández-Calviño. 2020. "Bacterial Community Tolerance to Tetracycline Antibiotics in Cu Polluted Soils" Agronomy 10, no. 9: 1220. https://doi.org/10.3390/agronomy10091220