A Comparison of Two Methodological Approaches for Determining Castor Bean Suitability in Chile
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determining Land Aptitude for Castor Bean with the Simplistic Method
2.3. Determining Land Aptitude for Castor Bean with the Presence-Species Method
3. Results
3.1. Land Aptitude Determination Using the Simplistic Method
3.2. Land Aptitude Determination using the Presence-Species Method
3.3. Land Aptitude with Current Land Use as Limitations
4. Discussion
4.1. Land Aptitude with −8.0 °C as TNA
4.2. Comparison of the Two Methodologies
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Appendix A
Country | City/Town | Geographic Coordinate | Reference | |
---|---|---|---|---|
Lat | Long | |||
Argentina | Buenos Aires | 34°35′ S | 058°29′ W | [40] |
Argentina | Morón | 34°39′ S | 058°37′ W | [41] |
Argentina | Paraná River | 32°52′ S | 060°40′ W | [41] |
Argentina | Ensenada | 34°50′ S | 057°55′ W | [42] |
Belize | Cayo | 17°10′ N | 089°01′ W | [42] |
Bolivia | Andrés Ibáñez | 17°47′ S | 063°12′ W | [42] |
Brazil | Cruz da Almas | 12°40′ N | 039°06′ W | [43] |
Brazil | Garanhuns | 08°53′ S | 036°29′ W | [44] |
Brazil | Presidente Bernandes | 22°11′ S | 051°40′ W | [45] |
Brazil | Río Largo | 09°27′ S | 035°49′ W | [46] |
China | Shangai | 31°11′ N | 121°32′ E | [47] |
Costa Rica | San José | 09°56′ N | 084°04′ W | [42] |
Costa Rica | La Garita de Alajuela | 10°00′ N | 084°16′ W | [48] |
Cuba | Paraguay | 20°03′ N | 075°08′ W | [49] |
Dominican Republic | Santo Domingo | 18°31′ N | 069°50′ W | [42] |
Ecuador | Quito | 00°08′ S | 078°29′ W | [42] |
Ecuador | Guayaquil | 02°10′ S | 079°50′ W | [42] |
Gabon | Nyanga | 03°41′ S | 011°00′ E | [42] |
Greece | Iraklion | 35°18′ N | 025°08′ E | [5] |
Greece | Aliartos | 38°22′ N | 023°06′ E | [4] |
Guyana Francesa | Cayenne | 04°50′ N | 052°17′ W | [42] |
India | Delhi | 28°40′ N | 077°07′ E | [50] |
India | Hyderabad | 17°27′ N | 078°28′ E | [51] |
Iran | Esfahan | 32°36′ N | 051°26′ E | [52] |
Israel | Tel Aviv | 32°00′ N | 034°49′ E | [53] |
Italy | Bologna | 44°33′ N | 011°23′ E | [4] |
Jamaica | Kingston | 18°00′ N | 076°47′ W | [42] |
Madagascar | Antananarivo | 18°54′ S | 047°43′ E | [42] |
Mexico | Tapachula | 14°55′ N | 092°14′ W | [42] |
Mexico | Merida | 20°58′ N | 089°36′ W | [42] |
Nicaragua | Jinotega | 14°03′ N | 085°29′ W | [42] |
Paraguay | Central | 25°50′ S | 057°28′ W | [42] |
Peru | Trujillo | 08°07′ S | 079°01′ W | [42] |
Tanzania | Bukoba Rural | 01°08′ S | 031°27′ E | [42] |
Tanzania | Kinondoni | 06°48′ S | 039°15′ E | [42] |
Tanzania | Kilombero | 02°34′ S | 033°27′ E | [42] |
Trinidad y Tobago | Port of Spain | 10°25′ N | 061°14′ W | [42] |
Tunisia | Mateur | 37°01′ N | 009°52′ E | [17] |
Tunisia | Mornag | 36°41′ N | 010°18′ E | [17] |
Tunisia | Gabas | 33°52′ N | 010°07′ E | [17] |
United States | Lubbock | 33°36′ N | 101°54′ W | [18] |
United States | Tijuana River Valley | 32°33′ N | 117°04′ W | [54] |
United States | Puerto Rico | 18°28′ N | 066°19′ W | [42] |
United States | Alameda | 37°52′ N | 122°16′ W | [42] |
United States | Jefferson | 29°44′ N | 090°06′ W | [42] |
United States | Saint Louis | 38°38′ N | 090°27′ W | [42] |
Uruguay | Montevideo | 34°51′ S | 056°10′ W | [42] |
References
- Patanè, C.; Cosentino, S.L.; Corinzia, S.A.; Testa, G.; Sortino, O.; Scordia, D. Photothermal zoning of castor (Ricinus communis L.) growing season in the semi-arid Mediterranean area. Ind. Crop. Prod. 2019, 142, 111837. [Google Scholar] [CrossRef]
- Severino, L.S.; Auld, D.L.; Baldanzi, M.; Cândido, M.J.D.; Chen, G.; Crosby, W.; He, T.D.X.; Lakshmamma, P.; Lavanya, C.; Machado, O.L.T.; et al. A review on the challenges for increased production of castor. Agron. J. 2012, 104, 853–880. [Google Scholar] [CrossRef] [Green Version]
- Román-Figueroa, C.; Cea, M.; Paneque, M.; González, M.E. Oil content and fatty acid composition in castor bean naturalized accessions under Mediterranean conditions in Chile. Agronomy 2020, 10, 1145. [Google Scholar] [CrossRef]
- Zanetti, F.; Chieco, C.; Alexopoulou, E.; Vecchi, A.; Bertazza, G.; Monti, A. Comparison of new castor (Ricinus communis L.) genotypes in the mediterranean area and possible valorization of residual biomass for insect rearing. Ind. Crop. Prod. 2017, 107, 581–587. [Google Scholar] [CrossRef]
- Chatzakis, M.K.; Tzanakakis, V.A.; Mara, D.D.; Angelakis, A.A. Irrigation of castor bean (Ricinus communis L.) and Sunflower (Helianthus annus L.) plant species with municipal wastewater effluent: Impacts on soil properties and seed yield. Water 2011, 3, 1112–1117. [Google Scholar] [CrossRef] [Green Version]
- Rojas-Barros, P.; de Haro, A.; Muñoz, J.; Fernández-Martínez, J.M. Isolation of a natural 183 mutant in Castor with high oleic/low ricinoleic acid content in the oil. Crop. Sci. 2004, 44, 76–80. [Google Scholar] [CrossRef]
- Anjani, K. Castor genetic resources: A primary gene pool for exploitation. Ind. Crops Prod. 2012, 35, 1–14. [Google Scholar] [CrossRef]
- Rios, Í.C.; Cordeiro, J.P.; Arruda, T.B.M.G.; Rodrigues, F.E.A.; Uchoa, A.F.J.; Luna, F.M.T.; Cavalcante, C.L., Jr.; Ricardo, N.M.P.S. Chemical modification of castor oil fatty acids (Ricinus communis) for biolubricant applications: An alternative for Brazil’s green market. Ind. Crop. Prod. 2020, 145, 112000. [Google Scholar] [CrossRef]
- Omonov, T.S.; Kharraz, E.; Curtis, J.M. Camelina (Camelina sativa) oil polyols as an alternative to castor oil. Ind. Crop. Prod. 2017, 107, 378–385. [Google Scholar] [CrossRef]
- Prasad, R.N.N.; Rao, B.V.S.K. Chemical derivatization of castor oil and their industrial utilization. In Fatty Acids. Chemistry, Synthesis and Applications; Ahmad, M.U., Ed.; Academic Press: Cambridge, MA, USA; AOCS Press: Urbana, IL, USA, 2017; pp. 279–303. [Google Scholar]
- Ogunniyi, D.S. Castor oil: A vital industrial raw material. Bioresour. Technol. 2006, 97, 1086–1091. [Google Scholar] [CrossRef]
- Souza, S.P.; Seabra, J.E.A.; Nogueria, L.A.H. Feedstocks for biodiesel production: Brazilian and global perspectives. Biofuels 2019, 9, 455–478. [Google Scholar] [CrossRef]
- Von Cossel, M.; Lewandowski, I.; Elbersen, B.; Staritsky, I.; Van Eupen, M.; Iqbal, Y.; Mantel, S.; Scordia, D.; Testa, G.; Cosentino, S.L.; et al. Marginal agricultural land low-input systems for biomass production. Energies 2019, 12, 3123. [Google Scholar] [CrossRef] [Green Version]
- Román-Figueroa, C.; Paneque, M. Ethics and biofuel production in Chile. J. Agric. Environ. Ethics 2015, 28, 293–312. [Google Scholar] [CrossRef]
- Anastasi, U.; Sortino, O.; Cosentino, S.L.; Patanè, C. Seed yield and oil quality of perennial castor bean in a Mediterranean environment. Int. J. Plant Prod. 2015, 9, 99–116. [Google Scholar] [CrossRef]
- Velasco, L.; Fernández-Cuesta, Á.; Pascual-Villalobos, M.J.; Fernández-Martínez, J.M. Variability of seed quality traits in wild and semi-wild accessions of castor collected in Spain. Ind. Crop. Prod. 2015, 65, 203–209. [Google Scholar] [CrossRef]
- Saadaoui, E.; Martín-Gómez, J.J.; Ghazel, N.; Yahia, K.B.; Tlili, N.; Cervantes, E. Genetic variations and seed yield in Tunisian castor bean (Ricinus communis L.). Bot. Sci. 2017, 95, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Severino, L.S.; Auld, D.L. Seed yield and yield components of castor influenced by irrigation. Ind. Crop. Prod. 2013, 49, 52–60. [Google Scholar] [CrossRef]
- Severino, L.S.; Auld, D.L.; Vale, L.S.; Marques, L.F. Plant density does not influence every castor plant equally. Ind. Crop. Prod. 2017, 107, 588–594. [Google Scholar] [CrossRef]
- Kozak, K.H.; Graham, C.H.; Wiens, J.J. Integrating GIS-based environmental data into evolutionary biology. Trends Ecol. Evol. 2008, 23, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Halder, J.C. Land suitability assessment for crop cultivation by using remote sensing and GIS. J. Geogr. Geol. 2013, 5, 65–74. [Google Scholar] [CrossRef]
- El Baroudy, A.A. Mapping and evaluating land suitability using a GIS-based model. Catena 2016, 140, 96–104. [Google Scholar] [CrossRef]
- Falasca, S.L.; Ulberich, A.C.; Ulberich, E. Developing an agro-climatic zoning model to determine potential production areas for castor bean (Ricinus communis L.). Ind. Crop. Prod. 2012, 40, 185–191. [Google Scholar] [CrossRef]
- Román-Figueroa, C.; Herrera, S.; Cortez, D.; Uribe, J.M.; Paneque, M. Methodology for the estimation of land suitability for Atriplex L. [Amaranthaceae Juss. (s.l.)] cultivation in arid and semi-arid regions. Arid Land Res. Manag. 2019, 33, 412–426. [Google Scholar] [CrossRef]
- Uribe, J.M.; Cabrera, R.; de la Fuente, A.; Paneque, M. Atlas Bioclimático de Chile; Universidad de Chile: Santiago, Chile, 2012. (In Spanish) [Google Scholar]
- Ministerio del Medio Ambiente. Sistema Nacional de Información Ambiental. Available online: http://ide.mma.gob.cl/ (accessed on 13 April 2018).
- Román-Figueroa, C.; Padilla, R.; Uribe, J.M.; Paneque, M. Land suitability assessment for Camelina (Camelina sativa L.) development in Chile. Sustainability 2017, 9, 154. [Google Scholar] [CrossRef] [Green Version]
- Rossiter, D.G. A theoretical framework for land evaluation. Geoderma 1996, 72, 165–190. [Google Scholar] [CrossRef]
- Yañez, L. Ficha Nacional; ODEPA, Ministerio de Agricultura: Santiago, Chile, 2020; p. 17. (In Spanish) [Google Scholar]
- Sarricolea, P.; Herrera-Ossandón, M.; Meseguer-Ruiz, O. Climatic regionalisation of continental Chile. J. Maps 2017, 13, 66–73. [Google Scholar] [CrossRef]
- Sotomayor, A.; Schmidt, H.; Salinas, J.; Schmidt, A.; Sánchez-Jardón, L.; Alonso, M.; Moya, I.; Teuber, O. Silvopastoral systems in the Aysén and Magallanes regions of the Chilean Patagonia. In Silvopastoral Systems in Southern South. America; Peri, P.L., Dube, F., Varella, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2016; Volume 11, pp. 213–230. [Google Scholar]
- Giannakopoulos, C.; Kostopoulou, E.; Varotsos, K.V.; Tziotziou, K.; Plitharas, A. An integrated assessment of climate change impacts for Greece in the near future. Reg. Environ. Chang. 2011, 11, 829–843. [Google Scholar] [CrossRef] [Green Version]
- Del Río, S.; Cano-Ortiz, A.; Herrero, L.; Penas, A. Recent trends in mean maximum and minimum air temperatures over Spain (1961–2006). Theor. Appl. Climatol. 2012, 109, 605–626. [Google Scholar] [CrossRef]
- Severino, L.S.; Auld, D.L. Study on the effect of air temperature on seed development and determination of the base temperature for seed growth in castor (Ricinus communis L.). Aust. J. Crop. Sci. 2014, 8, 290–295. [Google Scholar]
- Burger, F.; Brock, B.; Montecinos, A. Seasonal and elevational contrasts in temperature trends in Central Chile between 1979 and 2015. Global Planet. Chang. 2018, 162, 36–147. [Google Scholar] [CrossRef]
- Fuentes, M.; Campos, C.; García-Loyola, S. Application of artificial neural networks to frost detection in central Chile using the next day minimum air temperature forecast. Chil. J. Agric. Res. 2018, 78, 327–338. [Google Scholar] [CrossRef] [Green Version]
- Larcher, W. Physiological Plant Ecology. Ecophysiology and Stress Physiology of Functional Groups, 4th ed.; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Pyšek, P.; Pergl, J.; Essl, F.; Lenzner, B.; Dawson, W.; Kreft, H.; Weigelt, P.; Winter, M.; Kartesz, J.; Nishino, M.; et al. Naturalized alien flora of the world: Species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 2017, 89, 203–274. [Google Scholar] [CrossRef]
- Jiménez, R.; Vargas, H.; Bobadilla, D.; Gallo, P. Insects and spider mites associated to castor bean (Ricinus communis L.) from the I to the III Region of Chile (first contribution). Idesia 1994, 13, 25–47. [Google Scholar]
- Vallejos, M.; Rondanini, D.; Wassner, D.F. Water relationships of castor bean (Ricinus communis L.) seeds related to final seed dry and physiological maturity. Eur. J. Agron. 2011, 35, 93–101. [Google Scholar] [CrossRef]
- Gil-Cardeza, M.L.; Müller, D.R.; Amaya-Martin, S.M.; Viassolo, R.; Gómez, E. Differential responses to high soil chromium of two arbuscular mycorrhizal fungi communities isolated from Cr-polluted and non-polluted rhizospheres of Ricinus communis. Sci. Total Environ. 2018, 625, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Missouri Botanical Garden. Tropicos. 2020. Available online: www.tropicos.org (accessed on 19 March 2020).
- Peixoto, C.P.; de Lima, J.F.; Silva, V.; Peixoto, M.F.S.P. Área foliar e alocação de fitomassa de cultivares de mamoneira nas condições do recôncavo sul baiano. In Proceedings of the IV Congresso Brasileiro de Mamona y I Simpósio Internacional de Oleaginosas Energéticas, João Pessoa, Paraíba, Brasil, 7–10 June 2010; Da Silva, O., Rocha, R., Eds.; Embrapa Algodão: Campina Grande, Paraíba, Brazil, 2010; pp. 844–853. (In Portuguese). [Google Scholar]
- Lima, J.R.S.; Gomes, C.A.; Padilha, K.M.; Antonino, A.C.D.; Orlando, R.C. Avaliação dos componentes do balanço hídrico em mamona na microrregião de Garanhuns-PE. In Proceedings of the IV Congresso Brasileiro de Mamona y I Simpósio Internacional de Oleaginosas Energéticas, João Pessoa, Paraíba, Brasil, 7–10 June 2010; Da Silva, O., Rocha, R., Eds.; Embrapa Algodão: Campina Grande, Paraíba, Brazil, 2010; pp. 1032–1036. [Google Scholar]
- Cordeiro, C.F.S.; Echer, F.R.; Pires, L.H.T.; Creste, J.E. Productivity of castor bean plants intercropped at different plant densities with Urochloa ruziziensis. Rev. Bras. Eng. Agrícola Ambient. 2019, 23, 109–113. [Google Scholar] [CrossRef] [Green Version]
- Dos Santos, C.M.; Endres, L.; Ferreira, W.M.; Silva, J.V.; Rolim, E.V.; Wanderley, H.C.L. Photosynthetic capacity and water use efficiency in Ricinus communis (L.) under drought stress in semi-humid and semi-arid areas. An. Acad. Bras. Cienc. 2017, 89, 3015–3029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, P.; He, C.; Kokyo, O.; Chen, X.; Liang, X.; Liu, X.; Cheng, X.; Wu, C.; Shi, Z. Medicago sativa L. enhances the phytoextraction of cadmium and zinc by Ricinus communis L. on contaminated land in situ. Ecol. Eng. 2018, 116, 61–66. [Google Scholar] [CrossRef]
- Rivera-Brenes, P.A.; Hernández-López, J. Evaluación del rendimiento y calidad del aceite de siete variedades de Ricinus communis. Agron. Mesoam. 2016, 27, 183–190. [Google Scholar] [CrossRef] [Green Version]
- Alguacil, M.M.; Torrecillas, M.; Hernández, G.; Roldán, A. Changes in the diversity of soil arbuscular mycorrhizal fungi after cultivation for biofuel production in a Guantanamo (Cuba) tropical system. PLoS ONE 2012, 7, e34887. [Google Scholar] [CrossRef] [Green Version]
- Goyal, N.; Saha, K.; Sharma, G.P. Does intrinsic light heterogeneity in Ricinus communis L. monospecific thickets drive species’ population dynamics? Environ. Monit. Assess. 2018, 190, 410. [Google Scholar] [CrossRef] [PubMed]
- Prathiba, G.; Srinivas, I.; Rao, K.V.; Raju, B.M.K.; Thyagaraj, C.R.; Korwar, G.R.; Venkateswarlu, B.; Shanker, A.K.; Choudhary, D.K.; Rao, K.S.; et al. Impact of conservation agriculture practices on energy use efficiency and global warming potential in rainfed pigeonpea–castor systems. Eur. J. Agron. 2015, 66, 30–40. [Google Scholar] [CrossRef]
- Tadayyon, A.; Nikneshan, P.; Pessarakli, M. Effects of drought on concentration of macro- and micro-nutrients in Castor (Ricinus communis L.) plant. J. Plant Nutr. 2018, 41, 304–310. [Google Scholar] [CrossRef]
- Kaspi, R.; Kontsedalov, S.; Ghanim, M. First report of Trichogramma danausicida and Trichogramma cacaeciae reared from Thaumatotibia leucotreta eggs in Israel. ZooKeys 2018, 779, 19–25. [Google Scholar] [CrossRef] [Green Version]
- Boland, J.M. The impact of an invasive ambrosia beetle on the riparian habitats of the Tijuana River Valley, California. PeerJ 2016, 4, e2141. [Google Scholar] [CrossRef] [PubMed]
Aptitude | Pp | TX | TNA | FFD |
---|---|---|---|---|
Optimal | >750 mm | 24.0–27.0 °C | >−8.0 °C | >180 days |
Very suitable | >750 mm | 21.0–23.9 °C | >−8.0 °C | >180 days |
Suitable with humid regime | >750 mm | 16.0–20.9 °C | >−8.0 °C | >180 days |
Suitable 1 with subhumid regime | 450–750 mm | 24.0–27.0 °C | >−8.0 °C | >180 days |
Suitable 2 with subhumid regime | 450–750 mm | 21.0–23.9 °C | >−8.0 °C | >180 days |
Suitable 3 with subhumid regime | 450–750 mm | 16.0–20.9 °C | >−8.0 °C | >180 days |
Marginal due to humidity | 200–450 mm | - | - | - |
Marginal due to temperature | - | <16.0 °C | - | - |
Marginal due to frost 1 | - | - | - | <180 days |
Marginal due to frost 2 | - | - | <−8.0 °C | - |
Not suitable | <200 mm | <16.0 °C | <−8.0 °C | <180 days |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
Coquimbo | 0 | 0 | 403,326 | 0 | 0 | 101,011 | 0 |
Valparaíso | 0 | 45,978 | 971,754 | 28,362 | 0 | 138,275 | 0 |
Metropolitana | 0 | 94,182 | 750,915 | 59,224 | 0 | 28,590 | 0 |
O’Higgins | 106,118 | 671,834 | 281,609 | 154,878 | 0 | 132 | 0 |
Maule | 1,120,793 | 548,328 | 0 | 425,180 | 0 | 0 | 0 |
Ñuble | 842,597 | 19 | 0 | 204,494 | 0 | 0 | 0 |
Biobío | 959,325 | 0 | 0 | 902,283 | 0 | 0 | 0 |
Araucanía | 719,689 | 0 | 0 | 1,731,779 | 0 | 0 | 0 |
Los Ríos | 0 | 0 | 0 | 1,712,376 | 0 | 0 | 0 |
Los Lagos | 0 | 0 | 0 | 4,157,466 | 0 | 0 | 0 |
Aysén | 0 | 0 | 0 | 4,133,116 | 0 | 0 | 0 |
Magallanes | 0 | 0 | 0 | 6,594,879 | 0 | 0 | 0 |
Total | 3,748,521 | 1,360,341 | 2,407,603 | 20,104,037 | 0 | 268,009 | 0 |
Parameters | Aptitude | Ranges |
---|---|---|
TMX (°C) | Restricted | >33; <22 |
Mild Restriction | 30–33; 22–25 | |
Without Restriction | 25–30 | |
TNJ (°C) | Restricted | <1 |
Moderate Restriction | 1–5 | |
Mild Restriction | 5–9 | |
Without Restriction | >9 | |
DD | Restricted | <700 |
Moderate Restriction | 700–1000 | |
Mild Restriction | 1000–1300 | |
Without Restriction | >1300 | |
WD (mm) | Restricted | >−1250 |
Moderate Restriction | −1250–750 | |
Mild Restriction | −750–250 | |
Without Restriction | <−250 |
8 | 9 | 10 | 11 | 12 | 13 | 14 | |
---|---|---|---|---|---|---|---|
Arica y Parinacota | 0 | 0 | 2880 | 5852 | 0 | 0 | 0 |
Tarapacá | 0 | 0 | 37,496 | 1695 | 0 | 0 | 0 |
Antofagasta | 78 | 0 | 206,719 | 69,960 | 0 | 0 | 0 |
Atacama | 45,458 | 0 | 445,319 | 2561 | 0 | 0 | 0 |
Coquimbo | 473,229 | 0 | 1,347,439 | 9246 | 0 | 0 | 0 |
Valparaíso | 449,427 | 145 | 507,965 | 0 | 0 | 81,794 | 0 |
Metropolitana | 719,943 | 0 | 152,611 | 0 | 0 | 2018 | 0 |
O’Higgins | 699,949 | 52,015 | 288,784 | 0 | 0 | 120,607 | 0 |
Maule | 1,136,464 | 223,448 | 201,948 | 0 | 0 | 376,449 | 0 |
Ñuble | 427,724 | 309,153 | 40,476 | 0 | 0 | 180,285 | 0 |
Biobío | 115,345 | 579,346 | 2451 | 0 | 16,634 | 542,048 | 64,766 |
Araucanía | 14,377 | 1,507,694 | 0 | 0 | 205,329 | 151,861 | 57,820 |
Los Ríos | 0 | 331,598 | 0 | 0 | 450,471 | 0 | 0 |
Los Lagos | 0 | 120,761 | 0 | 0 | 409,508 | 0 | 0 |
TOTAL | 4,081,993 | 3,124,160 | 3,234,087 | 89,315 | 1,081,942 | 1,455,063 | 122,586 |
Simplistic | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
Coquimbo | 0 | 0 | 361,514 | 0 | 0 | 99,198 | 0 |
Valparaíso | 0 | 13,043 | 312,784 | 17,092 | 0 | 66,064 | 0 |
Metropolitana | 0 | 21,343 | 160,059 | 28,197 | 0 | 9836 | 0 |
O’Higgins | 9588 | 90,642 | 66,841 | 19,376 | 0 | 35 | 0 |
Maule | 132,037 | 125,110 | 0 | 44,641 | 0 | 0 | 0 |
Ñuble | 83,651 | 19 | 0 | 13,774 | 0 | 0 | 0 |
Biobío | 90,185 | 0 | 0 | 122,105 | 0 | 0 | 0 |
Araucanía | 44,606 | 0 | 0 | 323,168 | 0 | 0 | 0 |
Los Ríos | 0 | 0 | 0 | 493,132 | 0 | 0 | 0 |
Los Lagos | 0 | 0 | 0 | 1,007,641 | 0 | 0 | 0 |
Aysén | 0 | 0 | 0 | 278,154 | 0 | 0 | 0 |
Magallanes | 0 | 0 | 0 | 265,411 | 0 | 0 | 0 |
Total | 360,067 | 250,157 | 901,197 | 2,612,690 | 0 | 175,133 | 0 |
Presence-species | 8 | 9 | 10 | 11 | 12 | 13 | 14 |
Arica y Parinacota | 0 | 0 | 1137 | 2989 | 0 | 0 | 0 |
Tarapacá | 0 | 0 | 26,143 | 1663 | 0 | 0 | 0 |
Antofagasta | 72 | 0 | 186,000 | 63,009 | 0 | 0 | 0 |
Atacama | 43,626 | 0 | 396,578 | 2370 | 0 | 0 | 0 |
Coquimbo | 456,160 | 0 | 1,147,868 | 8404 | 0 | 0 | 0 |
Valparaíso | 197,590 | 144 | 146,353 | 0 | 0 | 20,059 | 0 |
Metropolitana | 155,946 | 0 | 45,922 | 0 | 0 | 1327 | 0 |
O’Higgins | 93,155 | 4526 | 65,827 | 0 | 0 | 13,825 | 0 |
Maule | 171,440 | 16,066 | 52,796 | 0 | 0 | 44,968 | 0 |
Ñuble | 50,800 | 12,592 | 4648 | 0 | 0 | 21,252 | 0 |
Biobío | 8058 | 36,179 | 144 | 0 | 1050 | 69,435 | 5136 |
Araucanía | 3121 | 242,490 | 0 | 0 | 32,935 | 17,008 | 6716 |
Los Ríos | 0 | 174,276 | 0 | 0 | 213,914 | 0 | 0 |
Los Lagos | 0 | 99,447 | 0 | 0 | 234,417 | 0 | 0 |
Aysén | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Magallanes | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total | 1,179,968 | 585,720 | 2,073,415 | 78,435 | 482,316 | 187,874 | 11,851 |
1 | 2 | 3 | 4 | 5 | 6 | 7 | |
---|---|---|---|---|---|---|---|
Coquimbo | 0 | 0 | 207,524 | 0 | 0 | 0 | 153,989 |
Valparaíso | 0 | 12,275 | 165,154 | 1652 | 768 | 17,161 | 147,629 |
Metropolitana | 0 | 3096 | 53,407 | 0 | 18,247 | 0 | 106,652 |
O’Higgins | 0 | 41,516 | 53,129 | 1457 | 58,714 | 25 | 13,711 |
Maule | 47,906 | 68,847 | 0 | 22,734 | 140,394 | 0 | 0 |
Ñuble | 33,728 | 19 | 0 | 7174 | 49,923 | 0 | 0 |
Biobío | 60,814 | 0 | 0 | 106,448 | 29,372 | 0 | 0 |
Araucanía | 21,605 | 0 | 0 | 37,087 | 23,002 | 0 | 0 |
Los Ríos | 0 | 0 | 0 | 26,743 | 0 | 0 | 0 |
Los Lagos | 0 | 0 | 0 | 279,797 | 0 | 0 | 0 |
Aysén | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Magallanes | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Total | 164,052 | 125,753 | 479,215 | 483,093 | 320,419 | 17,186 | 421,982 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Román-Figueroa, C.; Cortez, D.; Paneque, M. A Comparison of Two Methodological Approaches for Determining Castor Bean Suitability in Chile. Agronomy 2020, 10, 1259. https://doi.org/10.3390/agronomy10091259
Román-Figueroa C, Cortez D, Paneque M. A Comparison of Two Methodological Approaches for Determining Castor Bean Suitability in Chile. Agronomy. 2020; 10(9):1259. https://doi.org/10.3390/agronomy10091259
Chicago/Turabian StyleRomán-Figueroa, Celián, Donna Cortez, and Manuel Paneque. 2020. "A Comparison of Two Methodological Approaches for Determining Castor Bean Suitability in Chile" Agronomy 10, no. 9: 1259. https://doi.org/10.3390/agronomy10091259
APA StyleRomán-Figueroa, C., Cortez, D., & Paneque, M. (2020). A Comparison of Two Methodological Approaches for Determining Castor Bean Suitability in Chile. Agronomy, 10(9), 1259. https://doi.org/10.3390/agronomy10091259