Third-Generation Biomass Crops in the New Era of De Novo Domestication
Abstract
:- 1.
- An explicitly efficient ideotype. New bioenergy crops must not be allowed to compete with food crops and aquatic ecosystems for irrigation water. Except maybe during initial establishment, third-generation crops must not be irrigated. Nitrogen use efficiency must also be very high, which is the case for the second-generation crop, miscanthus, already [20] Crops should be capable of biological nitrogen fixation, near-100% interception of nitrogen fertilizer or compatible with legume intercropping [21]. Processing of the crop must also be local and energy efficient, a target, which has eluded the production of ethanol from cellulosic crops [22]. Perennial life history is probably the only way to achieve this level of efficiency, but not all perennials are deeply rooted or drought tolerant.
- 2.
- Production of multiple ecosystems services.
- a.
- Provisioning services: third-generation biomass crops should be capable of producing both human food (either staple food or high-quality animal feed) and industrial raw materials (fuels, fibers etc.) For example, a perennial crop could be harvested late in the season for edible grain or, another year, the whole biomass could be harvested earlier in the season for biogas production/fodder, or during winter (after grain harvesting) for raw material. Such flexibility would allow farmers to respond to global markets and buffer global food security.
- b.
- Regulating services: second-generation bioenergy crops generate regulating ecosystem services (e.g., carbon sequestration [23], reduced soil erosion). Third-generation bioenergy crops must also provide regulating services.
- c.
- Supporting services: these include biomass production, but biomass is generally removed in bioenergy crops, making it unavailable for natural food webs. Supporting services were found to be compromised in high productivity stands of the second-generation bioenergy crop miscanthus [19], illustrating the need for third-generation crops. Third-generation crops must generate supporting services beyond primary productivity. For example, they must produce floral resources to support pollinators, overwintering, nesting, or support biodiverse soil food webs [24]. Native crops likely have advantages in supporting local wildlife, however, for exactly the same reason in that they are liable to be more susceptible to specialist pests and pathogens.
- 3.
- Increased landscape biodiversity. Third-generation biomass crops must be different species than the common crops of the target region. In many cases this will require de novo domestication of wild plants, substantial improvement in orphan crops or forages that have received little plant breeding attention, or genetic adaptation of crops to new climates (e.g., from temperate to tropical). Diversification of plant species in agricultural landscapes is associated with improved habitat for wildlife [25] and could help make these ecosystems more resilient to climate change and episodic stresses such as droughts or floods. Dramatic species enrichment of global agriculture will require the introduction of previously undomesticated species or genera [26,27]. Our planet’s botanical resources are a rich source of novel biochemicals and physiological solutions to serious problems. For example, wild halophytes could help maintain the productivity of agricultural land endangered by salinization from irrigation or by the rising sea level [28,29].
Author Contributions
Funding
Conflicts of Interest
References
- Gamborg, C.; Millar, K.; Shortall, O.; Sandøe, P. Bioenergy and Land Use: Framing the Ethical Debate. J. Agric. Environ. Ethics 2012, 25, 909–925. [Google Scholar] [CrossRef]
- Rowe, R.L.; Street, N.R.; Taylor, G. Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK. Renew. Sustain. Energy Rev. 2009, 13, 271–290. [Google Scholar] [CrossRef]
- Gissén, C.; Prade, T.; Kreuger, E.; Nges, I.A.; Rosenqvist, H.; Svensson, S.-E.; Lantz, M.; Mattsson, J.E.; Börjesson, P.; Björnsson, L. Comparing energy crops for biogas production–Yields, energy input and costs in cultivation using digestate and mineral fertilisation. Biomass Bioenergy 2014, 64, 199–210. [Google Scholar] [CrossRef]
- Crews, T.E.; Carton, W.; Olsson, L. Is the future of agriculture perennial? Imperatives and opportunities to reinvent agriculture by shifting from annual monocultures to perennial polycultures. Glob. Sustain. 2018, 1, e11. [Google Scholar] [CrossRef] [Green Version]
- Glover, J.D.; Culman, S.W.; DuPont, S.T.; Broussard, W.; Young, L.; Mangan, M.E.; Mai, J.G.; Crews, T.E.; DeHaan, L.R.; Buckley, D.H. Harvested perennial grasslands provide ecological benchmarks for agricultural sustainability. Agric. Ecosyst. Environ. 2010, 137, 3–12. [Google Scholar] [CrossRef]
- Sanderson, M.A.; Adler, P.R. Perennial forages as second generation bioenergy crops. Int. J. Mol. Sci. 2008, 9, 768–788. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Hill, J.; Lehman, C. Carbon-negative biofuels from low-input high-diversity grassland biomass. Science 2006, 314, 1598–1600. [Google Scholar] [CrossRef] [Green Version]
- Asbjornsen, H.; Hernandez-Santana, V.; Liebman, M.; Bayala, J.; Chen, J.; Helmers, M.; Ong, C.K.; Schulte, L.A. Targeting perennial vegetation in agricultural landscapes for enhancing ecosystem services. Renew. Agric. Food Syst. 2014, 29, 101–125. [Google Scholar] [CrossRef] [Green Version]
- Kell, D.B. Breeding crop plants with deep roots: Their role in sustainable carbon, nutrient and water sequestration. Ann. Bot. 2011, 108, 407–418. [Google Scholar] [CrossRef] [Green Version]
- Schröder, P.; Herzig, R.; Bojinov, B.; Ruttens, A.; Nehnevajova, E.; Stamatiadis, S.; Memon, A.; Vassilev, A.; Caviezel, M.; Vangronsveld, J. Bioenergy to save the world. Environ. Sci. Pollut. Res. 2008, 15, 196. [Google Scholar] [CrossRef]
- Glover, J.D.; Reganold, J.P.; Bell, L.W.; Borevitz, J.; Brummer, E.C.; Buckler, E.S.; Cox, C.M.; Cox, T.S.; Crews, T.E.; Culman, S.W.; et al. Increased Food and Ecosystem Security via Perennial Grains. Science 2010, 328, 1638–1639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Batello, C.; Wade, L.; Cox, S.; Pogna, N.; Bozzini, A.; Chptiany, J. Perennial Crops for Food Security Proceedings of the Perennial Crops for Food Security: Proceedings of the Fao Expert Workshop; FAO: Rome, Italy, 2014; Available online: http://www.fao.org/3/a-i3495e.pdf (accessed on 20 July 2020).
- DeHaan, L.; Larson, S.; López-Marqués, R.L.; Wenkel, S.; Gao, C.; Palmgren, M. Roadmap for Accelerated Domestication of an Emerging Perennial Grain Crop. Trends Plant Sci. 2020, 25, 525–537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palmgren, M.G.; Edenbrandt, A.K.; Vedel, S.E.; Andersen, M.M.; Landes, X.; Osterberg, J.T.; Falhof, J.; Olsen, L.I.; Christensen, S.B.; Sandoe, P.; et al. Are we ready for back-to-nature crop breeding? Trends Plant Sci. 2015, 20, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Crain, J.; Bajgain, P.; Anderson, J.; Zhang, X.; DeHaan, L.; Poland, J. Enhancing crop domestication through genomic selection, a case study of intermediate wheatgrass. Front. Plant Sci. 2020, 11, 319. [Google Scholar] [CrossRef] [Green Version]
- Van Tassel, D.L.; Tesdell, O.; Schlautman, B.; Rubin, M.J.; DeHaan, L.R.; Crews, T.E.; Krug, A.S. New Food Crop Domestication in the Age of Gene Editing: Genetic, Agronomic and Cultural Change Remain Co-evolutionarily Entangled. Front. Plant Sci. 2020, 11, 789. [Google Scholar] [CrossRef]
- Choi, H.S.; Grethe, H.; Entenmann, S.K.; Wiesmeth, M.; Blesl, M.; Wagner, M. Potential trade-offs of employing perennial biomass crops for the bioeconomy in the EU by 2050: Impacts on agricultural markets in the EU and the world. GCB Bioenergy 2019, 11, 483–504. [Google Scholar] [CrossRef]
- Kraska, T.; Kleinschmidt, B.; Weinand, J.; Pude, R. Cascading use of Miscanthus as growing substrate in soilless cultivation of vegetables (tomatoes, cucumbers) and subsequent direct combustion. Sci. Hortic. 2018, 235, 205–213. [Google Scholar] [CrossRef]
- Greene, D.L.; Wegener, M. Sustainable transport. J. Trans. Geogr. 1997, 5, 177–190. [Google Scholar] [CrossRef]
- Dohleman, F.G.; Long, S.P. More productive than maize in the Midwest: How does Miscanthus do it? Plant Physiol. 2009, 150, 2104–2115. [Google Scholar] [CrossRef] [Green Version]
- Nabel, M.; Schrey, S.D.; Temperton, V.M.; Harrison, L.; Jablonowski, N.D. Legume Intercropping with the Bioenergy Crop Sida hermaphrodita on Marginal Soil. Front. Plant Sci. 2018, 9, 905. [Google Scholar] [CrossRef] [Green Version]
- Murphy, D.J.; Hall, C.A.S.; Powers, B. New perspectives on the energy return on (energy) investment (EROI) of corn ethanol. Environ. Dev. Sustain. 2011, 13, 179–202. [Google Scholar] [CrossRef]
- Zeri, M.; Anderson-Teixeira, K.; Hickman, G.; Masters, M.; DeLucia, E.; Bernacchi, C.J. Carbon exchange by establishing biofuel crops in Central Illinois. Agric. Ecosyst. Environ. 2011, 144, 319–329. [Google Scholar] [CrossRef] [Green Version]
- Bufe, C.; Korevaar, H. Evaluation of Additional Crops for Dutch List of Ecological Focus Area: Evaluation of Miscanthus, Silphium Perfoliatum, Fallow Sown in with Melliferous Plants and Sunflowers in Seed Mixtures for Catch Crops; Wageningen University & Research: Wageningen, The Netherlands, 2018. [Google Scholar] [CrossRef] [Green Version]
- Werling, B.P.; Dickson, T.L.; Isaacs, R.; Gaines, H.; Gratton, C.; Gross, K.L. Perennial grasslands enhance biodiversity and multiple ecosystem services in bioenergy landscapes. Proc. Natl. Acad. Sci. USA 2014, 111, 1652–1657. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leakey, R.R.B.; Asaah, E.K. Underutilised species as the backbone of multifunctional agriculture—The next wave of crop domestication. Acta Hortic. 2013, 979, 293–310. [Google Scholar] [CrossRef]
- Ciotir, C.; Applequist, W.; Crews, T.E.; Cristea, N.; DeHaan, L.R.; Frawley, E.; Herron, S.; Magill, R.; Miller, J.; Roskov, Y.; et al. Building a botanical foundation for perennial agriculture: Global inventory of wild, perennial herbaceous Fabaceae species. Plants People Planet 2019, 1, 375–386. [Google Scholar] [CrossRef] [Green Version]
- Rozema, J.; Flowers, T. Crops for a Salinized World. Science 2008, 322, 1478–1480. [Google Scholar] [CrossRef]
- Zhang, H.; Li, Y.; Zhu, J.K. Developing naturally stress-resistant crops for a sustainable agriculture. Nat. Plants 2018, 4, 989–996. [Google Scholar] [CrossRef]
- Pugliese, J.Y.; Culman, S.W.; Sprunger, C.D. Harvesting forage of the perennial grain crop kernza (Thinopyrum intermedium) increases root biomass and soil nitrogen cycling. Plant Soil 2019, 437, 241–254. [Google Scholar] [CrossRef]
- Borkowska, H.; Molas, R.; Kupczyk, A. Virginia fanpetals (Sida hermaphrodita Rusby) cultivated on light soil; height of yield and biomass productivity. Pol. J. Environ. Stud. 2009, 18, 563–568. [Google Scholar]
- Gansberger, M.; Montgomery, L.F.; Liebhard, P. Botanical characteristics, crop management and potential of Silphium perfoliatum L. as a renewable resource for biogas production: A review. Ind. Crops Prod. 2015, 63, 362–372. [Google Scholar] [CrossRef]
- Jablonowski, N.D.; Kollmann, T.; Nabel, M.; Damm, T.; Klose, H.; Müller, M.; Bläsing, M.; Seebold, S.; Krafft, S.; Kuperjans, I. Valorization of Sida (Sida hermaphrodita) biomass for multiple energy purposes. Gcb Bioenergy 2017, 9, 202–214. [Google Scholar] [CrossRef] [Green Version]
- Van Tassel, D.L.; Albrecht, K.A.; Bever, J.D.; Boe, A.A.; Brandvain, Y.; Crews, T.E.; Gansberger, M.; Gerstberger, P.; González-Paleo, L.; Hulke, B.S.; et al. Accelerating Silphium domestication: An opportunity to develop new crop ideotypes and breeding strategies informed by multiple disciplines. Crop Sci. 2017, 57, 1274–1284. [Google Scholar] [CrossRef] [Green Version]
- Wever, C.; Höller, M.; Becker, L.; Biertümpfel, A.; Köhler, J.; van Inghelandt, D.; Westhoff, P.; Pude, R.; Pestsova, E. Towards high-biomass yielding bioenergy crop Silphium perfoliatum L.: Phenotypic and genotypic evaluation of five cultivated populations. Biomass Bioenergy 2019, 124, 102–113. [Google Scholar] [CrossRef]
- Lemmon, Z.H.; Reem, N.T.; Dalrymple, J.; Soyk, S.; Swartwood, K.E.; Rodriguez-Leal, D.; Van Eck, J.; Lippman, Z.B. Rapid improvement of domestication traits in an orphan crop by genome editing. Nat. Plants 2018, 4, 766–770. [Google Scholar] [CrossRef]
- Zsogon, A.; Cermak, T.; Naves, E.R.; Notini, M.M.; Edel, K.H.; Weinl, S.; Freschi, L.; Voytas, D.F.; Kudla, J.; Peres, L.E.P. De novo domestication of wild tomato using genome editing. Nat. Biotechnol. 2018, 36, 1211–1216. [Google Scholar] [CrossRef] [Green Version]
- Eshed, Y.; Lippman, Z.B. Revolutions in agriculture chart a course for targeted breeding of old and new crops. Science 2019, 366, eaax0025. [Google Scholar] [CrossRef]
- Fernie, A.R.; Yan, J. De Novo Domestication: An Alternative Route toward New Crops for the Future. Mol. Plant 2019, 12, 615–631. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wever, C.; Tassel, D.L.V.; Pude, R. Third-Generation Biomass Crops in the New Era of De Novo Domestication. Agronomy 2020, 10, 1322. https://doi.org/10.3390/agronomy10091322
Wever C, Tassel DLV, Pude R. Third-Generation Biomass Crops in the New Era of De Novo Domestication. Agronomy. 2020; 10(9):1322. https://doi.org/10.3390/agronomy10091322
Chicago/Turabian StyleWever, Christian, David L. Van Tassel, and Ralf Pude. 2020. "Third-Generation Biomass Crops in the New Era of De Novo Domestication" Agronomy 10, no. 9: 1322. https://doi.org/10.3390/agronomy10091322
APA StyleWever, C., Tassel, D. L. V., & Pude, R. (2020). Third-Generation Biomass Crops in the New Era of De Novo Domestication. Agronomy, 10(9), 1322. https://doi.org/10.3390/agronomy10091322