Modelling Agroforestry’s Contributions to People—A Review of Available Models
Abstract
:1. Introduction
Objective
2. Agroforestry Ecosystem Properties Contributing to People
2.1. Groups of Nature’s Contributions to People (NCP)
2.2. Linking NCP Groups with Agroforestry System Properties
2.2.1. Biodiversity
2.2.2. Air Quality
2.2.3. Climate Regulation
2.2.4. Water Regulation
2.2.5. Surface Protection
2.2.6. Production
2.2.7. Socio Cultural Contributions
2.3. Stakeholders for Modelling NCPs of Agroforestry Systems
3. Assessing Nature’s Contribution to People with Existing Models
3.1. Existing Agroforestry Models
3.2. Assessment of NCP Relevant Ecosystem Properties by Existing Agroforestry Models
3.2.1. Biodiversity
3.2.2. Air Quality
3.2.3. Climate Regulation
3.2.4. Water Regulation
3.2.5. Surface Protection
3.2.6. Production
3.2.7. Socio Cultural Contributions
3.3. Summarizing the Models Abilities to Assess NCP Related Ecosystem Properties
4. Towards a Multi-Effect Modelling Framework for Agroforestry
4.1. Technical and Conceptual Requirements
4.1.1. Accessibility and Model Longevity
4.1.2. Portability
4.1.3. Interoperability, Modularity and Simplicity
4.2. Conceptual and Technical Issues of the Existing Agroforestry Models
4.3. Do We Need to Start the Multi-Effect Framework from Scratch?
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Group | Variable | Hi-sAFe | WaNuLCAS | SCUAF | APSIM | EPIC | SBELTS | WIMISA | COMP8 | DynACof | Hypar | Yield-SAFE | ICBM/N | ESAT-A |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Biodiversity | Plant species diversity | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
Biodiversity | Animal species diversity | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Biodiversity | Landscape diversity | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Air quality | Aerosol mixing model | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Air quality | Wind profile | 0% | 0% | 0% | 100% | 100% | 100% | 100% | 0% | 0% | 0% | 0% | 0% | 0% |
Air quality | Wind erosion | 0% | 0% | 0% | 0% | 100% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 100% |
Climate | Plant C storage | 100% | 100% | 50% | 100% | 100% | 0% | 0% | 0% | 100% | 50% | 50% | 0% | 0% |
Climate | Soil C storage | 0% | 0% | 0% | 100% | 100% | 0% | 0% | 0% | 0% | 0% | 100% | 0% | 50% |
Climate | CO2 emission | 0% | 0% | 0% | 100% | 100% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Climate | N2O emission | 0% | 0% | 0% | 100% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Climate | CH4 emission | 0% | 0% | 0% | 100% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Climate | Albedo | 0% | 0% | 0% | 100% | 0% | 0% | 0% | 0% | 100% | 0% | 0% | 0% | 0% |
Climate | long-wave radiation | 0% | 0% | 0% | 100% | 0% | 0% | 0% | 0% | 100% | 0% | 0% | 0% | 0% |
Climate | ET (incl. moisture recycling) | 100% | 50% | 0% | 100% | 100% | 100% | 100% | 0% | 100% | 100% | 0% | 0% | 0% |
Climate | Surface roughness | 0% | 0% | 0% | 50% | 50% | 100% | 50% | 0% | 0% | 0% | 0% | 0% | 0% |
Climate | Cloud formation | 0% | 0% | 0% | 50% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Water | Groundwater recharge | 100% | 100% | 0% | 100% | 100% | 100% | 0% | 100% | 0% | 100% | 100% | 0% | 100% |
Water | N leaching | 100% | 100% | 0% | 100% | 100% | 100% | 0% | 100% | 0% | 100% | 100% | 0% | 100% |
Water | P export to water bodies | 100% | 100% | 0% | 100% | 0% | 0% | 0% | 100% | 0% | 100% | 100% | 0% | 100% |
Water | Water supply to plants/Competetion | 100% | 100% | 100% | 100% | 100% | 0% | 100% | 100% | 100% | 100% | 100% | 0% | 0% |
Water | N supply to plants/Competition | 100% | 100% | 100% | 100% | 100% | 0% | 0% | 100% | 100% | 100% | 100% | 0% | 0% |
Surface protection | Water erosion | 0% | 100% | 100% | 100% | 100% | 0% | 0% | 0% | 0% | 0% | 100% | 0% | 100% |
Surface protection | Surface friction | 0% | 0% | 0% | 0% | 100% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Surface protection | Vegetation cover | 100% | 100% | 100% | 100% | 0% | 0% | 100% | 0% | 0% | 100% | 100% | 100% | 100% |
Surface protection | Preferential flow path infiltration | 0% | 50% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Productivity | Harvested crop yield | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 0% | 100% | 100% | 100% | 0% | 0% |
Productivity | Timber production | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 100% | 0% | 0% |
Productivity | Wood production | 100% | 100% | 100% | 0% | 0% | 0% | 0% | 0% | 100% | 100% | 0% | 0% | 0% |
Productivity | Fruit production | 0% | 0% | 100% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% |
Productivity | Single crop | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 0% | 100% | 100% | 100% | 0% | 0% |
Productivity | Multiple crops | 100% | 100% | 0% | 100% | 100% | 0% | 0% | 0% | 0% | 0% | 100% | 0% | 0% |
Productivity | Specific trees | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 0% | 100% | 100% | 100% | 0% | 0% |
Productivity | Multiple trees | 100% | 100% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 100% | 0% | 0% |
References
- Díaz, S.; Pascual, U.; Stenseke, M.; Martín-López, B.; Watson, R.T.; Molnár, Z.; Hill, R.; Chan, K.M.A.; Baste, I.A.; Brauman, K.A.; et al. Assessing Nature’s Contributions to People. Science 2018, 359, 270–272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brauman, K.A.; Garibaldi, L.A.; Polasky, S.; Aumeeruddy-Thomas, Y.; Brancalion, P.H.S.; DeClerck, F.; Jacob, U.; Mastrangelo, M.E.; Nkongolo, N.V.; Palang, H.; et al. Global Trends in Nature’s Contributions to People. Proc. Natl. Acad. Sci. USA 2020, 117, 32799–32805. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Pearce, B.D.; Wolfe, M.S. Reconciling Productivity with Protection of the Environment: Is Temperate Agroforestry the Answer? Renew. Agric. Food Syst. 2013, 28, 80–92. [Google Scholar] [CrossRef]
- Cardinael, R.; Chevallier, T.; Cambou, A.; Béral, C.; Barthès, B.G.; Dupraz, C.; Durand, C.; Kouakoua, E.; Chenu, C. Increased Soil Organic Carbon Stocks under Agroforestry: A Survey of Six Different Sites in France. Agric. Ecosyst. Environ. 2017, 236, 243–255. [Google Scholar] [CrossRef] [Green Version]
- Pavlidis, G.; Tsihrintzis, V.A. Environmental Benefits and Control of Pollution to Surface Water and Groundwater by Agroforestry Systems: A Review. Water Resour. Manag. 2018, 32, 1–29. [Google Scholar] [CrossRef]
- Udawatta, R.P.; Rankoth, L.; Jose, S. Agroforestry and Biodiversity. Sustainability 2019, 11, 2879. [Google Scholar] [CrossRef] [Green Version]
- Marsden, C.; Martin-Chave, A.; Cortet, J.; Hedde, M.; Capowiez, Y. How Agroforestry Systems Influence Soil Fauna and Their Functions—A Review. Plant Soil 2020, 453, 29–44. [Google Scholar] [CrossRef]
- Mead, R.; Willey, R. The Concept of a Land Equivalent Ratio and Advantages in Yields from Intercropping. Exp. Agric. 1980, 16, 217–228. [Google Scholar] [CrossRef] [Green Version]
- Seserman, D.-M.; Freese, D.; Swieter, A.; Langhof, M.; Veste, M. Trade-Off between Energy Wood and Grain Production in Temperate Alley-Cropping Systems: An Empirical and Simulation-Based Derivation of Land Equivalent Ratio. Agriculture 2019, 9, 147. [Google Scholar] [CrossRef] [Green Version]
- Graves, A.; Burgess, P.; Liagre, F.; Dupraz, C. Farmer Perception of Benefits, Constraints and Opportunities for Silvoarable Systems: Preliminary Insights from Bedfordshire, England. Outlook Agric. 2017, 46, 74–83. [Google Scholar] [CrossRef]
- Luedeling, E.; Kindt, R.; Huth, N.I.; Koenig, K. Agroforestry Systems in a Changing Climate—Challenges in Projecting Future Performance. Sustain. Chall. 2014, 6, 1–7. [Google Scholar] [CrossRef] [Green Version]
- McAdam, J.H.; Burgess, P.J.; Graves, A.R.; Rigueiro-Rodríguez, A.; Mosquera-Losada, M.R. Classifications and Functions of Agroforestry Systems in Europe. In Agroforestry in Europe; Rigueiro-Rodróguez, A., McAdam, J., Mosquera-Losada, M.R., Eds.; Advances in Agroforestry; Springer: Dordrecht, The Netherlands, 2008; Volume 6, pp. 21–41. ISBN 978-1-4020-8271-9. [Google Scholar]
- Giannitsopoulos, M.L.; Graves, A.R.; Burgess, P.J.; Crous-Duran, J.; Moreno, G.; Herzog, F.; Palma, J.H.N.; Kay, S.; García de Jalón, S. Whole System Valuation of Arable, Agroforestry and Tree-Only Systems at Three Case Study Sites in Europe. J. Clean. Prod. 2020, 269, 122283. [Google Scholar] [CrossRef]
- Luedeling, E.; Smethurst, P.J.; Baudron, F.; Bayala, J.; Huth, N.I.; van Noordwijk, M.; Ong, C.K.; Mulia, R.; Lusiana, B.; Muthuri, C.; et al. Field-Scale Modeling of Tree–Crop Interactions: Challenges and Development Needs. Agric. Syst. 2016, 142, 51–69. [Google Scholar] [CrossRef]
- Tsonkova, P.; Quinkenstein, A.; Böhm, C.; Freese, D.; Schaller, E. Ecosystem Services Assessment Tool for Agroforestry (ESAT-A): An Approach to Assess Selected Ecosystem Services Provided by Alley Cropping Systems. Ecol. Indic. 2014, 45, 285–299. [Google Scholar] [CrossRef]
- Chaplin-Kramer, R.; Sharp, R.P.; Weil, C.; Bennett, E.M.; Pascual, U.; Arkema, K.K.; Brauman, K.A.; Bryant, B.P.; Guerry, A.D.; Haddad, N.M.; et al. Global Modeling of Nature’s Contributions to People. Science 2019, 366, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Van der Werf, W.; Keesman, K.; Burgess, P.; Graves, A.; Pilbeam, D.; Incoll, L.D.; Metselaar, K.; Mayus, M.; Stappers, R.; van Keulen, H.; et al. Yield-SAFE: A Parameter-Sparse, Process-Based Dynamic Model for Predicting Resource Capture, Growth, and Production in Agroforestry Systems. Ecol. Eng. 2007, 29, 419–433. [Google Scholar] [CrossRef] [Green Version]
- Van Noordwijk, M.; Lusiana, B. WaNuLCAS, a model of water, nutrient and light capture in agroforestry systems. In Agroforestry for Sustainable Land-Use Fundamental Research and Modelling with Emphasis on Temperate and Mediterranean Applications; Springer: Dordrecht, The Netherlands, 1999; pp. 217–242. [Google Scholar]
- Fagerholm, N.; Torralba, M.; Burgess, P.J.; Plieninger, T. A Systematic Map of Ecosystem Services Assessments around European Agroforestry. Ecol. Indic. 2016, 62, 47–65. [Google Scholar] [CrossRef]
- Leroy, C.; Sabatier, S.; Wahyuni, N.S.; Barczi, J.-F.; Dauzat, J.; Laurans, M.; Auclair, D. Virtual Trees and Light Capture: A Method for Optimizing Agroforestry Stand Design. Agrofor. Syst. 2009, 77, 37–47. [Google Scholar] [CrossRef]
- Weiler, M.; McDonnell, J. Virtual Experiments: A New Approach for Improving Process Conceptualization in Hillslope Hydrology. J. Hydrol. 2004, 285, 3–18. [Google Scholar] [CrossRef] [Green Version]
- Coutts, S.R.; Yokomizo, H. Meta-Models as a Straightforward Approach to the Sensitivity Analysis of Complex Models. Popul. Ecol. 2014, 56, 7–19. [Google Scholar] [CrossRef]
- Franke, J.A.; Müller, C.; Elliott, J.; Ruane, A.C.; Jägermeyr, J.; Snyder, A.; Dury, M.; Falloon, P.D.; Folberth, C.; François, L.; et al. The GGCMI Phase 2 Emulators: Global Gridded Crop Model Responses to Changes in CO2, Temperature, Water, and Nitrogen (Version 1.0). Geosci. Model Dev. 2020, 13, 3995–4018. [Google Scholar] [CrossRef]
- Elbakidze, M.; Surová, D.; Muñoz-Rojas, J.; Persson, J.-O.; Dawson, L.; Plieninger, T.; Pinto-Correia, T. Perceived Benefits from Agroforestry Landscapes across North-Eastern Europe: What Matters and for Whom? Landsc. Urban Plan. 2021, 209, 104044. [Google Scholar] [CrossRef]
- Staton, T.; Walters, R.; Smith, J.; Breeze, T.; Girling, R. Management to Promote Flowering Understoreys Benefits Natural Enemy Diversity, Aphid Suppression and Income in an Agroforestry System. Agronomy 2021, 11, 651. [Google Scholar] [CrossRef]
- Geske, C. Streuobstwiesen in Hessen—Ein Landschaftselement mit agrarpolitischer und ökonomischer Geschichte. In Jahrbuch Naturschutz in Hessen; Nordhessische Gesellschaft für Naturkunde und Naturwissenschaften (NGNN): Kassel, Germany, 2018; Volume 17. [Google Scholar]
- Yengwe, J.; Amalia, O.; Lungu, O.I.; De Neve, S. Quantifying Nutrient Deposition and Yield Levels of Maize (Zea Mays) under Faidherbia Albida Agroforestry System in Zambia. Eur. J. Agron. 2018, 99, 148–155. [Google Scholar] [CrossRef]
- Tyndall, J.; Colletti, J. Mitigating Swine Odor with Strategically Designed Shelterbelt Systems: A Review. Agrofor. Syst. 2006, 69, 45–65. [Google Scholar] [CrossRef]
- Barwise, Y.; Kumar, P. Designing Vegetation Barriers for Urban Air Pollution Abatement: A Practical Review for Appropriate Plant Species Selection. Npj Clim. Atmos. Sci. 2020, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Pavlidis, G.; Karasali, H.; Tsihrintzis, V.A. Pesticide and Fertilizer Pollution Reduction in Two Alley Cropping Agroforestry Cultivating Systems. Water. Air. Soil Pollut. 2020, 231, 241. [Google Scholar] [CrossRef]
- Schoeneberger, M.; Bentrup, G.; de Gooijer, H.; Soolanayakanahally, R.; Sauer, T.; Brandle, J.; Zhou, X.; Current, D. Branching out: Agroforestry as a Climate Change Mitigation and Adaptation Tool for Agriculture. J. Soil Water Conserv. 2012, 67, 128A–136A. [Google Scholar] [CrossRef] [Green Version]
- Feldhake, C.M. Forage Frost Protection Potential of Conifer Silvopastures. Agric. For. Meteorol. 2002, 112, 123–130. [Google Scholar] [CrossRef]
- Easterling, W. Modelling the Effect of Shelterbelts on Maize Productivity under Climate Change: An Application of the EPIC Model. Agric. Ecosyst. Environ. 1997, 61, 163–176. [Google Scholar] [CrossRef]
- Schmidt, M.; Nendel, C.; Funk, R.; Mitchell, M.G.E.; Lischeid, G. Modeling Yields Response to Shading in the Field-to-Forest Transition Zones in Heterogeneous Landscapes. Agriculture 2019, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Kanzler, M.; Böhm, C.; Mirck, J.; Schmitt, D.; Veste, M. Microclimate Effects on Evaporation and Winter Wheat (Triticum aestivum L.) Yield within a Temperate Agroforestry System. Agrofor. Syst. 2019, 93, 1821–1841. [Google Scholar] [CrossRef]
- Cleugh, H.A. Effects of Windbreaks on Airflow, Microclimates and Crop Yields. Agrofor. Syst. 1998, 41, 30. [Google Scholar]
- Karki, U.; Goodman, M.S. Microclimatic Differences between Young Longleaf-Pine Silvopasture and Open-Pasture. Agrofor. Syst. 2013, 87, 303–310. [Google Scholar] [CrossRef]
- Karki, U.; Goodman, M.S. Microclimatic Differences between Mature Loblolly-Pine Silvopasture and Open-Pasture. Agrofor. Syst. 2015, 89, 319–325. [Google Scholar] [CrossRef]
- Lorenz, K.; Lal, R. Soil Organic Carbon Sequestration in Agroforestry Systems. A Review. Agron. Sustain. Dev. 2014, 34, 443–454. [Google Scholar] [CrossRef] [Green Version]
- Zomer, R.J.; Neufeldt, H.; Xu, J.; Ahrends, A.; Bossio, D.; Trabucco, A.; van Noordwijk, M.; Wang, M. Global Tree Cover and Biomass Carbon on Agricultural Land: The Contribution of Agroforestry to Global and National Carbon Budgets. Sci. Rep. 2016, 6, 29987. [Google Scholar] [CrossRef]
- Mutuo, P.K.; Cadisch, G.; Albrecht, A.; Palm, C.A.; Verchot, L. Potential of Agroforestry for Carbon Sequestration and Mitigation of Greenhouse Gas Emissions from Soils in the Tropics. Nutr. Cycl. Agroecosyst. 2005, 71, 43–54. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Chappell, J.C.; Shi, W.; Cubbage, F.W. Greenhouse Gas Emissions in an Agroforestry System of the Southeastern USA. Nutr. Cycl. Agroecosyst. 2017, 108, 85–100. [Google Scholar] [CrossRef]
- Kwak, J.-H.; Lim, S.-S.; Baah-Acheamfour, M.; Choi, W.-J.; Fatemi, F.; Carlyle, C.N.; Bork, E.W.; Chang, S.X. Introducing Trees to Agricultural Lands Increases Greenhouse Gas Emission during Spring Thaw in Canadian Agroforestry Systems. Sci. Total Environ. 2019, 652, 800–809. [Google Scholar] [CrossRef]
- Keesstra, S.; Geissen, V.; Mosse, K.; Piiranen, S.; Scudiero, E.; Leistra, M.; van Schaik, L. Soil as a Filter for Groundwater Quality. Terr. Syst. 2012, 4, 507–516. [Google Scholar] [CrossRef]
- Harsch, N.; Brandenburg, M.; Klemm, O. Large-Scale Lysimeter Site St. Arnold, Germany: Analysis of 40 Years of Precipitation, Leachate and Evapotranspiration. Hydrol. Earth Syst. Sci. 2009, 13, 305–317. [Google Scholar] [CrossRef] [Green Version]
- Ouyang, Y.; Jin, W.; Grace, J.M.; Obalum, S.E.; Zipperer, W.C.; Huang, X. Estimating Impact of Forest Land on Groundwater Recharge in a Humid Subtropical Watershed of the Lower Mississippi River Alluvial Valley. J. Hydrol. Reg. Stud. 2019, 26, 100631. [Google Scholar] [CrossRef]
- Riedel, T.; Weber, T.K.D. Review: The Influence of Global Change on Europe’s Water Cycle and Groundwater Recharge. Hydrogeol. J. 2020, 28, 1939–1959. [Google Scholar] [CrossRef]
- Das, D.K.; Chaturvedi, O.P. Root Biomass and Distribution of Five Agroforestry Tree Species. Agrofor. Syst. 2008, 74, 223. [Google Scholar] [CrossRef]
- Upson, M.A.; Burgess, P.J. Soil Organic Carbon and Root Distribution in a Temperate Arable Agroforestry System. Plant Soil 2013, 373, 43–58. [Google Scholar] [CrossRef] [Green Version]
- Mugendi, D.N.; Kanyi, M.; Kung’u, J.B.; Wamicha, W.; Mugwe, J.N. The Role of Agroforestry Trees in Intercepting Leached Nitrogen in the Agricultural Systems of the Central Highlands of Kenya. East Afr. Agric. For. J. 2003, 69, 69–79. [Google Scholar] [CrossRef]
- Reyes, F.; Gosme, M.; Wolz, K.J.; Lecomte, I.; Dupraz, C. Alley Cropping Mitigates the Impacts of Climate Change on a Wheat Crop in a Mediterranean Environment: A Biophysical Model-Based Assessment. Agriculture 2021, 11, 356. [Google Scholar] [CrossRef]
- Inurreta-Aguirre, H.D.; Lauri, P.-É.; Dupraz, C.; Gosme, M. Yield Components and Phenology of Durum Wheat in a Mediterranean Alley-Cropping System. Agrofor. Syst. 2018, 92, 961–974. [Google Scholar] [CrossRef]
- Gosme, M.; Dufour, L.; Inurreta Aguirre, H.D.; Dupraz, C. Microclimatic Effect of Agroforestry on Diurnal Temperature Cycle. In Proceedings of the 3rd European Agroforestry Conference (EURAF 2016), Montpellier, France, 23–25 May 2016; p. 466. [Google Scholar]
- Göbel, L.C. Nutrient Response Efficiencies, Leaching Losses and Soil-N Cycling in Temperate Grassland Agroforestry and Open Grassland Management Systems; Georg-August-Universität: Göttingen, Germany, 2020. [Google Scholar]
- Ilstedt, U.; Bargués Tobella, A.; Bazié, H.R.; Bayala, J.; Verbeeten, E.; Nyberg, G.; Sanou, J.; Benegas, L.; Murdiyarso, D.; Laudon, H.; et al. Intermediate Tree Cover Can Maximize Groundwater Recharge in the Seasonally Dry Tropics. Sci. Rep. 2016, 6, 21930. [Google Scholar] [CrossRef] [PubMed]
- Seobi, T.; Anderson, S.H.; Udawatta, R.P.; Gantzer, C.J. Influence of Grass and Agroforestry Buffer Strips on Soil Hydraulic Properties for an Albaqualf. Soil Sci. Soc. Am. J. 2005, 69, 893–901. [Google Scholar] [CrossRef] [Green Version]
- Picchio, R.; Spina, R.; Sirna, A.; Monaco, A.L.; Civitarese, V.; Giudice, A.D.; Suardi, A.; Pari, L. Characterization of Woodchips for Energy from Forestry and Agroforestry Production. Energies 2012, 5, 3803–3816. [Google Scholar] [CrossRef]
- Torralba, M.; Fagerholm, N.; Burgess, P.J.; Moreno, G.; Plieninger, T. Do European Agroforestry Systems Enhance Biodiversity and Ecosystem Services? A Meta-Analysis. Agric. Ecosyst. Environ. 2016, 230, 150–161. [Google Scholar] [CrossRef] [Green Version]
- Van Noordwijk, M.; Tata, H.L.; Xu, J.; Dewi, S.; Minang, P.A. Segregate or Integrate for Multifunctionality and Sustained Change Through Rubber-Based Agroforestry in Indonesia and China. In Agroforestry—The Future of Global Land Use; Nair, P.K.R., Garrity, D., Eds.; Advances in Agroforestry; Springer: Dordrecht, The Netherlands, 2012; Volume 9, pp. 69–104. ISBN 978-94-007-4675-6. [Google Scholar]
- Fagerholm, N.; Oteros-Rozas, E.; Raymond, C.M.; Torralba, M.; Moreno, G.; Plieninger, T. Assessing Linkages between Ecosystem Services, Land-Use and Well-Being in an Agroforestry Landscape Using Public Participation GIS. Appl. Geogr. 2016, 74, 30–46. [Google Scholar] [CrossRef] [Green Version]
- Mosquera-Losada, M.R.; Moreno, G.; Pardini, A.; McAdam, J.H.; Papanastasis, V.; Burgess, P.J.; Lamersdorf, N.; Castro, M.; Liagre, F.; Rigueiro-Rodríguez, A. Past, Present and Future of Agroforestry Systems in Europe. In Agroforestry—The Future of Global Land Use; Nair, P.K.R., Garrity, D., Eds.; Advances in Agroforestry; Springer: Dordrecht, The Netherlands, 2012; Volume 9, pp. 285–312. ISBN 978-94-007-4675-6. [Google Scholar]
- Bieling, C.; Plieninger, T. Recording Manifestations of Cultural Ecosystem Services in the Landscape. Landsc. Res. 2013, 38, 649–667. [Google Scholar] [CrossRef]
- Garrido, F.; Hénault, C.; Gaillard, H.; Germon, J.C. Inhibitory Capacities of Acetylene on Nitrification in Two Agricultural Soils. Soil Biol. Biochem. 2000, 32, 1799–1802. [Google Scholar] [CrossRef]
- Raj, A.; Jhariya, M.K.; Yadav, D.K.; Banerjee, A.; Meena, R.S. Agroforestry: A holistic approach for agricultural sustainability. In Sustainable Agriculture, Forest and Environmental Management; Springer: Singapore, 2019; pp. 101–131. [Google Scholar]
- Isaac, M.E.; Borden, K.A. Nutrient Acquisition Strategies in Agroforestry Systems. Plant Soil 2019, 444, 1–19. [Google Scholar] [CrossRef]
- Meylan, L.; Merot, A.; Gary, C.; Rapidel, B. Combining a Typology and a Conceptual Model of Cropping System to Explore the Diversity of Relationships between Ecosystem Services: The Case of Erosion Control in Coffee-Based Agroforestry Systems in Costa Rica. Agric. Syst. 2013, 118, 52–64. [Google Scholar] [CrossRef]
- Smethurst, P.J.; Huth, N.I.; Masikati, P.; Sileshi, G.W.; Akinnifesi, F.K.; Wilson, J.; Sinclair, F. Accurate Crop Yield Predictions from Modelling Tree-Crop Interactions in Gliricidia-Maize Agroforestry. Agric. Syst. 2017, 155, 70–77. [Google Scholar] [CrossRef] [Green Version]
- Rigueiro-Rodríguez, A.; McAdam, J.; Mosquera-Losada, M.R. Agroforestry in Europe: Current Status and Future Prospects; Springer Science & Business Media B.V.: Amsterdam, The Netherlands, 2008; Volume 6, ISBN 1-4020-8272-X. [Google Scholar]
- Cacho, O.J.; Marshall, G.R.; Milne, M. Smallholder Agroforestry Projects: Potential for Carbon Sequestration and Poverty Alleviation; ESA Working Papers 289093; Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA), FAO: Rome, Italy, 2003; Volume Agricultural Development Economics Division (ESA). [Google Scholar] [CrossRef]
- Anderson, L.S.; Muetzelfeldt, R.I.; Sinclair, F.L. An Integrated Research Strategy for Modelling and Experimentation in Agroforestry. Commonw. For. Rev. 1993, 72, 166–174. [Google Scholar]
- Cardoso, I.M.; Guijt, I.; Franco, F.S.; Carvalho, A.F.; Ferreira Neto, P.S. Continual Learning for Agroforestry System Design: University, NGO and Farmer Partnership in Minas Gerais, Brazil. Agric. Syst. 2001, 69, 235–257. [Google Scholar] [CrossRef]
- Zeng, X.; Li, T.; Chen, C.; Si, Z.; Huang, G.; Guo, P.; Zhuang, X. A Hybrid Land-Water-Environment Model for Identification of Ecological Effect and Risk under Uncertain Meteorological Precipitation in an Agroforestry Ecosystem. Sci. Total Environ. 2018, 633, 1613–1628. [Google Scholar] [CrossRef]
- Keesman, K.J.; Graves, A.; van der Werf, W.; Burgess, P.J.; Palma, J.; Dupraz, C.; Van Keulen, H. A System Identification Approach for Developing and Parameterising an Agroforestry System Model under Constrained Availability of Data. Environ. Model. Softw. 2011, 26, 1540–1553. [Google Scholar] [CrossRef]
- Matthews, R.B.; Hunt, L.A. GUMCAS: A Model Describing the Growth of Cassava (Manihot esculenta L. Crantz). Field Crop. Res. 1994, 36, 69–84. [Google Scholar] [CrossRef]
- Atangana, A.; Khasa, D.; Chang, S.; Degrande, A. Agroforestry Modeling. In Tropical Agroforestry; Springer: Dordrecht, The Netherlands, 2014; pp. 367–373. ISBN 978-94-007-7722-4. [Google Scholar]
- Dupraz, C.; Wolz, K.; Lecomte, I.; Talbot, G.; Vincent, G.; Mulia, R.; Bussière, F.; Ozier-Lafontaine, H.; Andrianarisoa, S.; Jackson, N.; et al. Hi-SAFe: A 3D Agroforestry Model for Integrating Dynamic Tree–Crop Interactions. Sustainability 2019, 11, 2293. [Google Scholar] [CrossRef] [Green Version]
- Young, A.; Menz, K.M.; Muraya, P.; Smith, C. SCUAF-Version 4: A Model to Estimate Soil Changes under Agriculture, Agroforestry and Forestry; Technical Reports 113819; Australian Centre for International Agricultural Research: Canberra, Australia, 1998. [Google Scholar] [CrossRef]
- Huth, N.I.; Carberry, P.S.; Poulton, P.L.; Brennan, L.E.; Keating, B.A. A Framework for Simulating Agroforestry Options for the Low Rainfall Areas of Australia Using APSIM. Eur. J. Agron. 2002, 18, 171–185. [Google Scholar] [CrossRef]
- APSIM Initiative APSIM 7.10 Documentation. Available online: https://www.apsim.info/documentation/model-documentation/ (accessed on 24 August 2021).
- Qi, X.; Mize, C.W.; Batchelor, W.D.; Takle, E.S.; Litvina, I.V. SBELTS: A Model of Soybean Production under Tree Shelter. Agrofor. Syst. 2001, 52, 53–61. [Google Scholar] [CrossRef]
- Mayus, M.; Van Keulen, H.; Stroosnijder, L. A model of tree-crop competition for windbreak systems in the Sahel: Description and evaluation. In Agroforestry for Sustainable Land-Use Fundamental Research and Modelling with Emphasis on Temperate and Mediterranean Applications; Auclair, D., Dupraz, C., Eds.; Forestry Sciences; Springer: Dordrecht, The Netherlands, 1999; Volume 60, pp. 183–201. ISBN 978-90-481-5258-2. [Google Scholar]
- Smethurst, P.J.; Comerford, N.B. Potassium and Phosphorus Uptake by Competing Pine and Grass: Observations and Model Verification. Soil Sci. Soc. Am. J. 1993, 57, 1602–1610. [Google Scholar] [CrossRef]
- Vezy, R.; le Maire, G.; Christina, M.; Georgiou, S.; Imbach, P.; Hidalgo, H.G.; Alfaro, E.J.; Blitz-Frayret, C.; Charbonnier, F.; Lehner, P.; et al. DynACof: A Process-Based Model to Study Growth, Yield and Ecosystem Services of Coffee Agroforestry Systems. Environ. Model. Softw. 2020, 124, 104609. [Google Scholar] [CrossRef] [Green Version]
- Mobbs, D.C.; Cannell, M.G.R.; Crout, N.M.J.; Lawson, G.J.; Friend, A.D.; Arah, J. Complementarity of Light and Water Use in Tropical Agroforests: I. Theoretical Model Outline, Performance and Sensitivity. For. Ecol. Manag. 1998, 102, 259–274. [Google Scholar] [CrossRef]
- Salazar, O.; Casanova, M.; Kätterer, T. The Impact of Agroforestry Combined with Water Harvesting on Soil Carbon and Nitrogen Stocks in Central Chile Evaluated Using the ICBM/N Model. Agric. Ecosyst. Environ. 2011, 140, 123–136. [Google Scholar] [CrossRef]
- Kay, S.; Crous-Duran, J.; Ferreiro-Domínguez, N.; de Jalón, S.G.; Graves, A.; Moreno, G.; Mosquera-Losada, M.R.; Palma, J.H.; Roces-Díaz, J.V.; Santiago-Freijanes, J.J. Spatial Similarities between European Agroforestry Systems and Ecosystem Services at the Landscape Scale. Agrofor. Syst. 2018, 92, 1075–1089. [Google Scholar] [CrossRef] [Green Version]
- Shachak, M.; Boeken, B.; Groner, E.; Kadmon, R.; Lubin, Y.; Meron, E.; Ne’Eman, G.; Perevolotsky, A.; Shkedy, Y.; Ungar, E.D. Woody Species as Landscape Modulators and Their Effect on Biodiversity Patterns. BioScience 2008, 58, 209–221. [Google Scholar] [CrossRef] [Green Version]
- Prevedello, J.A.; Gotelli, N.J.; Metzger, J.P. A Stochastic Model for Landscape Patterns of Biodiversity. Ecol. Monogr. 2016, 86, 462–479. [Google Scholar] [CrossRef]
- Sybertz, J.; Matthies, S.; Schaarschmidt, F.; Reich, M.; von Haaren, C. Biodiversity Modelling in Practice—Predicting Bird and Woody Plant Species Richness on Farmlands. Ecosyst. People 2020, 16, 19–34. [Google Scholar] [CrossRef] [Green Version]
- Jarrah, M.; Mayel, S.; Tatarko, J.; Funk, R.; Kuka, K. A Review of Wind Erosion Models: Data Requirements, Processes, and Validity. Catena 2020, 187, 104388. [Google Scholar] [CrossRef]
- Fryrear, D.W.; Sutherland, P.L.; Davis, G.; Hardee, G.; Dollar, M. Wind Erosion Estimates with RWEQ and WEQ. In Proceedings of the Conference Sustaining the Global Farm, 10th International Soil Conservation Organization Meeting, Purdue University, West Lafayette, IN, USA, 24–29 May 1999; pp. 760–765. [Google Scholar]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses; Agricultural Handbook 537; U.S. Department of Agriculture Agricultural Research Service: Washington, DC, USA, 1978. [Google Scholar]
- Vigiak, O.; Sterk, G.; Warren, A.; Hagen, L.J. Spatial Modeling of Wind Speed around Windbreaks. Wind Eros. Eur. 2003, 52, 273–288. [Google Scholar] [CrossRef]
- Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T.J.; Lobell, D.B.; Delire, C.; Mirin, A. Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation. Proc. Natl. Acad. Sci. USA 2007, 104, 6550–6555. [Google Scholar] [CrossRef] [Green Version]
- Kirschbaum, M.U.F.; Whitehead, D.; Dean, S.M.; Beets, P.N.; Shepherd, J.D.; Ausseil, A.-G.E. Implications of Albedo Changes Following Afforestation on the Benefits of Forests as Carbon Sinks. Biogeosciences 2011, 8, 3687–3696. [Google Scholar] [CrossRef] [Green Version]
- Palma, J.H.N.; Crous-Duran, J.; Graves, A.R.; de Jalon, S.G.; Upson, M.; Oliveira, T.S.; Paulo, J.A.; Ferreiro-Domínguez, N.; Moreno, G.; Burgess, P.J. Integrating Belowground Carbon Dynamics into Yield-SAFE, a Parameter Sparse Agroforestry Model. Agrofor. Syst. 2018, 92, 1047–1057. [Google Scholar] [CrossRef]
- Haas, E.; Klatt, S.; Fröhlich, A.; Kraft, P.; Werner, C.; Kiese, R.; Grote, R.; Breuer, L.; Butterbach-Bahl, K. LandscapeDNDC: A Process Model for Simulation of Biosphere–Atmosphere–Hydrosphere Exchange Processes at Site and Regional Scale. Landsc. Ecol. 2013, 28, 615–636. [Google Scholar] [CrossRef]
- Parton, W.J.; Hartman, M.; Ojima, D.; Schimel, D. DAYCENT and Its Land Surface Submodel: Description and Testing. Glob. Planet. Chang. 1998, 19, 35–48. [Google Scholar] [CrossRef]
- Palma, J.H.N.; Graves, A.R.; Burgess, P.J.; Keesman, K.J.; van Keulen, H.; Mayus, M.; Reisner, Y.; Herzog, F. Methodological Approach for the Assessment of Environmental Effects of Agroforestry at the Landscape Scale. Carbon Sequestration Landsc. Ecol. West. Eur. 2007, 29, 450–462. [Google Scholar] [CrossRef] [Green Version]
- Nearing, M.A.; Foster, G.R.; Lane, L.J.; Finkner, S.C. A Process-Based Soil Erosion Model for USDA-Water Erosion Prediction Project Technology. Trans. ASAE 1989, 32, 1587–1593. [Google Scholar] [CrossRef]
- Onsamrarn, W.; Chittamart, N.; Tawornpruek, S. Performances of the WEPP and WaNuLCAS Models on Soil Erosion Simulation in a Tropical Hillslope, Thailand. PLoS ONE 2020, 15, e0241689. [Google Scholar] [CrossRef]
- Hernandez, M.; Miller, S.N.; Goodrich, D.C.; Goff, B.F.; Kepner, W.G.; Edmonds, C.M.; Jones, K.B. Modeling Runoff Response to Land Cover and Rainfall Spatial Variability in Semi-Arid Watersheds. Environ. Model. Assess. 2000, 64, 285–298. [Google Scholar] [CrossRef]
- Ryan, J.; McAlpine, C.; Ludwig, J.; Callow, J. Modelling the Potential of Integrated Vegetation Bands (IVB) to Retain Stormwater Runoff on Steep Hillslopes of Southeast Queensland, Australia. Land 2015, 4, 711–736. [Google Scholar] [CrossRef] [Green Version]
- Mosquera-Losada, M.R.; Prabhu, R. (Eds.) Agroforestry for Sustainable Agriculture; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2019; ISBN 978-1-78676-220-7. [Google Scholar]
- Liu, S.; Baret, F.; Abichou, M.; Manceau, L.; Andrieu, B.; Weiss, M.; Martre, P. Importance of the Description of Light Interception in Crop Growth Models. Plant Physiol. 2021, 186, 977–997. [Google Scholar] [CrossRef]
- Talbot, G.; Dupraz, C. Simple Models for Light Competition within Agroforestry Discontinuous Tree Stands: Are Leaf Clumpiness and Light Interception by Woody Parts Relevant Factors? Agrofor. Syst. 2012, 84, 101–116. [Google Scholar] [CrossRef]
- Buytaert, W.; Reusser, D.; Krause, S.; Renaud, J.P. Why Can’t We Do Better than Topmodel? Hydrol. Process. 2008, 22, 4175–4179. [Google Scholar] [CrossRef]
- Burgess, P.; Graves, A.; de Jalón, S.G.; Palma, J.; Dupraz, C. Modelling agroforestry systems. In Agroforestry for Sustainable Agriculture; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2019; p. 29. [Google Scholar] [CrossRef]
- Clark, M.P.; Kavetski, D.; Fenicia, F. Pursuing the Method of Multiple Working Hypotheses for Hydrological Modeling. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef] [Green Version]
- Fenicia, F.; Kavetski, D.; Savenije, H.H.G. Elements of a Flexible Approach for Conceptual Hydrological Modeling: 1. Motivation and Theoretical Development. Water Resour. Res. 2011, 47. [Google Scholar] [CrossRef]
- Kraft, P.; Vaché, K.B.; Frede, H.-G.; Breuer, L. CMF: A Hydrological Programming Language Extension for Integrated Catchment Models. Environ. Model. Softw. 2011, 26, 828–830. [Google Scholar] [CrossRef]
- Biernath, C.; Gayler, S.; Bittner, S.; Klein, C.; Högy, P.; Fangmeier, A.; Priesack, E. Evaluating the Ability of Four Crop Models to Predict Different Environmental Impacts on Spring Wheat Grown in Open-Top Chambers. Eur. J. Agron. 2011, 35, 71–82. [Google Scholar] [CrossRef] [Green Version]
- Gaiser, T.; Perkons, U.; Küpper, P.M.; Kautz, T.; Uteau-Puschmann, D.; Ewert, F.; Enders, A.; Krauss, G. Modeling Biopore Effects on Root Growth and Biomass Production on Soils with Pronounced Sub-Soil Clay Accumulation. Ecol. Model. 2013, 256, 6–15. [Google Scholar] [CrossRef]
- Andrén, O.; Kätterer, T. ICBM: The Introductory Carbon Balance Model for Exploration of Soil Carbon Balances. Ecol. Appl. 1997, 7, 1226–1236. [Google Scholar] [CrossRef]
- Palma, J.; Graves, A.R.; Crous-Duran, J.; Upson, M.A.; Paulo, J.A.; Oliveira, T.; Garcia de Jalón, S.; Burgess, P. Yield-SAFE Model Improvements—AGFORWARD (613520) Milestone 29 (6.4): Yield-SAFE Model Improvements. Available online: https://www.repository.utl.pt/handle/10400.5/12337 (accessed on 30 August 2021).
- Vezy, R. VEZY/DynACof: 1.3.0 Release; Zenodo: Geneva, Switzerland, 2020. [Google Scholar] [CrossRef]
- EPIC | EPIC & APEX Models. Available online: https://epicapex.tamu.edu/epic/ (accessed on 6 August 2021).
- Williams, J.R.; Jones, C.A.; Dyke, P.T. A Modeling Approach to Determining the Relationship between Erosion and Soil Productivity. Trans. Am. Soc. Agric. Eng. 1984, 27, 129–144. [Google Scholar] [CrossRef]
- WaNuLCAS A Model of Water, Nutrient and Light Capture in Agroforestry Systems. Available online: https://www.worldagroforestry.org/output/wanulcas-model-water-nutrient-and-light-capture-agroforestry-systems (accessed on 6 August 2021).
- Dufour-Kowalski, S.; Courbaud, B.; Dreyfus, P.; Meredieu, C.; De Coligny, F. Capsis: An Open Software Framework and Community for Forest Growth Modelling. Ann. For. Sci. 2012, 69, 221–233. [Google Scholar] [CrossRef]
- Brisson, N.; Launay, M.; Mary, B.; Beaudoin, N. Conceptual Basis, Formalisations and Parameterization of the STICS Crop Model; Editions QUAE: Versailles, France, 2008; ISBN 2-7592-0169-4. [Google Scholar]
Group | NCP | Type | NCP-Name | Exemplary System Property |
---|---|---|---|---|
Biodiversity | 1 | R | Habitat | Animal diversity Plant diversity Landscape diversity |
2 | R | Seed/pollen dispersal | ||
10 | R | Pest regulation | ||
14 | M | Biotechnology | ||
Air quality | 3 | R | Air quality | Pollution filtering, dust prevention |
Climate | 4 | R | Climate regulation | CO2 emission, C-sequestration, Surface cooling, Evapotranspiration |
5 | R | Ocean acidification | ||
Water | 6 | R | Water quantity | GW recharge N/P-load, water supply, N supply |
7 | R | Water quality | ||
Surface protection | 8 | R | Soil protection | Soil functioning, vegetation cover, wind/water erosion |
9 | R | Hazard regulation | ||
Production | 11 | M | Energy | Woody biomass, Crop biomass, Fruit biomass, timber biomass |
12 | M | Food & feed | ||
13 | M | Materials | ||
Culture | 15 | C | Learning & inspiration | Landscape character/beauty Culture heritage |
16 | C | Experience | ||
17 | C | Identities | ||
18 | O | Options | Not part of this study |
Model | Reference | Type of Model | Spatial Representation |
---|---|---|---|
Hi-sAFe | [76] | Detailed generic process model | 3D structure |
WaNuLCAS | [18] | Detailed generic process model | 2D hillslope |
SCUAF | [77] | Detailed generic process model | unclear |
APSIM | [67,78,79] | Detailed multi-crop process model | 2.5D area |
EPIC for AF | [33] | Detailed generic conceptual model | 2.5D area |
SBELTS | [80] | Soy growth model with shelterbelt effects | 1D horizontal |
WIMISIA | [81] | Millet growth model with wind break effects | 2D vertical plane |
COMP8 | [82] | Competition between Pines and surface cover vegetation (weeds, crops) | 2D vertical plane |
DynACof | [83] | Detailed process model for coffee under shade trees | Meta model from 3D canopy shading model |
HyPAR | [84] | Conceptual model for sorghum with tropical hybrid broadleaf trees | Field level |
Yield-sAFe | [17] | Generic conceptual model | Field level |
ICBM/N | [85] | Water balance model | Field level |
ESAT-A | [15] | Indicator system | Landscape level |
Hi-sAFe | WaNuLCAS | SCUAF | APSIM | EPIC | SBELTS | WIMISA | COMP8 | DynACof | Hypar | Yield-SAFE | ICBM/N | ESAT-A | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Biodiversity | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 0% | 33% |
Air quality | 0% | 0% | 0% | 33% | 67% | 33% | 33% | 0% | 0% | 0% | 0% | 0% | 33% |
Climate | 20% | 15% | 5% | 90% | 45% | 20% | 15% | 0% | 40% | 15% | 15% | 0% | 5% |
Water | 100% | 100% | 40% | 100% | 80% | 40% | 20% | 100% | 40% | 100% | 100% | 0% | 60% |
Surface protection | 25% | 63% | 50% | 50% | 50% | 0% | 25% | 0% | 0% | 25% | 50% | 25% | 50% |
Productivity | 75% | 75% | 63% | 50% | 50% | 38% | 38% | 0% | 50% | 50% | 75% | 0% | 0% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraft, P.; Rezaei, E.E.; Breuer, L.; Ewert, F.; Große-Stoltenberg, A.; Kleinebecker, T.; Seserman, D.-M.; Nendel, C. Modelling Agroforestry’s Contributions to People—A Review of Available Models. Agronomy 2021, 11, 2106. https://doi.org/10.3390/agronomy11112106
Kraft P, Rezaei EE, Breuer L, Ewert F, Große-Stoltenberg A, Kleinebecker T, Seserman D-M, Nendel C. Modelling Agroforestry’s Contributions to People—A Review of Available Models. Agronomy. 2021; 11(11):2106. https://doi.org/10.3390/agronomy11112106
Chicago/Turabian StyleKraft, Philipp, Ehsan Eyshi Rezaei, Lutz Breuer, Frank Ewert, André Große-Stoltenberg, Till Kleinebecker, Diana-Maria Seserman, and Claas Nendel. 2021. "Modelling Agroforestry’s Contributions to People—A Review of Available Models" Agronomy 11, no. 11: 2106. https://doi.org/10.3390/agronomy11112106
APA StyleKraft, P., Rezaei, E. E., Breuer, L., Ewert, F., Große-Stoltenberg, A., Kleinebecker, T., Seserman, D. -M., & Nendel, C. (2021). Modelling Agroforestry’s Contributions to People—A Review of Available Models. Agronomy, 11(11), 2106. https://doi.org/10.3390/agronomy11112106