Fertilizer Application Levels in Potato Crops and the Diagnosis and Recommendation Integrated System (DRIS)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site, Soil, and Climate
2.2. Crop Management, Treatments, and Measurements
2.3. Calculated Parameters
3. Results
3.1. Agata Cultivated in Unaí-MG
3.2. Atlantic Cultivated in Unaí-MG
3.3. Agata Cultivated in Mucugê-BA
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, L.; Um, T.-H.; Ma, M.-M.; Zhang, R.-F.; Sun, Q.-H.; Xu, Y.-W. Nutritional evaluation of different cultivars of potatoes (Solanum tuberosum L.) from China by grey relational analysis (GRA) and its application in potato steamed bread making. J. Integr. Agric. 2019, 18, 231–245. [Google Scholar] [CrossRef] [Green Version]
- Wijesinha-Bettoni, R.; Mouillé, B. The contribution of potatoes to global food security, nutrition and healthy diets. Am. J. Potato Res. 2019, 96, 139–149. [Google Scholar] [CrossRef]
- Jia, L.; Chen, Y.; Qin, Y.; Liang, R.; Cui, S.; Ma, Z.; Fan, M. Potato yield gaps across the rainfed Yin-mountain Hilly Area of China. J. Integr. Agric. 2018, 17, 2418–2425. [Google Scholar] [CrossRef]
- Li, Q.; Li, H.; Zhang, L.; Zhang, S.; Chen, Y. Mulching improves yield and water-use efficiency of potato cropping in China: A meta-analysis. Field Crop. Res. 2018, 221, 50–60. [Google Scholar] [CrossRef]
- Umar, I.A.; Yusuf, M.A.; Ahmed, M.; Mohammed, M.U.; Adamu, G.K. Soil NPK requirements for Irish potatoes under fadama irrigation management in Rugu Rugu Tudun Wada local government area of Kano State, Nigeria. Int. J. Agric. Environ. Sci. 2016, 1, 1–7. [Google Scholar]
- Shah, S.A.; Mohammad, W.; Shahzadi, S.; Elahi, R.; Ali, A.; Basir, A.; Haroon, A. The effect of foliar application of urea, humic acid and micronutrients on potato crop. Iran. Agric. Res. 2016, 35, 89–94. [Google Scholar]
- Hemmati, A.A.; Mansoori, B. Sufficient application of NPK fertilizers: A practical and efficient strategy in the management of Verticillium wilt of potato var. J. Crop. Prot. 2016, 5, 343–348. [Google Scholar] [CrossRef]
- Gott, R.M.; Aquino, L.A.; Carvalho, A.M.X.; Santos, L.P.D.; Nunes, P.H.M.P.; Coelho, B.S. Índices diagnósticos para interpretação de análise foliar do milho. Rev. Bras. Eng. Agríc. Ambiental. 2014, 18, 1110–1115. [Google Scholar] [CrossRef]
- Camacho, M.A.; Silveira, M.V.S.; Camargo, R.A.; Natale, W. Faixas normais de nutrientes pelos métodos ChM, DRIS e CND e nível crítico pelo método de distribuição normal reduzida para laranjeira-pera. Rev. Bras. Ciênc. Solo 2012, 36, 193–200. [Google Scholar] [CrossRef] [Green Version]
- Souza, H.A.; Rozane, D.E.; Amorim, D.A.; Natale, W. Normas preliminares dris e faixas de Suficiência para goiabeira “Paluma”. Rev. Bras. Frutic. 2013, 35, 282–291. [Google Scholar] [CrossRef] [Green Version]
- Malavolta, E. Manual de Nutrição Mineral de Plantas; Editora Agronômica Ceres: São Paulo, Brazil, 2006; p. 638. [Google Scholar]
- Faquin, V. Diagnose do Estado Nutricional das Plantas. 2002. 77 f. Curso de Pós-Graduação; “Lato Sensu” à Distância. (Fertilidade do Solo e Nutrição de Plantas no Agronegócio)—Fundação de Apoio ao Ensino, Pesquisa e Extensão; Universidade Federal de Lavras: Lavras, Brazil, 2002. [Google Scholar]
- Wadt, P.G.S.; Dias, J.R.M.; Perez, D.V.; Lemos, C.O. Interpretação de índices DRIS para a cultura do cupuaçu. Rev. Bras. Ciênc. Solo 2012, 36, 125–135. [Google Scholar] [CrossRef] [Green Version]
- Gopalasundaram, P.; Bhaskaran, A.; Rakkiyappan, P. Integrated Nutrient Management in Sugarcane. Sugar Tech. 2012, 14, 3–20. [Google Scholar] [CrossRef]
- Dias, J.R.M.; Wadt, P.G.S.; Tucci, C.A.F.; Santos, J.Z.L.; Silva, S.V. Normas DRIS multivariadas para avaliação do estado nutricional de laranjeira ‘Pera’ no estado do Amazonas. Rev. Ciênc. Agron. 2013, 44, 251–259. [Google Scholar] [CrossRef] [Green Version]
- Partelli, F.L.; Dias, J.R.M.; Vieira, H.D.; Wadt, P.G.S.; Paiva Júnior, E. Avaliação nutricional de feijoeiro irrigado pelos métodos cnd, dris e faixas de suficiência. Rev. Bras. Ciênc. Solo 2014, 38, 858–866. [Google Scholar] [CrossRef]
- Santos, E.F.; Donha, R.M.A.; Araújo, C.M.M.; Lavres Junior, J.; Camacho, M.A. Faixas normais de nutrientes em cana-de-açúcar pelos métodos CHM, DRIS e CND e nível crítico pela distribuição normal reduzida. Rev. Bras. Ciênc. Solo 2013, 37, 1651–1658. [Google Scholar] [CrossRef] [Green Version]
- Villaseñor, D.; Prado, R.M.; Silva, G.P.; Carrillo, M.; Durango, W. DRIS norms and limiting nutrients in banana cultivation in the South of Ecuador. J. Plant. Nutr. 2020, 1–12. [Google Scholar] [CrossRef]
- Sema, A.; Maiti, C.S.; Singh, A.K.; Bendangsengla, A. DRIS nutrient norms for pineapple on alfisols of India. J. Plant. Nutr. 2010, 33, 1384–1399. [Google Scholar] [CrossRef]
- Matos, G.S.B.; Fernandes, A.R.; Wadt, P.G.S.; Pina, A.J.A.; Franzini, V.I.; Ramos, H.M.N. The use of DRIS for nutritional diagnosis in oil palm in the state of Pará. Rev. Bras. Cienc. Solo 2017, 41, e0150466. [Google Scholar] [CrossRef]
- Queiroz, A.A.; Luz, J.M.Q.; Oliveira, R.C.; Figueiredo, F.C. Produtividade e estabelecimento de índices DRIS para tubérculos de batata cultivar Ágata. Rev. Ciênc. Agron. 2014, 45, 351–360. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Lu, J.; Yang, H.; Zhang, X.; Luo, C.; Zhao, Y. Resorption of nitrogen, phosphorus and potassium from leaves of lucerne stands of different ages. Plant. Soil. 2014, 383, 301–312. [Google Scholar] [CrossRef]
- Scucuglia, C.L.; Creste, J.E. Diagnosis and recommendation integrated system (DRIS) of tomato in greenhouse. Hortic. Bras. 2014, 32, 200–204. [Google Scholar] [CrossRef] [Green Version]
- Terra, M.M. Nutrição, calagem e adubação. In POMMER, C.V. Uva: Tecnologia de Produção, Pós-Colheita, Mercado; Cinco Continentes: Porto Alegre, Brazil, 2003; pp. 405–476. [Google Scholar]
- Soratto, R.P.; Fernandes, A.M. Phosphorus effects on biomass accumulation and nutrient uptake and removal in two potato cultivars. Agron. J. 2016, 108, 1225–1236. [Google Scholar] [CrossRef] [Green Version]
- EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária. In Manual de Métodos de Análise de Solo, 3rd ed.; Embrapa: Brasília (DF), Brazil, 2017; p. 577. [Google Scholar]
- CFSEMG—Comissão de Fertilidade do Solo do Estado de Minas Gerais. Recomendações Para o Uso de Corretivos e Fertilizantes em Minas Gerais—5ª aproximação; Universidade Federal de Viçosa: Viçosa, Brazil, 1999; p. 359. [Google Scholar]
- Bataglia, O.C.; Furlani, A.M.C.; Teixeira, J.P.F.; Furlani, P.R.; Gallo, J.R. Métodos de Análise Química de Plantas; Boletim Técnico No. 78; Instituto Agronômico: Campinas, Brazil, 1983; p. 48.
- Beaufils, E.R. Diagnosis and Recommendation Integrated System (DRIS): A General Scheme for Experimentation and Calibration Based on Principles Developed from Research in Plant Nutrition; Soil science bulletin, L; University of Natal: Pietermararitzburg, South Africa, 1973; p. 132. [Google Scholar]
- Barbosa, D.H.S.G.; Vieira, H.D.; Partelli, F.L.; Souza, R.M. Estabelecimento de normas DRIS e diagnóstico nutricional do cafeeiro arábica na região noroeste do Estado do Rio de Janeiro. Cienc. Rural. 2006, 36, 1717–1722. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Singh, S. DRIS Norms and their Field Validation in Nagpur Mandarin. J. Plant Nutr. 2008, 31, 1091–1107. [Google Scholar] [CrossRef]
- Fernandes, A.M.; Soratto, R.P.; Pilon, C. Soil phosphorus increases dry matter and nutrient accumulation and allocation in potato cultivars. Am. J. Potato Res. 2015, 92, 117–127. [Google Scholar] [CrossRef]
- Lana, R.M.Q.; Oliveira, S.A.; Lana, A.M.Q.; Faria, M.V. Levantamento do estado nutricional de plantas de Coffea arabica L. pelo DRIS, na região do alto paranaíba—Minas Gerais. Rev. Bras. Cienc. Solo 2010, 34, 147–1156. [Google Scholar] [CrossRef] [Green Version]
- Freiberger, M.B.; Guerrini, I.A.; Galetti, G.; Fernandes, D.M.; Corrêa, G.C. Crescimento inicial e nutrição de cedro (Cedrela fissilis vell.) em função de doses de nitrogênio. Rev. Árvore. 2013, 37, 385–392. [Google Scholar] [CrossRef]
- Wimmer, M.A.; Eichert, T. Review: Mechanisms for boron deficiency-mediated changes in plant water relations. Plant. Sci. 2013, 203, 25–32. [Google Scholar] [CrossRef]
- Gupta, U.; Solanki, H. Impact of boron deficiency on plant growth. Int. J. Bioassays. 2013, 2, 1048–1050. [Google Scholar]
- Kuai, J.; Sun, Y.; Zhou, M.; Zhang, P.; Zuo, Q.; Wu, J.; Zhou, G. The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crop. Res. 2016, 199, 89–98. [Google Scholar] [CrossRef]
- Maity, A.; Sharma, J.; Sarkar, A.; More, A.K.; Pal, R.K. Nutrient imbalance indices are closely related with susceptibility of pomegranate to bacterial blight disease. Sci. Hort. 2016, 211, 79–86. [Google Scholar] [CrossRef]
- Matos, A.T.D.; Gariglio, H.A.D.A.; Lo Monaco, P.A. Deslocamento miscível de cátions provenientes da vinhaça em colunas de solo. Rev. Bras. Eng. Agríc. Ambient. 2013, 17, 743–749. [Google Scholar] [CrossRef] [Green Version]
- Marschner, P. Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: London, UK, 2012; p. 651. [Google Scholar]
- El-Hadidi, E.M.; El-Dissoky, R.A.; AbdElhafez, A.A.H. Foliar calcium and magnesium application effect on potato crop grown in clay loam soils. J. Soil Sci. Agric. Eng. 2017, 8, 1–8. [Google Scholar] [CrossRef]
- Job, A.L.G.; Soratto, R.P.; Fernandes, A.M.; Assunção, N.S.; Fernandes, F.M.; Yagi, R. Potassium fertilization for fresh market potato production in tropical soils. Agron. J. 2019, 111, 1–12. [Google Scholar] [CrossRef]
- Anjos, D.C.; Hernandez, F.F.F.; Costa, J.M.C.; Caballero, S.S.U.; Moreira, V.O.G. Fertilidade do solo, crescimento e qualidade de frutos do mamoeiro Tainung sob fertirrigação com potássio. Rev. Ciênc. Agron. 2015, 46, 774–785. [Google Scholar] [CrossRef] [Green Version]
- Carneval, N.H.S.; Marchetti, M.E.; Vieira, M.C.; Carnevali, T.O.; Ramos, D.D. Eficiência nutricional de mudas de Stryphnodendron polyphyllum em função de nitrogênio e fósforo. Ciênc. Florest. 2016, 26, 449–461. [Google Scholar] [CrossRef] [Green Version]
- Koch, M.; Busse, M.; Naumann, M.; Jákli, B.; Smit, I.; Cakmak, I.; Hermans, C.; Pawelzik, E. Differential effects of varied potassium and magnesium nutrition on production and partitioning of photoassimilates in potato plants. Physiol. Plant. 2019, 166, 921–935. [Google Scholar] [CrossRef] [Green Version]
- Felix, K.C.S.; Silva, C.L.; Oliveira, W.J.; Mariano, R.L.R.; Souza, E.B. Calcium-mediated reduction of soft rot disease in Chinese cabbage. Eur. J. Plant. Pathol. 2016, 147, 73–84. [Google Scholar] [CrossRef]
- Khlaif, H.M.; Wreikat, B.I. The relationship of potato bacterial soft rot disease with reduced sugar content of potato tubers and calcium. Jordan J. Agric. Sci. 2018, 14, 81–90. [Google Scholar]
- Devaux, A.; Kromann, P.; Ortiz, O. Potatoes for sustainable global food security. Potato Res. 2014, 57, 185–199. [Google Scholar] [CrossRef]
- Andrivon, D. Potato facing global challenges: How, how much, how well? Potato Res. 2017, 60, 389–400. [Google Scholar] [CrossRef]
- Frąckowiak, K.; Potarzycki, J.; Grzebisz, W.; Szczepaniak, W. Potato nutritional status at the onset of tuberization—A yield prediction tool. Plant. Soil Environ. 2020, 66, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Anschütz, U.; Becker, D.; Shabala, S. Going beyond nutrition: Regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. J. Plant. Physiol. 2014, 171, 670–687. [Google Scholar] [CrossRef] [PubMed]
- Benito, B.; Haro, R.; Amtmann, A. The twins K+ and Na+ in plants. J. Plant. Physiol. 2014, 171, 723–731. [Google Scholar] [CrossRef] [PubMed]
- Grzebisz, W.; Szczepaniak, W.; Bocianowski, J. Potassium fertilization as a driver of sustainable management of nitrogen in potato (Solanum tuberosum L.). Field Crop. Res. 2020, 254, 1–13. [Google Scholar] [CrossRef]
- Sardans, J.; Peñuelas, J. Potassium: A neglected nutrient in global change. Glob. Ecol. Biogeogr. 2015, 24, 261–275. [Google Scholar] [CrossRef] [Green Version]
- Szabò, I.; Spetea, C. Impact of the ion transportome of chloroplasts on the optimization of photosynthesis. J. Exp. Bot. 2017, 68, 3115–3128. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.S.; Feng, C.P.; Deng, Y. Effect of potassium on nitrate removal from groundwater in agricultural waste-based heterotrophic denitrification system. Sci. Total Environ. 2020, 703, 134830. [Google Scholar] [CrossRef]
- Souza, E.F.C.; Soratto, R.P.; Sandaña, P.; Venterea, R.T.; Rosen, C.J. Split application of stabilized ammonium nitrate improved potato yield and nitrogen-use efficiency with reduced application rate in tropical sandy soils. Field Crop. Res. 2020, 254, e107847. [Google Scholar] [CrossRef]
- Ramakrishna, A.; Bailey, J.S.; Kirchhof, G. A preliminary diagnosis and recommendation integrated system (DRIS) model for diagnosing the nutrient status of sweet potato (Ipomoea batatas). Plant. Soil. 2009, 316, 107–116. [Google Scholar] [CrossRef]
- Grzebisz, W.; Potarzycki, J. The in-season nitrogen concentration in the potato tuber as the yield driver. Agron. J. 2019, 112, 1287–1308. [Google Scholar] [CrossRef]
- Xu, S.J.; Fan, X.-Y.; Wang, L.-L.; Zhang, X.-F.; An, L.-Z. The patterns of nitrogen and phosphorus stoichiometry across communities along altitudinal gradients in Qilian Mountains, China. Biochem. Syst. Ecol. 2015, 62, 58–65. [Google Scholar] [CrossRef]
- Grzebisz, W. Crop response to magnesium fertilization as affected by nitrogen supply. Plant. Soil. 2013, 368, 23–39. [Google Scholar] [CrossRef]
- Nachtigall, G.R.; Nogueirol, R.C.; Alleoni, L.R.F. Formas de cobre em solos de vinhedos em função do pH e da adição de cama-de-frango. Pesq. Agropec. Bras. 2007, 42, 427–434. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Assimilação de Nutrientes. In Fisiologia Vegetal; Taiz, L., Zeiger, E., Eds.; Artmed: Porto Alegre, Brazil, 2013; p. 918. [Google Scholar]
- Huber, D.M.; Jones, J.B. The role of magnesium in plant disease. Plant. Soil. 2013, 368, 73–85. [Google Scholar] [CrossRef]
Soil Characteristics | Mucugê-BA (Agata) | Unaí-MG (Agata) | Unaí-MG (Atlantic) |
---|---|---|---|
Water pH value | 5.7 | 5.2 | 5.3 |
P (mg dm−3) | 11.7 | 14.5 | 17.0 |
K (cmolc dm−3) | 0.21 | 0.22 | 0.23 |
Ca (cmolc dm−3) | 1.3 | 2.9 | 3.2 |
Mg (cmolc dm−3) | 0.4 | 1.1 | 0.9 |
H + Al (cmolc dm−3) | 1.8 | 3.5 | 3.6 |
Cation exchange capacity (cmolc dm−3) | 3.7 | 7.7 | 7.9 |
Base saturation (%) | 51.9 | 54.6 | 54.4 |
DRIS Indices of High Productivity Groups | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nutrient (kg ha−1) | N | P | K | Ca | Mg | S | B | Cu | Fe | Mn | Zn | IBN |
N120 | −1.26 | 2.73 | −2.85 | −0.05 | −5.97 | −2.36 | −9.81 | 4.35 | 13.47 | 3.90 | −2.15 | 48.87 |
K110 | 2.32 | −7.67 | −0.28 | −4.57 | 1.86 | −2.77 | 9.39 | 6.64 | −12.30 | 8.79 | −1.42 | 58.03 |
K220 | 2.54 | 2.55 | −1.12 | −12.94 | 2.58 | 3.94 | 9.18 | −0.82 | −1.76 | −0.99 | −3.15 | 41.56 |
K70 | 1.66 | −8.28 | −1.63 | 5.22 | 15.51 | −2.86 | 6.57 | −12.07 | −8.20 | 3.23 | 0.86 | 66.08 |
N30 | −7.07 | 1.14 | 0.63 | 12.48 | −6.18 | −3.48 | −1.20 | 14.79 | 8.80 | −13.65 | −6.25 | 75.67 |
N70 | −4.27 | 8.22 | 1.20 | 7.35 | −3.39 | 6.18 | −6.07 | 6.35 | 2.49 | −1.65 | −16.42 | 63.57 |
K450 | 3.56 | 7.22 | 3.04 | −6.34 | −1.38 | −0.92 | −6.85 | 9.21 | −1.08 | −4.33 | −2.13 | 46.06 |
K0 | 0.27 | −12.70 | −12.66 | 6.40 | 15.90 | −1.96 | 16.17 | −16.04 | −1.78 | −1.83 | 8.23 | 93.94 |
N280 | −5.02 | −4.54 | −1.89 | 0.17 | −5.65 | 3.28 | −19.81 | 4.77 | 14.33 | 15.15 | −0.79 | 75.40 |
P600 | 5.02 | 8.37 | 4.26 | −5.16 | −7.75 | 2.19 | −5.19 | −8.87 | −9.02 | 2.73 | 13.42 | 71.98 |
N0 | −8.89 | 1.80 | 3.18 | 6.95 | −5.58 | 0.00 | −1.49 | 13.97 | 7.34 | −11.30 | −5.97 | 66.48 |
P900 | 7.54 | 7.43 | 4.31 | −5.18 | −0.61 | −7.25 | 8.46 | −11.93 | −7.02 | −6.57 | 10.81 | 77.11 |
65.40 | ||||||||||||
DRIS Indices of Low Productivity Groups | ||||||||||||
P0 | 9.96 | −25.79 | 15.52 | −15.94 | −6.29 | 12.22 | −3.70 | −16.10 | −0.94 | 22.93 | 8.12 | 137.50 |
P150 | 10.96 | −36.69 | 16.35 | −14.62 | −3.11 | 33.91 | −4.47 | −6.20 | −7.20 | 4.76 | 6.33 | 144.59 |
P300 | 9.87 | −34.79 | 19.53 | −15.17 | −1.04 | 10.66 | −8.68 | −8.11 | 0.35 | 9.84 | 17.55 | 135.59 |
139.23 |
DRIS Indices of High Productivity Groups | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nutrient (kg ha−1) | N | P | K | Ca | Mg | S | B | Cu | Fe | Mn | Zn | IBN |
N120 | 7.52 | 1.04 | 8.89 | −0.61 | −14.25 | 3.41 | −3.11 | −4.44 | −6.25 | 8.04 | −0.25 | 57.83 |
P600 | −8.02 | −2.64 | 3.29 | 2.08 | 6.04 | −5.03 | 5.46 | −1.77 | 12.67 | −12.13 | 0.05 | 59.18 |
K110 | 10.28 | −7.08 | −10.00 | −1.09 | 1.50 | −2.02 | −3.75 | 12.33 | −5.40 | 2.84 | 2.40 | 58.68 |
P300 | −13.90 | −4.36 | 1.35 | 2.28 | 8.72 | −3.25 | 8.91 | 0.18 | 4.92 | −3.95 | −0.92 | 52.73 |
N280 | 15.74 | 12.60 | 10.43 | −10.41 | −11.19 | −2.65 | 0.80 | −2379 | −4.40 | 22.14 | −9.27 | 123.41 |
N70 | −4.53 | 2.99 | 6.83 | −2.03 | −12.63 | −4.11 | −5.59 | −0.95 | 9.86 | 8.53 | 1.63 | 59.68 |
P900 | −3.92 | 16.38 | 4.28 | 14.90 | 9.85 | −13.75 | −1.05 | −5.07 | −6.40 | −15.00 | −0.21 | 90.80 |
K220 | 0.13 | 1.62 | −10.03 | −4.87 | −2.73 | 4.39 | −20.33 | 9.99 | 8.36 | 5.53 | 7.93 | 75.90 |
K0 | 1.37 | −7.14 | −10.51 | 2.13 | 8.91 | 10.26 | 9.44 | 1.91 | −13.47 | −2.89 | −0.02 | 68.04 |
K70 | 3.18 | −3.03 | −7.51 | −4.47 | 6.55 | 11.21 | 4.87 | 1.46 | −7.94 | −2.09 | −2.23 | 54.53 |
70.08 | ||||||||||||
DRIS Indices of Low Productivity Groups | ||||||||||||
N30 | 12.78 | −46.28 | 3.09 | −3.70 | −16.56 | 11.56 | 8.83 | 15.36 | 16.34 | −5.38 | 3.94 | 143.84 |
P150 | −11.54 | −2.45 | 4.81 | 9.54 | 10.48 | −12.68 | 3.67 | 0.72 | 4.48 | −4.34 | −2.71 | 67.42 |
N0 | 11.06 | −47.97 | 10.08 | 1.41 | −19.05 | 24.35 | 21.92 | 14.19 | 7.00 | −23.03 | 0.04 | 180.10 |
P0 | −11.83 | −2.72 | 6.34 | 14.28 | 14.28 | 0.47 | 13.25 | −14.42 | −9.67 | −9.77 | −0.22 | 97.25 |
K450 | 1.51 | −10.58 | 2.67 | −6.54 | −14.59 | −10.00 | −20.06 | 19.02 | 11.94 | 18.42 | 8.19 | 123.51 |
122.42 |
DRIS Indices of High Productivity Groups | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Nutrient (kg ha−1) | N | P | K | Ca | Mg | S | B | Cu | Fe | Mn | Zn | IBN |
P600 | −1.34 | −4.57 | 3.79 | 4.91 | 9.91 | 1.44 | 5.31 | −10.67 | 3.28 | −7.15 | −4.90 | 57.26 |
P300 | 1.22 | 0.81 | −2.48 | 4.76 | 8.52 | 9.10 | −0.88 | −5.32 | −9.33 | −4.47 | −1.93 | 48.82 |
K110 | −9.04 | −6.11 | −0.34 | 4.31 | 5.09 | 1.13 | −12.76 | 1.68 | 14.94 | −6.97 | 8.08 | 70.45 |
N280 | 17.75 | 8.47 | −1.28 | −12.01 | −15.76 | −11.88 | 7.08 | 1.02 | −1.74 | 4.77 | 3.58 | 85.34 |
N120 | 9.72 | 11.54 | 2.20 | −13.00 | −16.13 | −12.35 | 9.64 | 11.59 | −1.57 | −0.72 | −0.93 | 89.39 |
N70 | −7.56 | 4.19 | 2.30 | −11.46 | −20.97 | −1.98 | 15.68 | 13.06 | 4.60 | 12.49 | −10.35 | 104.65 |
K220 | −6.74 | 1.14 | −0.86 | 9.02 | 9.11 | −4.67 | −17.01 | 3.89 | 1.57 | −0.55 | 5.08 | 59.65 |
P900 | 1.61 | −2.90 | 7.50 | 5.75 | 2.12 | 4.51 | −3.42 | −8.60 | 2.41 | −1.56 | −7.44 | 47.82 |
P150 | 1.99 | −5.09 | −5.27 | 1.76 | 10.55 | 7.00 | −5.74 | −1.27 | −9.59 | 2.98 | 2.67 | 53.91 |
68.59 | ||||||||||||
DRIS Indices of Low Productivity Groups | ||||||||||||
P0 | 1.59 | −11.82 | −11.30 | 2.42 | 12.30 | 3.41 | −18.82 | 9.87 | −15.38 | 8.45 | 19.28 | 114.63 |
K0 | −7.38 | −9.02 | −5.17 | 9.52 | 5.09 | 5.26 | 0.28 | −9.47 | 13.76 | −10.19 | 7.32 | 82.46 |
K70 | −7.75 | −15.20 | −5,50 | 10.23 | 8.32 | 6.81 | 2.28 | −18.50 | 23.60 | −9.67 | 5.39 | 113.26 |
N30 | −12.64 | −6.28 | 533 | −6.88 | −18.57 | −1.36 | 20.61 | 8.69 | −12.00 | 17.20 | 5.90 | 115.45 |
K450 | −0.49 | −6.29 | 3.08 | −4.64 | −2.16 | 3.15 | −15.89 | 5.02 | 9.83 | −1.25 | 9.63 | 61.44 |
N0 | −9.47 | 0.66 | −3.44 | −9.17 | −20.53 | −1.69 | 14.79 | 0.93 | −5.17 | 17.64 | 15.44 | 98.94 |
97.70 |
Agata, Unaí-MG | Atlantic, Unaí-MG | Agata, Mucugê-BA | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
High Productivity | Low Productivity | High Productivity | Low Productivity | High Productivity | Low Productivity | ||||||
Cu | −9.95 | P | −32.42 | Mg | −10.20 | P | −22.00 | Mg | −17.62 | B | −17.35 |
P | −8.30 | Ca | −15.24 | K | −9.51 | B | −20.06 | Ca | −12.15 | Cu | −13.99 |
B | −7.20 | Cu | −10.14 | N | −7.59 | Mg | −16.73 | B | −7.96 | Mg | −13.75 |
Ca | −6.84 | B | −5.62 | Fe | −7.31 | Cu | −14.42 | S | −7.72 | Fe | −10.85 |
Fe | −5.88 | Fe | −4.07 | Cu | −7.20 | N | −11.68 | Cu | −6.46 | P | −9.72 |
Mn | −5.76 | Mg | −3.48 | B | −6.77 | S | −11.34 | N | −6.17 | N | −7.55 |
N | −5.30 | N | 0.00 | S | −5.13 | Mn | −10.63 | Fe | −5.56 | Mn | −7.04 |
Zn | −4.78 | K | 0.00 | P | −4.85 | Fe | −9.67 | Zn | −5.11 | Ca | −6.90 |
Mg | −4.56 | S | 0.00 | Mn | −4.67 | Ca | −5.12 | P | −4.67 | K | −6.35 |
K | −3.40 | Mn | 0.00 | Ca | −3.91 | Zn | −1.46 | Mn | −3.57 | S | −1.52 |
S | −3.09 | Zn | 0.00 | Zn | −2.57 | K | 000 | K | −2.05 | Zn | 0.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, R.C.; da Silva, J.R.R.; Lana, R.M.Q.; de Azevedo Pereira, A.I.; Castoldi, R.; de Camargo, R.; Luz, J.M.Q. Fertilizer Application Levels in Potato Crops and the Diagnosis and Recommendation Integrated System (DRIS). Agronomy 2021, 11, 51. https://doi.org/10.3390/agronomy11010051
Oliveira RC, da Silva JRR, Lana RMQ, de Azevedo Pereira AI, Castoldi R, de Camargo R, Luz JMQ. Fertilizer Application Levels in Potato Crops and the Diagnosis and Recommendation Integrated System (DRIS). Agronomy. 2021; 11(1):51. https://doi.org/10.3390/agronomy11010051
Chicago/Turabian StyleOliveira, Roberta Camargos, João Ricardo Rodrigues da Silva, Regina Maria Quintão Lana, Alexandre Igor de Azevedo Pereira, Renata Castoldi, Reginaldo de Camargo, and José Magno Queiroz Luz. 2021. "Fertilizer Application Levels in Potato Crops and the Diagnosis and Recommendation Integrated System (DRIS)" Agronomy 11, no. 1: 51. https://doi.org/10.3390/agronomy11010051