Arsenic and Cadmium Accumulation in Soil as Affected by Continuous Organic Fertilizer Application: Implications for Clean Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fertilizer Treatments
2.2. Soil Sample Collection and Analysis
2.3. Plant Sample Collection and Analysis
2.4. Data Analysis
3. Results and Discussion
3.1. Soil Properties
3.2. As and Cd Bioavailability and Plant Uptake
3.3. As and Cd Accumulation in Soil
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- MEP (Ministry of Environment Protection of China). National Soil Pollution Survey Bulletin. 2014. Available online: http://www.gov.cn/foot/site1/20140417/782bcb88840814ba158d01.pdf (accessed on 27 August 2021).
- Wang, L.; Zhang, Q.; Liao, X.; Li, X.; Zheng, S.; Zhao, F. Phytoexclusion of heavy metals using low heavy metal accumulating cultivars: A green technology. J. Hazard. Mater. 2021, 413, 125427. [Google Scholar] [CrossRef]
- Jia, L.; Qiao, Y.; Chen, Q.; Li, H.; Shao, X.; Ma, H. Characteristics and affecting factors of heavy metals content in greenhouse vegetable soils in China. J. Agro-Environ. Sci. 2020, 39, 263–274. [Google Scholar]
- Liu, R.; Li, S.; Wang, X.; Wang, M. Contents of heavy metal in commercial organic fertilizer and organic wastes. J. Agro-Environ. Sci. 2005, 24, 392–397. [Google Scholar]
- MARA (Ministry of Agriculture and Rural Affairs of the People’s Republic of China). Standards on Organic Fertilizer in Agriculture of People’s Republic of China (NY525-2012); The Standardization Administration of the People’s Republic of China: Beijing, China, 2012.
- Huang, S.; Tang, J.; Li, C. Status of heavy metals, nutrients, and total salts in commercial organic fertilizers and organic wastes in China. Plant Nutr. Fert. Sci. 2017, 23, 162–173. [Google Scholar]
- Zhang, Y.; Li, Y.; Liu, Y.; Huang, X.; Zhang, W.; Jiang, T. Responses of soil labile organic carbon and carbon management index to different long-term fertilization treatments in a typical yellow soil region. Eurasian Soil Sci. 2021, 54, 605–618. [Google Scholar] [CrossRef]
- Maharjan, B.; Das, S.; Nielsen, R.; Hergert, G.W. Maize yields from manure and mineral fertilizers in the 100-year-old Knorr-Holden Plot. Agron. J. 2021. [Google Scholar] [CrossRef]
- Wang, J.; Fu, X.; Ghimire, R.; Sainju, U.M.; Jia, Y.; Zhao, F. Responses of soil bacterial community and enzyme activity to organic matter components under long-term fertilization on the loess plateau of china. Appl. Soil Ecol. 2021, 166, 103992. [Google Scholar] [CrossRef]
- Wang, X.; Liu, W.; Li, Z.; Teng, Y.; Christie, P.; Luo, Y. Effects of long-term fertilizer applications on peanut yield and quality and on plant and soil heavy metal accumulation. Pedosphere 2017, 30, 555–562. [Google Scholar] [CrossRef]
- Rao, Z.; Huang, D.; Wu, J.; Zhu, Q.; Zhu, H.; Xu, C.; Xiong, J.; Wang, H.; Duan, M. Distribution and availability of cadmium in profile and aggregates of a paddy soil with 30-year fertilization and its impact on Cd accumulation in rice plant. Environ. Pollut. 2018, 239, 198–204. [Google Scholar] [CrossRef]
- Hussain, B.; Li, J.; Ma, Y.; Chen, Y.; Wu, C.; Ullah, A.; Tahir, N. A field evidence of Cd, Zn and Cu accumulation in soil and rice grains after long-term (27 years) application of swine and green manures in a paddy soil. Sustainability 2021, 13, 2404. [Google Scholar] [CrossRef]
- Liao, Z.; Chen, Y.; Ma, J.; Islam, M.S.; Weng, L.; Li, Y. Cd, Cu, and Zn accumulations caused by long-term fertilization in greenhouse soils and their potential risk assessment. Int. J. Environ. Res. Public Health 2019, 16, 2805. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gul, S.; Naz, A.; Fareed, I.; Irshad, M. Reducing heavy metals extraction from contaminated soils using organic and inorganic amendments—A review. Pol. J. Environ. Stud. 2015, 24, 1423–1426. [Google Scholar]
- Chaney, R.L. Food safety issues for mineral and organic fertilizers. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier: Amsterdam, The Netherlands, 2012; pp. 51–116. [Google Scholar]
- Zhang, W. Study on bottlenecks and counter measures of promoting organic fertilizers in Shanghai suburbs. China Environ. Prot. Ind. 2008, 3, 28–31. (In Chinese) [Google Scholar]
- Junxiang, X.U.; Guoyuan ZO, U.; Qinping SU, N.; Yufei, L.I.; Jijin, L.I. Effects of application manure on Olsen-P accumulation and distribution in soil profile and the yield of vegetable. J. Nucl. Agric. Sci. 2016, 30, 1824–1832. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Sumner, M.E., Eds.; Soil Science Society of America, Inc.: Madison, WI, USA; American Society of Agronomy, Inc.: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measure soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 215–221. [Google Scholar]
- Zhang, W.; Hu, Z.; Liu, Y.; Chen, L.; Chen, H.; Li, M.; Zhao, L.; Hu, S.; Gao, S. Reassessment of HF/HNO3 decomposition capability in the high-pressure digestion of felsic rocks for multi-element determination by ICP-MS. Geostand. Geoanal. Res. 2012, 36, 271–289. [Google Scholar] [CrossRef]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Estimation of Available Phosphorous in Soils by Extraction with Sodium Bicarbonate; United States Department of Agriculture, USDA Circ.939: Washington DC, USA, 1954.
- MEE (Ministry of Ecology and Environment of the People’s Republic of China). Soil-Determination of Bioavailable Form of Eight Elements-Extraction with Buffered DTPA Solution/Inductively Couple Plasma Optical Emission Spectrometry (HJ 804-2016); MEE (Ministry of Ecology and Environment of the People’s Republic of China): Beijing, China, 2016.
- Zhang, C.; Cheng, L.; Huang, Q.; Wang, J.; Zhu, J. Study on determination of available arsenic in soil by ICP-MS. Chin. J. Anal. Lab. 2011, 30, 83–86. [Google Scholar] [CrossRef]
- Shiowatana, J.; Mclaren, R.G.; Chanmekha, N.; Samphao, A. Heavy metals in the environment-fractionation of arsenic in soil by a continuous-flow sequential extraction method. J. Environ. Qual. 2001, 30, 1940–1949. [Google Scholar] [CrossRef] [Green Version]
- Tessier, A.; Campbell, P.G.C.; Bission, M. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 1979, 51, 844–850. [Google Scholar] [CrossRef]
- Zare, A.A.; Khoshgoftarmanesha, A.H.; Malakoutib, M.J.; Bahramib, H.A.; Chaneyc, R.L. Root uptake and shoot accumulation of cadmium by lettuce at various Cd:Zn ratios in nutrient solution. Ecotoxicol. Environ. Saf. 2018, 148, 441–446. [Google Scholar] [CrossRef]
- Rezapour, S.; Atashpaz, B.; Moghaddam, S.S.; Damalas, C.A. Heavy metal bioavailability and accumulation in winter wheat (Triticum aestivum L.) irrigated with treated wastewater in calcareous soils. Sci. Total Environ. 2019, 656, 261–269. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, B.; Zhang, M.; Huang, Z.; Deng, Q.; Zhou, M.; Zhao, Z.; Wang, Y.; Wang, L. Vegetable and fruit consumption among chinese adults and associated factors: A nationally representative study of 170,847 adults. Biomed. Environ. Sci. 2017, 30, 863–874. [Google Scholar] [PubMed]
- USEPA (United States Environmental Protection Agency). EPA Region 3 Risk-Based Concentration Table. 2014. Available online: https://cfpub.epa.gov/ncea/iris/search/index.cfm (accessed on 27 August 2021).
- Song, B.; Lei, M.; Chen, T.; Zheng, Y.; Xie, Y.; Li, X.; Gao, D. Assessing the health risk of heavy metals in vegetables to the general population in Beijing, China. J. Environ. Sci. 2009, 21, 1702–1709. [Google Scholar] [CrossRef]
- Kayame, R.; Pigai, Y.; Mallongi, A. Assessing the target hazard quotients of lead via drinking water and seafood consumption from Paniai Lake, Paniai Regency Papua, Indonesia 2013. Int. J. Eng. Res. Technol. 2013, 2, 2137–2147. [Google Scholar]
- Chen, Y.; Camps-Arbestain, M.; Shen, Q.; Singh, B.; Cayuela, M.L. The long-term role of organic amendments in building soil nutrient fertility: A meta-analysis and review. Nutr. Cycl. Agroecosyst. 2018, 111, 103–125. [Google Scholar] [CrossRef]
- Böhme, L.; Langer, U.; Böhme, F. Microbial biomass, enzyme activities and microbial community structure in two European long-term field experiments. Agric. Ecosyst. Environ. 2005, 109, 141–152. [Google Scholar] [CrossRef]
- Graham, M.H.; Haynes, R.J. Organic matter accumulation and fertilizer-induced acidification interact to affect soil microbial and enzyme activity on a long-term sugarcane management experiment. Biol. Fertil. Soils 2005, 41, 249–256. [Google Scholar] [CrossRef]
- Chang, C.; Sommerfeldt, T.G.; Entz, T. Soil chemistry after eleven annual applications of cattle feedlot manure. J. Environ. Qual. 1991, 20, 475–480. [Google Scholar] [CrossRef]
- Heinze, S.; Raupp, J.; Joergensen, R.G. Effects of fertilizer and spatial heterogeneity in soil pH on microbial biomass indices in a long-term field trial of organic agriculture. Plant Soil 2010, 328, 203–205. [Google Scholar] [CrossRef]
- Tlustoš, P.; Hejcman, M.; Hůlka, M.; Patáková, M.; Kunzová, E.; Száková, J. Mobility and plant availability of risk elements in soil after long-term application of farmyard manure. Environ. Sci. Pollut. Res. 2016, 23, 23561–23572. [Google Scholar] [CrossRef]
- Dikinya, O.; Mufwanzala, N. Chicken manure-enhanced soil fertility and productivity: Effects of application rates. J. Soil Sci. Environ. Manag. 2010, 1, 46–54. [Google Scholar]
- Majewska, M.; Kurek, E.; Rogalski, J. Microbially mediated cadmium sorption/desorption processes in soil amended with sewage sludge. Chemosphere 2007, 67, 724–730. [Google Scholar] [CrossRef]
- Zhao, B.; Wang, X.; Dou, G.; Zhu, K.; Yuan, X.; Liu, G.; Pan, C. Effect of returning potato starch processing wastewater on nutrients and heavy metals in soils. J. Agric. Resour. Environ. 2020, 37, 666–671. [Google Scholar]
- CFDA (China Food and Drug Administration). National Food Safety Standards-Limits on Contaminants in Food (National Standards for the People’s Republic of China, GB 2762-2017); CFDA (China Food and Drug Administration): Beijing, China, 2017.
- Han, H.; Lee, J.; Ko, M.; Kim, K. Comparison of five extraction methods for evaluating cadmium and zinc immobilization in soil. Environ. Geochem. Health 2020, 42, 4203–4212. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tang, H.; Liu, T.; Li, Y.; Huang, X.; Pi, J. Effects of long-term fertilization practices on heavy metal cadmium accumulation in the surface soil and rice plants of double-cropping rice system in southern china. Environ. Sci. Pollut. Res. 2018, 25, 19836–19844. [Google Scholar] [CrossRef]
- Zhen, H.; Jia, L.; Huang, C.; Qiao, Y.; Li, J.; Li, H.; Chen, Q.; Wan, Y. Long-term effects of intensive application of manure on heavy metal pollution risk in protected-field vegetable production. Environ. Pollut. 2020, 263, 114552. [Google Scholar] [CrossRef]
- Huang, Q.; Yao, Y.; Wan, Y.; Qi, W.; Zhang, L.; Qiao, Y.; Su, D.; Li, H. Effects of continuous fertilization on bioavailability and fractionation of cadmium in soil and its uptake by rice (Oryza sativa L.). J. Environ. Manag. 2018, 215, 13–21. [Google Scholar] [CrossRef]
- Wan, Y.; Huang, Q.; Wang, Q.; Yu, Y.; Li, H. Accumulation and bioavailability of heavy metals in an acid soil and their uptake by paddy rice under continuous application of chicken and swine manure. J. Hazard. Mater. 2020, 384, 121293. [Google Scholar] [CrossRef]
- Brown, S.; Chaney, R.L.; Hallfrisch, J.G.; Xue, Q. Effect of biosolids processing on lead bioavailability in an urban soil. J. Environ. Qual. 2003, 32, 100–108. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Xu, M.; Xu, S.; Liu, J.; Wu, H.; Shen, P. Effects of organic matter on the stabilization process of added cadmium and lead in red soil and black soil. J. Agro-Environ. Sci. 2011, 30, 461–467. [Google Scholar]
- Park, B.J.; Lee, J.H.; Kim, W.I. Influence of soil characteristics and arsenic, cadmium, and lead contamination on their accumulation levels in rice and human health risk through intake of rice grown nearby abandoned mines. J. Korean Soc. Appl. Biol. Chem. 2012, 54, 575–582. [Google Scholar]
- Hou, S.; Zheng, N.; Tang, L.; Ji, X.; Li, Y. Effect of soil pH and organic matter content on heavy metals availability in maize (Zea mays, L.) rhizospheric soil of non-ferrous metals smelting area. Environ. Monit. Assess. 2019, 191, 634. [Google Scholar] [CrossRef] [PubMed]
- Hietala, K.A.; Roane, T.M. Microbial remediation of metals. In Advances in Applied Bioremediation; Kuhad, R.C., Ward, O.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; Volume 17, pp. 201–220. [Google Scholar]
- Yu, Y.; Wan, Y.N.; Camara, A.Y.; Li, H.F. Effects of the addition and aging of humic acid-based amendments on the solubility of cd in soil solution and its accumulation in rice. Chemosphere 2018, 196, 303–310. [Google Scholar] [CrossRef] [PubMed]
- Basta, N.T.; Ryan, J.A.; Chaney, R.L. Trace element chemistry in residual-treated soil: Key concepts and metal bioavailability. J. Environ. Qual. 2005, 34, 49–63. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cao, X.; Ma, L. Effects of compost and phosphate on arsenic accumulation from soils near pressure-treated wood. Environ. Pollut. 2004, 132, 435–442. [Google Scholar] [CrossRef] [PubMed]
- Bui, A.T.K.; Nguyen, H.T.H.; Nguyen, M.N.; Tran, T.H.T.; Vu, T.V.; Nguyen, C.H.; Reynolds, H.L. Accumulation and potential health risks of cadmium, lead and arsenic in vegetables grown near mining sites in northern Vietnam. Environ. Monit. Assess. 2016, 188, 525. [Google Scholar] [CrossRef]
- Garg, V.K.; Yadav, P.; Mor, S.; Singh, B.; Pulhani, V. Heavy metals bioconcentration from soil to vegetables and assessment of health risk caused by their ingestion. Biol. Trace Elem. Res. 2014, 157, 256–265. [Google Scholar] [CrossRef]
- MEE (Ministry of Ecology and Environment of the People’s Republic of China). National Standard of the People’s Republic of China. Soil Environmental Quality-Risk Control Standard for Soil Contamination of Agricultural Land (GB15618-2018); MEE (Ministry of Ecology and Environment of the People’s Republic of China): Beijing, China, 2018.
- Mazur, Z.; Mazur, T. The influence of long-term fertilization with slurry, manure and NPK on the soil content of trace elements. J. Elementol. 2016, 21, 131–139. [Google Scholar] [CrossRef]
- Sun, Q.P.; Li, J.J.; Liu, B.S.; Gao, L.J.; Xu, J.X.; Zou, G.Y.; Liu, B.C. Cadmium accumulation in soil and celery from a long-term manure applied field experiment. Adv. Mater. Res 2013, 726–731, 269–272. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, J.; Zhao, B.; Xin, X.; Zhang, C.; Zhang, H. The influence of long-term fertilization on cadmium (cd) accumulation in soil and its uptake by crops. Environ. Sci. Pollut. Res. 2014, 21, 10377–10385. [Google Scholar] [CrossRef]
- Xu, Y.; Yu, W.; Ma, Q.; Zhou, H. Potential risk of cadmium in a soil-plant system as a result of long-term (10 years) pig manure application. Plant Soil Environ. 2015, 61, 352–357. [Google Scholar]
- Luo, L.; Ma, Y.; Zhang, S.; Wei, D.; Zhu, Y. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manag. 2009, 90, 2524–2530. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Liu, J.; Xu, M.; Lv, J.; Nan, S. Accumulation, availability, and uptake of heavy metals in a red soil after 22-year fertilization and cropping. Environ. Sci. Pollut. Res. 2015, 22, 15154–15163. [Google Scholar] [CrossRef] [PubMed]
Treatment | Total N (g kg−1) | Olsen P (mg kg−1) | Exchangeable K (mg kg−1) | MBC (mg kg−1) | MBN (mg kg−1) |
---|---|---|---|---|---|
2011 | 1.4 | 106.4 | 192.3 | -- | -- |
2018 Low | 1.9 b | 227.4 b | 145.4 c | 164.5 b | 26.8 b |
2018 Medium | 2.4 a | 279.7 ab | 183.0 b | 201.0 ab | 29.0 b |
2018 High | 2.6 a | 312.7 a | 229.2 a | 246.8 a | 39.5 a |
p value | 0.0197 | 0.0335 | 0.0040 | 0.0089 | 0.0142 |
Treatment | Yield | Plant Content (mg kg−1 FW) | Bioconcentration Factor | Target Hazard Quotients | |||
---|---|---|---|---|---|---|---|
(t ha−1) | As | Cd | As | Cd | As | Cd | |
Low | 21.5 b | 0.008 a | 0.003 | 0.026 | 0.438 | 0.019 | 0.001 |
Medium | 19.2 b | 0.007 a | 0.003 | 0.021 | 0.402 | 0.009 | 0.001 |
High | 26.1 a | 0.004 b | 0.002 | 0.014 | 0.393 | 0.005 | 0.001 |
p Value | 0.0043 | 0.0024 | 0.9127 | -- | -- | -- | -- |
Threshold | -- | 0.5 | 0.05 | 1 | 1 | 1 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, N.; Thompson, R.B.; Xu, J.; Liao, S.; Suo, L.; Peng, Y.; Chen, Q.; Yang, J.; Li, Y.; Zou, G.; et al. Arsenic and Cadmium Accumulation in Soil as Affected by Continuous Organic Fertilizer Application: Implications for Clean Production. Agronomy 2021, 11, 2272. https://doi.org/10.3390/agronomy11112272
Sun N, Thompson RB, Xu J, Liao S, Suo L, Peng Y, Chen Q, Yang J, Li Y, Zou G, et al. Arsenic and Cadmium Accumulation in Soil as Affected by Continuous Organic Fertilizer Application: Implications for Clean Production. Agronomy. 2021; 11(11):2272. https://doi.org/10.3390/agronomy11112272
Chicago/Turabian StyleSun, Na, Rodney B. Thompson, Junxiang Xu, Shangqiang Liao, Linna Suo, Yutao Peng, Qing Chen, Jungang Yang, Yanmei Li, Guoyuan Zou, and et al. 2021. "Arsenic and Cadmium Accumulation in Soil as Affected by Continuous Organic Fertilizer Application: Implications for Clean Production" Agronomy 11, no. 11: 2272. https://doi.org/10.3390/agronomy11112272
APA StyleSun, N., Thompson, R. B., Xu, J., Liao, S., Suo, L., Peng, Y., Chen, Q., Yang, J., Li, Y., Zou, G., & Sun, Y. (2021). Arsenic and Cadmium Accumulation in Soil as Affected by Continuous Organic Fertilizer Application: Implications for Clean Production. Agronomy, 11(11), 2272. https://doi.org/10.3390/agronomy11112272