How Maize Seed Systems Can Contribute to the Control of Mycotoxigenic Fungal Infection: A Perspective
Abstract
:1. Introduction
1.1. Background
1.2. Mycotoxins
1.3. Informal and Formal Seed Systems
2. Maize Seed Health in Nigeria
2.1. Maize Seed Systems
2.2. Relevance of the Different Fungi
3. Control
3.1. Control Methods
3.2. Adoption Constraints
3.3. Integrated Approach
4. Conclusions and Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- Onyeche, V.; Umeh, E.U.; Gberikon, G.M.; Ogbonna, I.O. Determination of fungal population in maize grains from Benue State Nigeria. Appl. Microbiol. Open Access 2021, 7, 190. [Google Scholar]
- Udomkun, P.; Wiredu, A.N.; Nagle, M.; Bandyopadhyay, R.; Müller, J.; Vanlauwe, B. Mycotoxins in Sub-Saharan Africa: Present situation, socio-economic impact, awareness, and outlook. Food Control. 2017, 72, 110–122. [Google Scholar] [CrossRef]
- Udomkun, P.; Wossen, T.; Nabahungu, N.L.; Mutegi, C.; Vanlauwe, B.; Bandyopadhyay, R. Incidence and farmers’ knowledge of aflatoxin contamination and control in Eastern Democratic Republic of Congo. Food Sci. Nutr. 2018, 6, 1607–1620. [Google Scholar] [CrossRef] [PubMed]
- Gruber-Dorninger, C.; Jenkins, T.; Schatzmayr, G. Global mycotoxin occurrence in feed: A ten-year survey. Toxins 2019, 11, 375. [Google Scholar] [CrossRef] [Green Version]
- Ingenbleek, L.; Sulyok, M.; Adegboye, A.; Hossou, S.E.; Koné, A.Z.; Oyedele, A.D.; Kisito, C.S.K.J.; Dembélé, Y.K.; Eyangoh, S.; Verger, P.; et al. Regional Sub-Saharan Africa total diet study in Benin, Cameroon, Mali and Nigeria reveals the presence of 164 mycotoxins and other secondary metabolites in foods. Toxins 2019, 11, 54. [Google Scholar] [CrossRef] [Green Version]
- Wild, C.P.; Gong, Y.Y. Mycotoxins and human disease: A largely ignored global health issue. Carcinogenesis 2010, 31, 71–82. [Google Scholar] [CrossRef]
- Bennett, J.W.; Klich, M. Mycotoxins. Clin. Microbiol. Rev. 2003, 16, 497–516. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamika, I.; Ngbolua, K.-T.-N.; Tekere, M. Occurrence of aflatoxin contamination in maize throughout the supply chain in the Democratic Republic of Congo. Food Control 2016, 69, 292–296. [Google Scholar] [CrossRef]
- Marroquín-Cardona, A.G.; Johnson, N.M.; Phillips, T.S.; Hayes, H.W. Mycotoxins in a changing global environment—A review. Food Chem. Toxicol. 2014, 69, 220–230. [Google Scholar] [CrossRef]
- Egmond, H.P. Worldwide Regulations for Mycotoxins. In Mycotoxins and Food Safety; Devries, J., Trucksess, M., Jackson, L., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2002; pp. 257–269. [Google Scholar]
- European Commission. Commission regulation (EC) No 1881/2006. Setting Maximum Levels for Certain Contaminants in Foodstuffs. Official Journal of the European Union. 2006. Available online: http://eur-lex.europa.eu/RECH_naturel.do?ihmlang=eng (accessed on 19 December 2012).
- European Commission. Commission regulation (EC) No 1126/2007 of 28 September 2007 amending Regulation (EC) No 1881/2006. Setting Maximum Levels for Certain Contaminants in Foodstuffs as Regards Fusarium Toxins in Maize and Maize Products. Official Journal of the European Union. 2007. Available online: http://data.europa.eu/eli/reg/2006/1881/2021-08-31 (accessed on 3 October 2021).
- Magan, N. Mycotoxin contamination of food in Europe: Early detection and prevention strategies. Mycopathologia 2006, 162, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Bryngelsson, D.K.; Åhlén, A.; Azar, C.; Persson, U.M. The effect of food-price movements on African households. Int. J. Agric. Res. Gov. Ecol. 2012, 9, 121–146. [Google Scholar] [CrossRef] [Green Version]
- Munkvold, G.P. Cultural and genetic approaches to managing mycotoxins in maize. Ann. Rev. Phytopathol. 2003, 41, 99–116. [Google Scholar] [CrossRef]
- Bacon, C.W.; Yates, I.E.; Hinton, D.M.; Meredith, F. Biological control of Fusarium moniliforme in maize. Environm. Health Persp. 2001, 109, 325–332. [Google Scholar]
- Kemboi, D.C.; Ochieng, P.E.; Antonissen, G.; Croubels, S.; Scippo, M.-L.; Okoth, S.; Kangethe, E.K.; Faas, J.; Doupovec, B.; Lindahl, J.F.; et al. Multi-mycotoxin occurrence in dairy cattle and poultry feeds and feed ingredients from Machakos Town, Kenya. Toxins 2020, 12, 762. [Google Scholar] [CrossRef]
- Omara, T.; Kiprop, A.K.; Wangila, P.; Wacoo, A.P.; Kagoya, S.; Nteziyaremye, P.; Peter Odero, M.; Kiwanuka Nakiguli, C.; Baker Obakiro, S. The scourge of aflatoxins in Kenya: A 60-year review (1960 to 2020). J. Food Qual. 2021, 2021, 8899839. [Google Scholar] [CrossRef]
- Onyeke, C.C. Review of mycotoxins in foods in Nigeria. Food Control 2020, 118, 107376. [Google Scholar] [CrossRef]
- Changwa, R.; De Boevre, M.; De Saeger, S.; Njobeh, P.B. Feed-based multi-mycotoxin occurrence in smallholder dairy farming systems of South Africa: The case of Limpopo and Free State. Toxins 2021, 13, 166. [Google Scholar] [CrossRef] [PubMed]
- Aristil, J.; Venturini, G.; Maddalena, G.; Toffolatti, S.L.; Spada, A. Fungal contamination and aflatoxin content of maize, moringa and peanut foods from rural subsistence farms in South Haiti. J. Stored Prod. Res. 2020, 85, 101550. [Google Scholar] [CrossRef]
- Aristil, J.; Venturini, G.; Spada, A. Occurrence of toxigenic fungi and aflatoxin potential of Aspergillus spp. strains associated with subsistence farmed crops in Haiti. J. Food Prot. 2017, 80, 626–631. [Google Scholar] [CrossRef] [PubMed]
- Fallahi, M.; Saremi, H.; Javan-Nikkhah, M.; Somma, S.; Haidukowski, M.; Logrieco, A.F.; Moretti, A. Isolation, molecular identification and mycotoxin profile of Fusarium species isolated from maize kernels in Iran. Toxins 2019, 11, 297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, P.W.; Xu, J.; Jiang, Y.; Hu, L.; van der Lee, T.; Waalwijk, C.; Zhang, W.M.; Xu, X.D. Survey for toxigenic Fusarium species on maize kernels in China. World Mycotoxin J. 2020, 13, 213–223. [Google Scholar] [CrossRef]
- Yang, X.; Gao, J.; Liu, Q.; Yang, D. Co-occurrence of mycotoxins in maize and maize-derived food in China and estimation of dietary intake. Food Addit. Contam. Part B Surveill. 2019, 12, 124–134. [Google Scholar] [CrossRef]
- Vandicke, J.; De Visschere, K.; Ameye, M.; Croubels, S.; De Saeger, S.; Audenaert, K.; Haesaert, G. Multi-mycotoxin contamination of maize silages in Flanders, Belgium: Monitoring mycotoxin levels from seed to feed. Toxins 2021, 13, 202. [Google Scholar] [CrossRef]
- Oldenburg, E.; Höppner, F.; Ellner, F.; Weinert, J. Fusarium diseases of maize associated with mycotoxin contamination of agricultural products intended to be used for food and feed. Mycotoxin Res. 2017, 33, 167–182. [Google Scholar] [CrossRef] [PubMed]
- Blanco, R.; Aveling, T.A.S. Seed-borne Fusarium pathogens in agricultural crops. Acta Hort. 2011, 1204, 161–169. [Google Scholar] [CrossRef]
- Adegbeye, M.J.; Reddy, P.R.K.; Chilaka, C.A.; Balogun, O.B.; Elghandour, M.M.M.Y.; Rivas-Caceres, R.R.; Salem, A.Z.M. Mycotoxin toxicity and residue in animal products: Prevalence, consumer exposure and reduction strategies—A review. Toxicon 2020, 177, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Kebede, H.; Liu, X.; Jin, J.; Xing, F. Current status of major mycotoxins contamination in food and feed in Africa. Food Control. 2020, 110, 106975. [Google Scholar] [CrossRef]
- Azziz-Baumgartner, E.; Lindblade, K.; Gieseker, K.; Schurz Rogers, H.; Kieszak, S.; Njapau, H.; Schleicher, R.; McCoy, L.F.; Misore, A.; DeCock, K.; et al. Case-control study of an acute aflatoxicosis outbreak, Kenya, 2004. Environm. Health Persp. 2005, 113, 1779–1783. [Google Scholar] [CrossRef] [PubMed]
- Tsitsigiannis, D.I.; Dimakopoulou, M.; Antoniou, P.P.; Tjamos, E.C. Biological control strategies of mycotoxigenic fungi and associated mycotoxins in Mediterranean basin crops. Phytopathol. Mediterr. 2012, 51, 158–174. [Google Scholar]
- Ferrigo, D.; Mondin, M.; Ladurner, E.; Fiorentini, F.; Causin, R.; Raiola, A. Effect of seed biopriming with Trichoderma harzianum strain INAT11 on Fusarium ear rot and Gibberella ear rot diseases. Biol. Control 2020, 147, 104826. [Google Scholar] [CrossRef]
- Ferrigo, D.; Raiola, A.; Piccolo, E.; Scopel, C.; Causin, R. Trichoderma harzianum T22 induces in maize systemic resistance against Fusarium verticillioides. J. Plant Pathol. 2014, 96, 133–142. [Google Scholar]
- Ferrigo, D.; Raiola, A.; Rasera, R.; Causin, R. Trichoderma harzianum seed treatment controls Fusarium verticillioides colonization and fumonisin contamination in maize under field conditions. Crop. Prot. 2014, 65, 51–56. [Google Scholar] [CrossRef]
- Galletti, S.; Paris, R.; Cianchetta, S. Selected isolates of Trichoderma gamsii induce different pathways of systemic resistance in maize upon Fusarium verticillioides challenge. Microbiol. Res. 2020, 233, 126406. [Google Scholar] [CrossRef]
- Adeniji, A.A.; Aremu, O.S.; Loots, D.T.; Babalola, O.O. Pseudomonas fulva HARBPS9.1: Candidate anti-Fusarium agent in South Africa. Eur. J. Plant Pathol. 2020, 157, 767–781. [Google Scholar] [CrossRef]
- MacGee, D.C. Maize Diseases: A Reference Source for Seed Technologists; American Phytopathological Society Press: Saint Paul, MN, USA, 1988. [Google Scholar]
- Bishaw, Z.; Struik, P.C.; Van Gastel, A.J.G. Farmers’ seed sources and seed quality: 2. seed health. Int. J. Plant. Prod. 2013, 7, 637–658. [Google Scholar]
- Louwaars, N. Seeds of Confusion: The Impact of Policies on Seed Systems. Ph.D. Thesis, Wageningen University, Wageningen, The Netherlands, 2007. [Google Scholar]
- Okry, F.; Van Mele, P.; Nuijten, E.; Struik, P.C.; Mongbo, R.L. Organizational analysis of the seed sector of rice in Guinea: Stakeholders, perception and institutional linkages. Exp. Agric. 2011, 47, 137–157. [Google Scholar] [CrossRef] [Green Version]
- Almekinders, C.J.M.; Louwaars, N.P. Farmers’ Seed Production: New Approaches and Practices; Intermediate Technology: London, UK, 1999. [Google Scholar]
- Almekinders, C.J.M.; Louwaars, N.P.; de Bruijn, G.H. Local seed systems and their importance for an improved seed supply in developing countries. Euphytica 1994, 78, 207–216. [Google Scholar] [CrossRef]
- Almekinders, C.J.M.; Louwaars, N.P. The importance of the farmers’ seed systems in a functional national seed sector. J. New Seeds 2002, 4, 15–33. [Google Scholar] [CrossRef]
- Biemond, P.C.; Oguntade, O.; Stomph, T.J.; Kumar, P.L.; Termorshuizen, A.J.; Struik, P.C. Health of farmer-saved maize seed in north-east Nigeria. Eur. J. Plant Pathol. 2013, 137, 563–572. [Google Scholar] [CrossRef]
- Williams, J.H.; Grubb, A.J.; Davis, J.W.; Wang, J.-S.; Jolly, E.P.; Ankrah, N.-A.; Ellis, O.W.; Afriyie-Gyawu, E.; Johnson, N.M.; Robinson, A.G.; et al. HIV and hepatocellular and esophageal carcinomas related to consumption of mycotoxin-prone foods in sub-Saharan Africa. Am. J. Clin. Nutr. 2010, 92, 154–160. [Google Scholar] [CrossRef] [Green Version]
- Windham, G.L.; Williams, W.P. Comparison of different inoculating methods to evaluate the pathogenicity and virulence of Aspergillus niger on two maize hybrids. Phytoparasitica 2012, 40, 305–310. [Google Scholar] [CrossRef]
- Di Giuseppe, R.; Bertuzzi, T.; Rossi, F.; Rastelli, S.; Mulazzi, A.; Capraro, J.; de Curtis, A.; Iacoviello, L.; Pietri, A. Plasma ochratoxin A levels, food consumption, and risk biomarkers of a representative sample of men and women from the Molise region in Italy. Eur. J. Nutr. 2012, 51, 851–860. [Google Scholar] [CrossRef]
- Balasubramanian, G.; Hanumegowda, U.; Reddy, C.S. Secalonic acid D alters the nature of and inhibits the binding of the transcription factors to the phorbol 12-O-tetradecanoate-13 acetate-response element in the developing murine secondary palate. Toxicol. Appl. Pharmacol. 2000, 169, 142–150. [Google Scholar] [CrossRef] [PubMed]
- Dhulipala, V.C.; Maddali, K.K.; Welshons, W.V.; Reddy, C.S. Secalonic acid D blocks embryonic palatal mesenchymal cell-cycle by altering the activity of CDK2 and the expression of p21 and cyclin E. Birth Defects Res. Part. B Dev. Reprod. Toxicol. 2005, 74, 233–242. [Google Scholar] [CrossRef] [PubMed]
- Chalivendra, S.; Huang, F.; Busman, M.; Williams, W.P.; Ham, J.H. Low aflatoxin levels in Aspergillus flavus resistant maize are correlated with increased corn earworm damage and enhanced seed fumonisin. Front. Plant. Sci. 2020, 11, 565323. [Google Scholar] [CrossRef]
- Landoni, M.; Puglisi, S.; Cassani, E.; Borlini, G.; Brunoldi, G.; Comaschi, C.; Pilu, P. Phlobaphenes modify pericarp thickness in maize and accumulation of the fumonisin mycotoxins. Sci. Rep. 2020, 10, 1417. [Google Scholar] [CrossRef] [Green Version]
- Gao, M.; Glenn, A.E.; Gu, X.; Mitchell, T.R.; Satterlee, T.; Duke, M.V.; Scheffler, B.E.; Gold, S.E. Pyrrocidine, a molecular off switch for fumonisin biosynthesis. PLoS Pathog. 2020, 16, e1008595. [Google Scholar] [CrossRef]
- Desjardins, A.E.; Plattner, R.D.; Lu, M.; Claflin, L.E. Distribution of fumonisins in maize ears infected with strains of Fusarium moniliforme that differ in fumonisin production. Plant Dis. 1998, 82, 953–958. [Google Scholar] [CrossRef] [Green Version]
- Richard, E.; Heutte, N.; Sage, L.; Pottier, D.; Bouchart, V.; Lebailly, P.; Garon, D. Toxigenic fungi and mycotoxins in mature corn silage. Food Chem. Toxicol. 2007, 45, 2420–2425. [Google Scholar] [CrossRef]
- Adejumo, T.O.; Hettwer, U.; Karlovsky, P. Occurrence of Fusarium species and trichothecenes in Nigerian maize. Int. J. Food Microbiol. 2007, 116, 350–357. [Google Scholar] [CrossRef]
- Bankole, S.A.; Mabekoje, O.O. Occurrence of aflatoxins and fumonisins in preharvest maize from south-western Nigeria. Food Addit. Contam. 2004, 21, 251–255. [Google Scholar] [CrossRef] [PubMed]
- Chilaka, C.A.; De Kock, S.; Phoku, J.Z.; Mwanza, M.; Egbuta, M.A.; Dutton, M.F. Fungal and mycotoxin contamination of South African commercial maize. J. Food Agric. Environm. 2012, 10, 296–303. [Google Scholar]
- Soares, C.; Calado, T.; Venâncio, A. Mycotoxin production by Aspergillus niger aggregate isolated from harvested maize in three Portuguese regions. Rev. Iberoam. Micol. 2013, 30, 9–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magnoli, C.; Hallak, C.; Astoreca, A.; Ponsone, L.; Chiacchiera, S.; Dalcero, A.M. Occurrence of ochratoxin A-producing fungi in commercial corn kernels in Argentina. Mycopathologia 2006, 161, 53–58. [Google Scholar] [CrossRef] [PubMed]
- Probst, C.; Bandyopadhyay, R.; Price, L.E.; Cotty, P.J. Identification of atoxigenic Aspergillus flavus isolates to reduce aflatoxin contamination of maize in Kenya. Plant Dis. 2011, 95, 212–218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kelley, R.Y.; Williams, W.P.; Mylroie, J.E.; Boykin, D.L.; Harper, J.; Windham, G.L.; Ankala, A.; Shan, X. Identification of maize genes associated with host plant resistance or susceptibility to Aspergillus flavus infection and aflatoxin accumulation. PLoS ONE 2012, 7, e36892. [Google Scholar] [CrossRef] [Green Version]
- Small, I.M.; Flett, B.C.; Marasas, W.F.O.; McLeod, A.; Stander, M.A.; Viljoen, A. Resistance in maize inbred lines to Fusarium verticillioides and fumonisin accumulation in South Africa. Plant Dis. 2012, 96, 881–888. [Google Scholar] [CrossRef] [Green Version]
- Amaza, P.; Udoh, E.; Abdoulaye, T.; Kamara, A. Analysis of technical efficiency among community-based seed producers in the savannas of Borno State, Nigeria. J. Food Agric. Environ. 2010, 8, 1073–1079. [Google Scholar]
- Daniel, I.O.; Adetumbi, J.A. Maize seed supply systems and implications for seed sector development in Southwestern Nigeria. J. Sustain. Agric. 2006, 28, 25–40. [Google Scholar] [CrossRef]
- Saleem, M.J.; Bajwa, R.; Hannan, A.; Qaiser, T.A. Maize seed storage mycoflora in Pakistan and its chemical control. Pak. J. Bot. 2012, 44, 807–812. [Google Scholar]
- De Curtis, F.; De Cicco, V.; Haidukowski, M.; Pascale, M.; Somma, S.; Moretti, A. Effects of agrochemical treatments on the occurrence of Fusarium ear rot and fumonisin contamination of maize in Southern Italy. Field Crop. Res. 2011, 123, 161–169. [Google Scholar] [CrossRef]
- Mogensen, J.; Sørensen, S.; Sulyok, M.; Van Der Westhuizen, L.; Shephard, G.S.; Frisvad, J.; Thrane, U.; Krska, R.; Nielsen, K.F. Single-kernel analysis of fumonisins and other fungal metabolites in maize from South African subsistence farmers. Food Addit. Contam. Part A 2011, 28, 1724–1734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chulze, S.N. Strategies to reduce mycotoxin levels in maize during storage: A review. Food Addit. Contam. Part A Chem. Anal. Control. Expo. Risk Assess 2010, 27, 651–657. [Google Scholar] [CrossRef]
- Williams, S.B.; Baributsa, D.; Woloshuk, C. Assessing Purdue Improved Crop Storage (PICS) bags to mitigate fungal growth and aflatoxin contamination. J. Stored Prod. Res. 2014, 59, 190–196. [Google Scholar] [CrossRef]
- Makhuvele, R.; Naidu, K.; Gbashi, S.; Thipe, V.C.; Adebo, O.A.; Njobeh, P.B. The use of plant extracts and their phytochemicals for control of toxigenic fungi and mycotoxins. Helios 2020, 6, E05291. [Google Scholar] [CrossRef]
- Perczak, A.; Gwiazdowska, D.; Marchwińska, K.; Juś, K.; Gwiazdowski, R.; Waśkiewicz, A. Antifungal activity of selected essential oils against Fusarium culmorum and F. graminearum and their secondary metabolites in wheat seeds. Arch. Microbiol. 2019, 201, 1085–1097. [Google Scholar] [CrossRef] [Green Version]
- Perczak, A.; Gwiazdowska, D.; Gwiazdowski, R.; Juś, K.; Marchwińska, K.; Waśkiewicz, A. The inhibitory potential of selected essential oils on Fusarium spp. growth and mycotoxins biosynthesis in maize seeds. Pathogens 2020, 9, 23. [Google Scholar] [CrossRef] [Green Version]
- Loi, M.; Paciolla, C.; Logrieco, A.F.; Mulè, G. Plant bioactive compounds in pre- and postharvest management for aflatoxins reduction. Front. Microbiol. 2020, 11, 243. [Google Scholar] [CrossRef] [PubMed]
- Veenstra, A.; Rafudeen, M.S.; Murray, S.L. Trichoderma asperellum isolated from African maize seed directly inhibits Fusarium verticillioides growth in vitro. Eur. J. Plant. Pathol. 2019, 153, 279–283. [Google Scholar] [CrossRef]
- Lewis, M.H.; Carbone, I.; Luis, J.M.; Payne, G.A.; Bowen, K.L.; Hagan, A.K.; Kemerait, R.; Heiniger, R.; Ojiambo, P.S. Biocontrol strains differentially shift the genetic structure of indigenous soil populations of Aspergillus flavus. Front. Microbiol. 2019, 10, 1738. [Google Scholar] [CrossRef] [Green Version]
- Gomaa, E.Z.; Abdelall, M.F.; El-Mahdy, O.M. Detoxification of Aflatoxin B1 by antifungal compounds from Lactobacillus brevis and Lactobacillus paracasei, isolated from dairy products. Probiotics Antimicrob. Proteins 2018, 10, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Abbas, H.K.; Shier, W.T.; Horn, B.W.; Weaver, M.A. Cultural methods for aflatoxin detection. J. Toxicol. Toxin Rev. 2004, 23, 295–315. [Google Scholar] [CrossRef]
- Dimithe, G.; Debrah, S.K.; Bumb, B.L.; Gregory, D.I. Improving Agricultural Input Supply Systems in Sub-Saharan Africa: A Review of literature; Paper Series International Fertilizer Development Center: Muscle Shoals, AL, USA, 1998; Volume 48. [Google Scholar]
Farmers (N = 87) | Seed Company Outlets (N = 6) | Foundation Seed Producer (N = 6) | ||||||
---|---|---|---|---|---|---|---|---|
Mycotoxigenic fungi | Mycotoxins Produced ** | Seed-Borne | Infection Frequency (%) | Infection Incidence (%) | Infection Frequency (%) | Infection Incidence (%) | Infection Frequency (%) | Infection Incidence (%) |
Aspergillus flavus | Aflatoxin a | U e | 38 | 0.6 | 17 | 0.8 | 83 | 0.4 |
Aspergillus niger | Ochratoxin A b | Y e | 61 | 0.6 | 83 | 0.6 | 100 | 1.0 |
Fusarium oxysporum | Deoxynivalenol c | Y e | 53 | 1.4 | 67 | 5.1 | 33 | 3.8 |
Fusarium solani | Deoxynivalenol c | Y e | 5 | 0.9 | 0 | - *** | 17 | 0.8 |
Fusarium verticillioides * | Fumonisins a | Y e | 100 | 55.2 | 100 | 48.7 | 100 | 45.1 |
Penicillium oxalicum | Secalonic acid D d | Y e | 29 | 0.6 | 50 | 0.2 | 67 | 1.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biemond, P.C.; Stomph, T.J.; Kumar, P.L.; Struik, P.C. How Maize Seed Systems Can Contribute to the Control of Mycotoxigenic Fungal Infection: A Perspective. Agronomy 2021, 11, 2168. https://doi.org/10.3390/agronomy11112168
Biemond PC, Stomph TJ, Kumar PL, Struik PC. How Maize Seed Systems Can Contribute to the Control of Mycotoxigenic Fungal Infection: A Perspective. Agronomy. 2021; 11(11):2168. https://doi.org/10.3390/agronomy11112168
Chicago/Turabian StyleBiemond, P. Christiaan, Tjeerd Jan Stomph, P. Lava Kumar, and Paul C. Struik. 2021. "How Maize Seed Systems Can Contribute to the Control of Mycotoxigenic Fungal Infection: A Perspective" Agronomy 11, no. 11: 2168. https://doi.org/10.3390/agronomy11112168
APA StyleBiemond, P. C., Stomph, T. J., Kumar, P. L., & Struik, P. C. (2021). How Maize Seed Systems Can Contribute to the Control of Mycotoxigenic Fungal Infection: A Perspective. Agronomy, 11(11), 2168. https://doi.org/10.3390/agronomy11112168