Potassium: A Vital Macronutrient in Potato Production—A Review
Abstract
:1. Introduction
2. Soil K Availability and Its Effect on Potato Yield
3. The Effect of K Application on Potato
3.1. The Effect of K on Potato Growth and Tuber Yield
3.2. The Effects of K on Tuber Size
3.3. The Effect of K on Tuber Quality
4. Potassium Source and Rate on Potatoes
4.1. Effects of K Source
4.2. Effects of K Rate
5. Application Method
6. Concerns on K Recommendation
7. Future Perspective
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- FAOSTAT. 2018. Available online: http://www.fao.org/faostat/en (accessed on 8 March 2018).
- Rajiv Kawar, P.G. Enriched Potato for Mitigating Hidden Hunger. In Biofortification of Food Crops; Springer: New Delhi, India, 2016; pp. 433–457. [Google Scholar]
- Larkin, R.P. Incorporating soil health management practices into viable potato cropping systems. In Proceedings of the Northeast Potato Technology Forum Conspectus, Fredericton, NB, Canada, 15–16 March 2017; pp. 46–47. [Google Scholar]
- Navarre, R.; Pavek, M.J. The Potato: Botany, Production and Uses; CABI: Boston, MA, USA, 2014. [Google Scholar]
- Zaheer, K.; Akhtar, M.H. Potato production, usage, and nutrition—A review. Crit. Rev. Food Sci. Nutr. 2016, 56, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Camire, M.E.; Kubow, S.; Donnelly, D.J. Potatoes and human health. Crit. Rev. Food Sci. Nutr. 2009, 49, 823–840. [Google Scholar] [CrossRef]
- Ezekiel, R.; Singh, N.; Sharma, S.; Kaur, A. Beneficial phytochemicals in potato—A review. Food Res. Int. 2013, 50, 487–496. [Google Scholar] [CrossRef]
- Rytel, E.; Lisińska, G.; Tajner-Czopek, A. Toxic compound levels in potatoes are dependent on cultivation methods. Acta Aliment. 2013, 42, 308–317. [Google Scholar] [CrossRef]
- Czajkowski, R.; Perombelon, M.C.; van Veen, J.A.; van der Wolf, J.M. Control of blackleg and tuber soft rot of potato caused by Pectobacterium and Dickeya species: A review. Plant Pathol. 2011, 60, 999–1013. [Google Scholar] [CrossRef]
- Delleman, J.; Mulder, A.; Turkensteen, L.J. Potato Diseases. Diseases, Pests and Defects; NIVAP: De Haag, The Netherlands, 2005; p. 280. [Google Scholar]
- Harris, P.M. Mineral Nutrition. In The Potato Crop; Springer: Dordrecht, The Netherlands, 1992; pp. 162–213. [Google Scholar]
- Oosterhuis, D.M.; Loka, D.A.; Kawakami, E.M.; Pettigrew, W.T. The physiology of potassium in crop production. Adv. Agron. 2014, 126, 203–233. [Google Scholar]
- Anschütz, U.; Becker, D.; Shabala, S. Going beyond nutrition: Regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment. J. Plant Physiol. 2014, 171, 670–687. [Google Scholar] [CrossRef]
- Oddo, E.; Inzerillo, S.; La Bella, F.; Grisafi, F.; Salleo, S.; Nardini, A. Short-term effects of potassium fertilization on the hydraulic conductance of Laurus nobilis L. Tree Physiol. 2011, 31, 131–138. [Google Scholar] [CrossRef] [Green Version]
- Jordan-Meille, L.; Pellerin, S. Leaf area establishment of a maize (Zea mays L.) field crop under potassium deficiency. Plant Soil 2004, 265, 75–92. [Google Scholar] [CrossRef]
- Song, W.; Xue, R.; Song, Y.; Bi, Y.; Liang, Z.; Meng, L.; Dong, C.; Wang, C.; Liu, G.; Dong, J.; et al. Differential response of first-order lateral root elongation to low potassium involves nitric oxide in two tobacco cultivars. J. Plant Growth Regul. 2018, 37, 114–127. [Google Scholar] [CrossRef]
- Hu, W.; Coomer, T.D.; Loka, D.A.; Oosterhuis, D.M.; Zhou, Z. Potassium deficiency affects the carbon-nitrogen balance in cotton leaves. Plant Physiol. Biochem. 2017, 115, 408–417. [Google Scholar] [CrossRef] [Green Version]
- Raschke, K. Simultaneous requirement of carbon dioxide and abscisic acid for stomatal closing in Xanthium strumarium L. Planta 1975, 125, 243–259. [Google Scholar] [CrossRef]
- Tränkner, M.; Tavakol, E.; Jákli, B. Functioning of potassium and magnesium in photosynthesis, photosynthate translocation and photoprotection. Physiol. Plant 2018, 163, 414–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jákli, B.; Tavakol, E.; Tränkner, M.; Senbayram, M.; Dittert, K. Quantitative limitations to photosynthesis in K deficient sunflower and their implications on water-use efficiency. J. Plant Physiol. 2017, 209, 20–30. [Google Scholar] [CrossRef]
- Britzke, D.; Da Silva, L.S.; Moterle, D.F.; dos Santos Rheinheimer, D.; Bortoluzzi, E.C. A study of potassium dynamics and mineralogy in soils from subtropical Brazilian lowlands. J. Soils Sediments 2012, 12, 185–197. [Google Scholar] [CrossRef]
- Römheld, V.; Kirkby, E.A. Research on potassium in agriculture: Needs and prospects. Plant soil. 2010, 335, 155–180. [Google Scholar] [CrossRef]
- Karam, F.; Massaad, R.; Skaf, S.; Breidy, J.; Rouphael, Y. Potato response to potassium application rates and timing under semi-arid conditions. Adv. Hortic. Sci. 2011, 265–268. [Google Scholar]
- Khan, M.Z.; Akhtar, M.E.; Mahmood-ul-Hassan, M.; Mahmood, M.M.; Safdar, M.N. Potato tuber yield and quality as affected by rates and sources of potassium fertilizer. J. Plant Nutr. 2012, 35, 664–677. [Google Scholar] [CrossRef]
- Li, S.; Duan, Y.; Guo, T.; Zhang, P.; He, P.; Johnston, A.; Shcherbakov, A. Potassium management in potato production in Northwest region of China. Field Crops Res. 2015, 174, 48–54. [Google Scholar] [CrossRef]
- Mengel, K.; Kirkby, E.A. Principles of Plant Nutrition; Kluwer Academic Publishers; Springer: Dordrecht, The Netherlands, 2001; p. 849. [Google Scholar]
- Rosen, C.J.; Errebhi, M.; Wang, W. Testing petiole sap for nitrate and potassium: A comparison of several analytical procedures. HortScience 1996, 31, 1173–1176. [Google Scholar] [CrossRef] [Green Version]
- Allison, M.F.; Fowler, J.H.; Allen, E.J. Responses of potato (Solanum tuberosum) to potassium fertilizers. J. Agric. Sci. 2001, 136, 407–426. [Google Scholar] [CrossRef] [Green Version]
- Malakouti, M.J.; Mirsolaymani, M.Y. Response of potato to potassium in the calcareous soils of Iran. In Proceedings of the Soil and Water Institute (SWRI) and the International Potash Institute (IPI) on K Availability of Soils of West Asia and North Africa-Status and Perspectives, Tehran, Iran, 19–23 June 1993; pp. 249–260. [Google Scholar]
- Grewal, J.S.; Singh, S.N. Effect of potassium nutrition on frost damage and yield of potato plants on alluvial soils of the Punjab (India). Plant Soil. 1980, 57, 105–110. [Google Scholar] [CrossRef]
- Sandaña, P.; Orena, S.; Rojas, J.S.; Kalazich, J.; Uribe, M. Critical Value of Soil Potassium for Potato Crops in Volcanic Soils. J. Soil Sci. Plant Nutr. 2020, 20, 1171–1177. [Google Scholar] [CrossRef]
- Pauletti, V.; Menarin, E. Timing, sources and rates of potassium fertilizer application for potato. Sci. Agrar. 2004, 5, 15–20. [Google Scholar]
- Mohr, R.M.; Tomasiewicz, D.J. Effect of rate and timing of potassium chloride application on the yield and quality of potato (Solanum tuberosum L. ‘Russet Burbank’). Can. J. Plant Sci. 2012, 92, 783–794. [Google Scholar] [CrossRef]
- Haile, W. Response of Irish potato (Solanum tuberosum) to the application of potassium at acidic soils of Chencha, Southern Ethiopia. Int. J. Agric. Biol. 2011, 13, 595–598. [Google Scholar]
- Silva, H.R.F.; Fontes, P.C.R. Potassium fertilization and its residual effect on productivity and quality of potato tubers. Pesqui Agropecu Bras. 2016, 51, 842–848. [Google Scholar] [CrossRef] [Green Version]
- da Costa Mello, S.; Pierce, F.J.; Tonhati, R.; Almeida, G.S.; Neto, D.D.; Pavuluri, K. Potato response to polyhalite as a potassium source fertilizer in Brazil: Yield and quality. HortScience 2018, 53, 373–379. [Google Scholar] [CrossRef] [Green Version]
- Davenport, J.R.; Bentley, E.M. Does potassium fertilizer form, source, and time of application influence potato yield and quality in the Columbia Basin? Am. Potato J. 2001, 78, 311–318. [Google Scholar] [CrossRef]
- Moinuddin, S.K.; Bansal, S.K. Growth, yield, and economics of potato in relation to progressive application of potassium fertilizer. J. Plant Nutr. 2005, 28, 183–200. [Google Scholar] [CrossRef]
- Karam, F.; Rouphael, Y.; Lahoud, R.; Breidi, J.; Colla, G. Influence of genotypes and potassium application rates on yield and potassium use efficiency of potato. J. Agron. 2009, 8, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Panique, E.; Kelling, K.A.; Schulte, E.E.; Hero, D.E.; Stevenson, W.R.; James, R.V. Potassium rate and source effects on potato yield, quality, and disease interaction. Am. Potato J. 1997, 74, 379–398. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, X.; Kang, W.; Chen, Y.; Fan, M. Possibility of recommending potassium application rates based on a rapid detection of the potato petiole K status with a portable K ion meter. Am. Potato J. 2019, 96, 48–54. [Google Scholar] [CrossRef]
- Malvi, U.R. Interaction of micronutrients with major nutrients with special reference to potassium. Karnataka J. Agric. Sci. 2011, 24, 106–109. [Google Scholar]
- Bishwoyog, B.; Swarnima, K.C. Effect of potassium on quality and yield of potato tubers—A review. SSRG-IJAES 2016, 3, 9–14. [Google Scholar]
- Schilling, G.; Eißner, H.; Schmidt, L.; Peiter, E. Yield formation of five crop species under water shortage and differential potassium supply. J. Soil Sci. Plant Nutr. 2016, 179, 234–243. [Google Scholar] [CrossRef]
- Soratto, R.P.; Job, A.L.; Fernandes, A.M.; Assunção, N.S.; Fernandes, F.M. Biomass accumulation and nutritional requirements of potato as affected by potassium supply. J. Soil Sci. Plant Nutr. 2020, 20, 1051–1066. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, X.; Wang, Q.; Zhang, H.; Li, M.; Song, B.; Zhao, Z. Effects of potassium fertilization on potato starch physicochemical properties. Int. J. Biol. Macromol. 2018, 117, 467–472. [Google Scholar] [CrossRef] [PubMed]
- Bogucka, B.; Elżbieta, T. Effect of nitrogen and potassium fertilization on mineral and amino acid content of colored flesh potato cultivar Blue Congo. J. Plant Nutr. 2018, 41, 856–866. [Google Scholar] [CrossRef]
- Shunka, E.; Chindi, A.; Gebremedhin, W.G.; Seid, E.; Tessema, L. Determination of optimum nitrogen and potassium levels for potato production in central high lands of Ethiopia. Open Agric. 2017, 2, 189–194. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.; Pandey, S.K.; Singh, B.P.; Singh, S.V.; Kumar, D. Influence of source and time of potassium application on potato growth, yield, economics and crisp quality. Potato Res. 2007, 50, 1–13. [Google Scholar] [CrossRef]
- Abd El-Latif, K.M.; Osman, E.A.M.; Abdullah, R.; Abd El-Kader, N. Response of potato plants to potassium fertilizer rates and soil moisture deficit. Adv. Appl. Sci. Res. 2011, 2, 388–397. [Google Scholar]
- Trehan, S.P.; Roy, S.K.; Sharma, R.C. Potato variety differences in nutrient deficiency symptoms and responses to NPK. Better Crops Int. Potash Phosphate Inst. Can. (PPIC) 2001, 15, 18–21. [Google Scholar]
- Al-Moshileh, A.M.; Errebi, M.A. November. Effect of various potassium sulfate rates on growth, yield and quality of potato grown under sandy soil and arid conditions. In Proceedings of the IPI Regional Workshop on Potassium and Fertigation Development in West Asia and North Africa, Rabat, Morocco, 24–28 November 2004; pp. 24–28. [Google Scholar]
- Khan, M.Z.; Akhtar, M.E.; Safdar, M.N.; Mahmood, M.M.; Ahmad, S.; Ahmed, N. Effect of source and level of potash on yield and quality of potato tubers. Pak. J. Bot. 2010, 42, 3137–3145. [Google Scholar]
- Lakshmi, D.V.; Padmaja, G.; Rao, R.C. Effect of levels of nitrogen and potassium on soil available nutrient status and yield of potato (Solanum tuberosum L.). Indian J. Agric. Res. 2012, 46, 36–41. [Google Scholar]
- El-Gamal, A.M. Effect of potassium level on potato yield and quality. J. Agric. Sci. Mansoura Univ. 1985, 10, 1473–1476. [Google Scholar]
- Humadi, F.M. Influence of potassium rates on growth and yield of potato. Iraq J. Agric. Sci. Zanco (Iraq) 1986, 4, 69–75. [Google Scholar]
- Malik, G.C.; Ghosh, D.C. Effect of fertility level, plant density and variety on growth and productivity of potato. Potato Glob. Res. Dev. 2002, 2, 866–871. [Google Scholar]
- Chapman, K.S.R.; Sparrow, L.A.; Hardman, P.R.; Wright, D.N.; Thorp, J.R.A. Potassium nutrition of Kennebec and Russet Burbank potatoes in Tasmania: Effect of soil and fertiliser potassium on yield, petiole and tuber potassium concentrations, and tuber quality. Aust. J. Exp. Agric. 1992, 32, 521–527. [Google Scholar] [CrossRef]
- Kolbe, H.; Müller, K.; Olteanu, G.; Gorea, T. Effects of nitrogen, phosphorus and potassium fertilizer treatments on weight loss and changes in chemical composition of potato tubers stored at 4 C. Potato Res. 1995, 38, 97–107. [Google Scholar] [CrossRef]
- Nandekar, D.N. Effect of seedling tuber size and fertilizer levels on growth, yield and economics of potato production. Potato J. 2005, 32, 71–73. [Google Scholar]
- Tawfik, A.A. Potassium and calcium nutrition improves potato production in drip-irrigated sandy soil. Afr. Crop Sci. J. 2001, 9, 147–155. [Google Scholar] [CrossRef]
- Adhikari, B.H.; Karki, K.B. Effect of potassium on potato tuber production in acid soils of Malepatan, Pokhara. J. Nep. Agric. Res. 2006, 7, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Westermann, D.T. Nutritional requirements of potatoes. Am. Potato J. 2005, 82, 301–307. [Google Scholar] [CrossRef]
- Singh, S.K.; Lal, S.S. Effect of potassium nutrition on potato yield, quality and nutrient use efficiency under varied levels of nitrogen application. Potato J. 2012, 39, 155–165. [Google Scholar]
- Storey, R.M.J.; Davies, H.V. Tuber quality. In The Potato Crop; Springer: Dordrecht, The Netherlands, 1992; pp. 507–569. [Google Scholar]
- Olanya, O.M.; Larkin, R.P.; Halloran, J.M.; He, Z. Relationships of crop and soil management systems to meteorological variables and potato diseases on a Russet Burbank cultivar. J. Agric. Meteorol. 2014, 70, 91–104. [Google Scholar] [CrossRef] [Green Version]
- Zörb, C.; Senbayram, M.; Peiter, E. Potassium in agriculture–status and perspectives. J. Plant Physiol. 2014, 171, 656–669. [Google Scholar] [CrossRef] [PubMed]
- Kavvadias, V.; Paschalidis, C.; Akrivos, G.; Petropoulos, D. Nitrogen and potassium fertilization responses of potato (Solanum tuberosum) cv. Spunta. Commun. Soil Sci. Plant Anal. 2012, 43, 176–189. [Google Scholar] [CrossRef]
- Westermann, D.T.; Tindall, T.A.; James, D.W.; Hurst, R.L. Nitrogen and potassium fertilization of potatoes: Yield and specific gravity. Am. Potato J. 1994, 71, 417–431. [Google Scholar] [CrossRef]
- Quadros, D.A.D.; Iung, M.C.; Ferreira, S.M.R.; Freitas, R.J.S.D. Chemical composition of potato tubers for processing, grown in different levels and sources of potassium. Food Sci. Technol. 2009, 29, 316–323. [Google Scholar] [CrossRef] [Green Version]
- Perrenoud, S. Fertilizing for Higher Yield Potato; IPI Bulletin8; International Potash Institute: Berne, Switzerland, 1993. [Google Scholar]
- AbdelGadir, A.H.; Errebhi, M.A.; Al-Sarhan, H.M.; Ibrahim, M. The effect of different levels of additional potassium on yield and industrial qualities of potato (Solanum tuberosum L.) in an irrigated arid region. Am. Potato J. 2003, 80, 219–222. [Google Scholar] [CrossRef]
- Koch, M.; Busse, M.; Naumann, M.; Jákli, B.; Smit, I.; Cakmak, I.; Hermans, C.; Pawelzik, E. Differential effects of varied potassium and magnesium nutrition on production and partitioning of photoassimilates in potato plants. Physiol. Plant. 2019, 166, 921–935. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hannan, A.; Arif, M.; Ranjha, A.M.; Abid, A.; Fan, X.H.; Li, Y.C. Using soil potassium adsorption and yield response models to determine potassium fertilizer rates for potato crop on a calcareous soil in Pakistan. Commun. Soil Sci. Plant Anal. 2011, 42, 645–655. [Google Scholar] [CrossRef]
- Cummings, G.A.; Wilcox, G.E. Effect of potassium on quality factors—fruits and vegetables. Role Potassium Agric. 1968, 243–267. [Google Scholar] [CrossRef]
- Ebert, G. Potassium nutrition and its effect on quality and post harvest properties of potato. In Proceedings of the International Symposium on Potassium Role and Benefits in Improving Nutrient Management for Food Production, Quality and Reduced Environmental Damages, Orissa, India, 5–7 November 2009; Volume 1, pp. 637–638. [Google Scholar]
- Wibowo, C.; Wijaya, K.; Sumartono, G.H.; Pawelzik, E. Effect of potassium level on quality traits of Indonesian potato tubers. Asia Pacific Journal of Sustainable Agriculture. Food Energy 2014, 2, 11–16. [Google Scholar]
- Koch, M.; Naumann, M.; Pawelzik, E.; Gransee, A.; Thiel, H. The importance of nutrient management for potato production Part I: Plant nutrition and yield. Potato Res. 2020, 63, 97–119. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.C.; Sud, K.C. Potassium Management for Yield and Quality of Potato; International Potash Institute: Basel, Switzerland, 2001; pp. 363–381. [Google Scholar]
- Young, B.K. Potassium Movement and Uptake as Affected by Potassium Source and Placement. Master’s Thesis, Auburn University, Auburn, AL, USA, 2009. [Google Scholar]
- McDole, R.E. Potassium fertilizer trials with potatoes on coarse-textured soils in southeastern Idaho. Am. Potato J. 1978, 55, 161–170. [Google Scholar] [CrossRef]
- Manolov, I.; Neshev, N.; Chalova, V. Tuber quality parameters of potato varieties depend on potassium fertilizer rate and source. Agric. Agric. Sci. Procedia 2016, 10, 63–66. [Google Scholar] [CrossRef] [Green Version]
- Dkhil, B.B.; Denden, M.; Aboud, S. Foliar potassium fertilization and its effect on growth, yield and quality of potato grown under loam-sandy soil and semi-arid conditions. Int. J. Agric. Res. 2011, 6, 593–600. [Google Scholar] [CrossRef] [Green Version]
- Moussa, S.; Shama, M. Mitigation the adverse effects of irrigation water salinity on potato crop using potassium silicate foliar application. Middle East J. Appl. Sci. 2019, 9, 804–819. [Google Scholar]
- Shaaban, M.M.; Abou El-Nour, E.Z.A. Macro and micro-nutrients concentrations and uptake by maize seedlings irrigated with fresh or saline water as affected by K-silicate foliar fertilization. Am. J. Plant Physiol. 2014, 9, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Salim, B.B.M.; Abd El-Gawad, H.G.; Abou El-Yazied, A. Effect of foliar spray of different potassium sources on growth, yield and mineral composition of potato (Solanum tuberosum L.). Middle East J. Appl. Sci. 2014, 4, 1197–1204. [Google Scholar]
- Lobato, M.C.; Daleo, G.R.; Andreu, A.B.; Olivieri, F.P. Cell wall reinforcement in the potato tuber periderm after crop treatment with potassium phosphite. Potato Res. 2018, 61, 19–29. [Google Scholar] [CrossRef]
- Keren-Keiserman, A.; Baghel, R.S.; Fogelman, E.; Faingold, I.; Zig, U.; Yermiyahu, U.; Ginzberg, I. Effects of polyhalite fertilization on skin quality of potato tuber. Front. Plant Sci. 2019, 10, 1379. [Google Scholar] [CrossRef]
- Job, A.L.; Soratto, R.P.; Fernandes, A.M.; Assunção, N.S.; Fernandes, F.M.; Yagi, R. Potassium fertilization for fresh market potato production in tropical soils. J. Agron. 2019, 111, 3351–3362. [Google Scholar] [CrossRef]
- Singh, V.N.; Singh, S.P. Influence of split application of potassium on qualitative attributes of potato. J. Indian Potato Assoc. 1996, 23, 72–74. [Google Scholar]
- Rosen, C.J.; Kelling, K.A.; Stark, J.C.; Porter, G.A. Optimizing phosphorus fertilizer management in potato production. Am. J. Potato Res. 2014, 91, 145–160. [Google Scholar] [CrossRef]
- Kang, W.; Fan, M.; Ma, Z.; Shi, X.; Zheng, H. Luxury absorption of potassium by potato plants. Am. J. Potato Res. 2014, 91, 573–578. [Google Scholar] [CrossRef]
- Locascio, S.J.; Bartz, J.A.; Weingartner, D.P. Calcium and potassium fertilization of potatoes grown in North Florida I. Effects on potato yield and tissue Ca and K concentrations. Am. Potato J. 1992, 69, 95–104. [Google Scholar] [CrossRef]
- Asmaa, R.M.; Hafez, M.M. Increasing productivity of potato plants (Solanum tubersom L.) by using potassium fertilizer and humic acid application. Int. J. Acad. Res. 2010, 2, 83–88. [Google Scholar]
- Zelelew, D.Z.; Ghebreslassie, B.M. Response of potato varieties to potassium levels in Hamelmalo area, Eritrea. J. Plant Stud. 2016, 5. [Google Scholar] [CrossRef] [Green Version]
- Trehan, S.P.; Claassen, N. External K requirement of young plants of potato, sugar beet and wheat in flowing solution culture resulting from different internal requirements and uptake efficiency. Potato Res. 1998, 41, 229–237. [Google Scholar] [CrossRef]
- Stark, J.C.; Westermann, D.T.; Hopkins, B. Nutrient Management Guidelines for Russet Burbank Potatoes; University of Idaho: Moscow, ID, USA, 2004. [Google Scholar]
- Horneck, D.; Rosen, C. Measuring nutrient accumulation rates of potatoes—Tools for better management. Better Crops 2008, 92, 4–6. [Google Scholar]
- Chettri, M.; Mondal, S.S.; Roy, B. Influence of potassium and sulphur with or without FYM on growth, productivity and disease index of potato in soils of West Bengal. J. Indian Potato Assoc. 2002, 29, 61–65. [Google Scholar]
- Westermann, D.T.; Tindall, T.A. Potassium fertilization of Russet Burbank potatoes. Better Crops Plant Food. 1998, 82, 8–12. [Google Scholar]
- Trehan, S.P. Nutrient management by exploiting genetic diversity of potato—A review. Potato J. 2005, 32. [Google Scholar] [CrossRef] [Green Version]
- Gupta, A.; Saxena, M.C. Evaluation of leaf analysis as a guide to nitrogen and phosphorus fertilization of potato (Solanum tuberosum L.). Plant Soil 1976, 4, 597–605. [Google Scholar] [CrossRef]
- Sharma, U.C.; Arora, B.R. Critical nutrient ranges for potassium in potato leaves and petioles. J. Hortic. Sci. 1989, 64, 47–51. [Google Scholar] [CrossRef]
- Walworth, J.L.; Muniz, J.E. A compendium of tissue nutrient concentrations for field-grown potatoes. Am. Potato J. 1993, 70, 579–597. [Google Scholar] [CrossRef]
- Dow, A.I. Critical Nutrient Ranges in Northwest Crops; WREP-Western Region Extension Publication-Cooperative Extension Service (USA); Washington State University: Pullman, WA, USA, 1980; Volume 43. [Google Scholar]
- Fontes, P.C.R.; Reis, R.A., Jr.; Pereira, P.R.G. Critical potassium concentration and potassium/calcium plus magnesium ratio in potato petioles associated with maximum tuber yields. J. Plant Nutr. 1996, 19, 657–667. [Google Scholar] [CrossRef]
- Westermann, D.T.; Tindall, T.A. Potassium diagnostic criteria for potato plants. Better Crops 2000, 84, 6–8. [Google Scholar]
- Pettigrew, W.T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant. 2008, 133, 670–681. [Google Scholar] [CrossRef]
- Lalitha, M.; Dhakshinamoorthy, M. Forms of soil potassium—A review. Agric. Rev. 2014, 35, 64–68. [Google Scholar] [CrossRef]
- Donald, L.; Sparks, D.L. Potassium dynamics in soils. In Advances in Soil Science; Stewart, B.A., Ed.; Springer-Verlag New York Inc.: New York, NY, USA, 1987; Volume 6, pp. 1–62. [Google Scholar]
Location; Date | Available K of Soil (mg kg−1 Soil) | Soil pH; Texture; and Organic Matter (%) | Method of Irrigation | K Source | Application Rate (kg ha−1); and Time | Summary of K Effects on Potato Growth and Productivity | References |
---|---|---|---|---|---|---|---|
Inner Mongolia, China 2014–2016 | 108–168 | 8.1; Sandy loam; 1.53 | Drip irrigation | K2SO4 | 75–720; Applied before cultivation | The best application range of K2SO4 fertilizer was 300 kg ha−1. This application rate noticeably improved the tuber yield of potato by 57%, compared to the non-fertilized crops. | Shi et al. [41] |
Three site at Sao Paulo State, Brazil 2012–2013 | 27 62 144 | 5.6; Clay; 3.2 5; Clay; 3.5 5; Clay; 2.7 | Sprinkler irrigation | KCl | 84–167; Applied in the planting furrow and/or side-dressed at hilling | In the soil with 62 mg kg−1 K availability, K application reduced Magnesium uptake by plants, but this effect was not observed in soils with 144 mg kg−1 K availability. Manganese uptake and removal increased under K fertilization in soils with 27 and 144 mg kg−1 K availability. In most cases, application of 167 kg ha−1 KCl had the highest tuber yield. Tuber yield improvements in response to this fertilizer were about 22–50%. | Soratto et al. [45] |
Hubei, China 2017 | 116.95 | 7; ND; 1.06 | ND | K2SO4 | 135–405; 50% of K2SO4 fertilizer was applied at sowing time and 50% during tuber formation period | 270 kg ha−1 of K2SO4 fertilizer caused the highest increment in tuber and starch yields of potato. Further enhancement of K2SO4 fertilizer up to 405 kg ha−1 did not improve the tuber yield and starch production in potato crops. | Zhang et al. [46] |
Tomaszkowo, Poland 2015 | 180 | 4.9; Clay; ND | ND | K2SO4 | 120–180; Applied before cultivation | Enhancing application rates of K2SO4 improved the micronutrients contents in potato plants. All application rates did not increase the tuber yield of potato significantly. However, this fertilizer reduced the ascorbic acid concentrations in harvested tubers. | Bogucka and Elżbieta [47] |
Holeta, Ethiopia 2014–2015 | ND | ND; ND; 1.5 | ND | KNO3 | 34.5–103.5; Applied before cultivation | KNO3 treatments considerably improved the number of tubers and general growth of potato plants. Among the application rates, 103.5 kg ha−1 had the highest tuber yield in cultivated plants. | Shunka et al. [48] |
Modipuram, India 2003–2005 | 136.9 | 6.8; Sandy loam; 0.29 | Furrow | K2SO4KNO3KCl | 124.5; 100% at planting; 50% at planting + 50% in-season at earthing up; and 50% at planting + 50% in-season at earthing up + one foliar spray of 2% K fertilizer at 70 days after planting | K2SO4 and KCl application as a fertilizer exposed better effect than KNO3 on increasing number of tubers and tuber yield per unit of area. There were no noticeable differences between the different application methods of K fertilizers. | Kumar et al. [49] |
Location; Date | Available K of Soil (mg kg−1 Soil) | Soil pH; Texture; and Organic Matter (%) | K Source | Application Rate (kg ha−1); and Time | Summary of K Effects on Potato Tuber Quality | References |
---|---|---|---|---|---|---|
Manitoba, Canada; 2006–2008 | 164 | 5.8–6.5; Sandy loam, Loam, Loamy sand, Loamclay Loam; 1.9–3.5 | KCl | 31–250; Split applied | Results demonstrated the reduction in specific gravity with KCl application. | Mohr and Tomasiewicz [33] |
Inner Mongolia, Gansu, Qinghai and Ningxia Provinces, China; 2003–2013 | 122.2 | 8.2; Sandy loam, loam, clay loam; 0.8 | KCl | 90; Before planting | Application of KCl increased mean tuber weight, 0.4% tuber starch content and reduced 0.2% tuber sugar content compared to control. | Li et al. [25] |
Islamabad, Pakistan; 2005–2006 | 82 | 8.2; Coarse loamy; 0.86 | K2SO4 KCl | 150 and 225; Before planting | Results indicated that dry matter and specific gravity were more affected by K2SO4 than KCl. Moreover, specific gravity, dry matter, vitamin C, starch contents, chips color and taste were improved with two sources of K. | Khan et al. [24] |
Washington, USA; 1997–1999 | 135 154 86 | ND | K2SO4 KCl | 392, 364 and 448; Before planting and in-season | The results of this study strongly claimed that K source does not affect tuber specific gravity. | Davenport and Bentley [37] |
Wadi Addawasir region-Saudi Arabia; 2000–2002 | 215 278 | 7.4–7.9; Loamy sand; ND | K2SO4 | 25–100; Before planting | Results showed that there were no statistical differences between the levels of K on specific gravity and frying quality. | AbdelGadir et al. [72] |
Utah, USA; 1988–1989 | 59 77 | 7.7–7.9; Silt loam; 1.2 | K2SO4 KCl | 112–448; Before planting | Both K sources decreased specific gravity. Also, this study showed that N or K fertilizers can be applied according to their respective soil test concentration and the crop’s requirement, generally without consideration of K sources. | Westermann et al. [69] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Torabian, S.; Farhangi-Abriz, S.; Qin, R.; Noulas, C.; Sathuvalli, V.; Charlton, B.; Loka, D.A. Potassium: A Vital Macronutrient in Potato Production—A Review. Agronomy 2021, 11, 543. https://doi.org/10.3390/agronomy11030543
Torabian S, Farhangi-Abriz S, Qin R, Noulas C, Sathuvalli V, Charlton B, Loka DA. Potassium: A Vital Macronutrient in Potato Production—A Review. Agronomy. 2021; 11(3):543. https://doi.org/10.3390/agronomy11030543
Chicago/Turabian StyleTorabian, Shahram, Salar Farhangi-Abriz, Ruijun Qin, Christos Noulas, Vidyasagar Sathuvalli, Brian Charlton, and Dimitra A. Loka. 2021. "Potassium: A Vital Macronutrient in Potato Production—A Review" Agronomy 11, no. 3: 543. https://doi.org/10.3390/agronomy11030543
APA StyleTorabian, S., Farhangi-Abriz, S., Qin, R., Noulas, C., Sathuvalli, V., Charlton, B., & Loka, D. A. (2021). Potassium: A Vital Macronutrient in Potato Production—A Review. Agronomy, 11(3), 543. https://doi.org/10.3390/agronomy11030543