Factors Affecting New Agricultural Business Entities’ Adoption of Sustainable Intensification Practices in China: Evidence from the Main Apple-Producing Areas in the Loess Plateau
Abstract
:1. Introduction
2. Literature Review
3. Research Model and Hypotheses
3.1. Technology
3.2. Organization
3.3. Environment
3.4. Adoption Intention
4. Materials and Methods
4.1. Measurement of Variables
4.1.1. Dependent Variable
4.1.2. Independent Variable
4.2. Data Collection
4.3. Methods
5. Data Analysis and Results
5.1. Reliability and Validity of the Measurement Model
5.2. Hypothesis Test of the Structural Equation Model
6. Discussion
6.1. Technological Context
6.2. Organizational Context
6.3. Environmental Context
6.4. Adoption Intention
7. Conclusions and Implications
8. Limitations and Future Research Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Huang, J.; Yang, J.; Rozelle, S. China’s agriculture: Drivers of change and implications for China and the rest of world. Agric. Econ. 2010, 41, 47–55. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Jiao, X.-Q.; Mongol, N.; Zhang, F.-S. The transformation of agriculture in China: Looking back and looking forward. J. Integr. Agric. 2018, 17, 755–764. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Cui, Z.; Fan, M.; Zhang, W.; Chen, X.; Jiang, R. Integrated Soil-Crop System Management: Reducing Environmental Risk while Increasing Crop Productivity and Improving Nutrient Use Efficiency in China. J. Environ. Qual. 2011, 40, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Lal, R. Sustainable intensification of China’s agroecosystems by conservation agriculture. Int. Soil Water Conserv. Res. 2018, 6, 1–12. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration in China through agricultural intensification, and restoration of degraded and desertified ecosystems. Land Degrad. Dev. 2002, 13, 469–478. [Google Scholar] [CrossRef]
- Garnett, T.; Appleby, M.C.; Balmford, A.; Bateman, I.J.; Benton, T.G.; Bloomer, P.; Burlingame, B.; Dawkins, M.; Dolan, L.; Fraser, D.; et al. Sustainable Intensification in Agriculture: Premises and Policies. Sciene 2013, 341, 33–34. [Google Scholar] [CrossRef] [PubMed]
- Pretty, J. Intensification for redesigned and sustainable agricultural systems. Science 2018, 362, eaav0294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weltin, M.; Zasada, I.; Piorr, A.; Debolini, M.; Geniaux, G.; Perez, O.M.; Scherer, L.; Marco, L.T.; Schulp, C.J.E. Conceptualising fields of action for sustainable intensification—A system aticliterature review and application to regional case studies. Agric. Ecosyst. Environ. 2018, 257, 68–80. [Google Scholar] [CrossRef]
- Xu, C.; Chunru, H.; Taylor, D.C. Sustainable agricultural development in China. World Dev. 1992, 20, 1127–1144. [Google Scholar] [CrossRef]
- Jiao, X.-Q.; He, G.; Cui, Z.-L.; Shen, J.-B.; Zhang, F.-S. Agri-environment policy for grain production in China: Toward sustainable intensification. China Agric. Econ. Rev. 2018, 10, 78–92. [Google Scholar] [CrossRef]
- Godfray, H.C.J.; Beddington, J.R.; Crute, I.R.; Haddad, L.; Lawrence, D.; Muir, J.F.; Pretty, J.; Robinson, S.; Thomas, S.M.; Toulmin, C. Food Security: The Challenge of Feeding 9 Billion People. Science 2010, 327, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Opinions of the CPC Central Committee and the State Council on Accelerating the Development of Modern Agriculture and Further Enhancing the Vitality of Rural Development; China Cooperative Economy; Central Committee of the Communist Party of China, State Council: Beijing, China, 2013; Volume 2, pp. 4–9.
- Kong, X.Z. Status and top level design of new agricultural management entities. Reform 2014, 5, 34–36. [Google Scholar]
- Zhang, H.Y. Institutional features and development direction of China’s modern agricultural management. Chin. Rural. Econ. 2018, 397, 25–35. [Google Scholar]
- Department of Rural Economic Institutions and Management (DREIM). General Administration of Rural Cooperative Economic Management (GARCEM); China Rural Business Management Statistics Annual Report; China Agricultural Press: China, Beijing, 2016. [Google Scholar]
- Ruan, R.P.; Cao, B.X.; Zhou, P.; Zheng, F.T. The driving capacity of New Agricultural Management Entities and its determinants: An analysis based on data from 2615 New Agricultural Management Entities in China. Chin. Rural. Econ. 2017, 11, 17–32. [Google Scholar]
- Wang, Y.-N.; Jin, L.; Mao, H. Farmer Cooperatives’ Intention to Adopt Agricultural Information Technology—Mediating Effects of Attitude. Inf. Syst. Front. 2019, 21, 565–580. [Google Scholar] [CrossRef]
- Yang, W.; Yan, W. Analysis on Function Orientation and Development Countermeasures of New Agricultural Business Entities. J. Northeast. Agric. Univ. 2016, 23, 82–88. [Google Scholar] [CrossRef]
- Gao, Y.; Zhang, X.; Lu, J.; Wu, L.; Yin, S. Adoption behavior of green control techniques by family farms in China: Evidence from 676 family farms in Huang-huai-hai Plain. Crop. Prot. 2017, 99, 76–84. [Google Scholar] [CrossRef]
- Zeweld, W.; Van Huylenbroeck, G.; Tesfay, G.; Speelman, S. Smallholder farmers’ behavioural intentions towards sustainable agricultural practices. J. Environ. Manag. 2017, 187, 71–81. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daxini, A.; O’Donoghue, C.; Ryan, M.; Buckley, C.; Barnes, A.P.; Daly, K. Which factors influence farmers’ intentions to adopt nutrient management planning? J. Environ. Manag. 2018, 224, 350–360. [Google Scholar] [CrossRef] [PubMed]
- Jera, R.; Ajayi, O.C. Logistic modelling of smallholder livestock farmers’ adoption of tree-based fodder technology in Zimbabwe. Agrekon 2008, 47, 379–392. [Google Scholar] [CrossRef]
- Pilarova, T.; Bavorova, M.; Kandakov, A. Do farmer, household and farm characteristics influence the adoption of sustainable practices? The evidence from the Republic of Moldova. Int. J. Agric. Sustain. 2018, 16, 367–384. [Google Scholar] [CrossRef]
- Teklewold, H.; Kassie, M.; Shiferaw, B. Adoption of Multiple Sustainable Agricultural Practices in Rural Ethiopia. J. Agric. Econ. 2013, 64, 597–623. [Google Scholar] [CrossRef]
- Kassie, M.; Teklewold, H.; Jaleta, M.; Marenya, P.; Erenstein, O. Understanding the adoption of a portfolio of sustainable intensification practices in eastern and southern Africa. Land Use Policy 2015, 42, 400–411. [Google Scholar] [CrossRef]
- Kotu, B.H.; Alene, A.; Manyong, V.; Hoeschle-Zeledon, I.; Larbi, A. Adoption and impacts of sustainable intensification practices in Ghana. Int. J. Agric. Sustain. 2017, 15, 539–554. [Google Scholar] [CrossRef]
- Jabbar, A.; Wu, Q.; Peng, J.; Zhang, J.; Imran, A.; Yao, L. Synergies and Determinants of Sustainable Intensification Practices in Pakistani Agriculture. Land 2020, 9, 110. [Google Scholar] [CrossRef] [Green Version]
- Cafer, A.M.; Rikoon, J.S. Adoption of new technologies by smallholder farmers: The contributions of extension, research institutes, cooperatives, and access to cash for improving tef production in Ethiopia. Agric. Hum. Values 2018, 35, 685–699. [Google Scholar] [CrossRef]
- Ndiritu, S.W.; Kassie, M.; Shiferaw, B. Are there systematic gender differences in the adoption of sustainable agricultural intensification practices? Evidence from Kenya. Food Policy 2014, 49, 117–127. [Google Scholar] [CrossRef]
- Dimara, E.; Skuras, D. Adoption of agricultural innovations as a two-stage partial observability process. Agric. Econ. 2003, 28, 187–196. [Google Scholar] [CrossRef]
- Arts, J.W.; Frambach, R.T.; Bijmolt, T.H. Generalizations on consumer innovation adoption: A meta-analysis on drivers of intention and behavior. Int. J. Res. Mark. 2011, 28, 134–144. [Google Scholar] [CrossRef]
- Davis, F.D. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Q. 1989, 13, 319–339. [Google Scholar] [CrossRef] [Green Version]
- Ajzen, I.; Fishbein, M. Understanding Attitudes and Predicting Social Behaviour; Prentice-Hall: Hoboken, NJ, USA, 1980. [Google Scholar]
- Ajzen, I. The Theory of Planned Behavior. Organ. Behav. Hum. Decis. Process. 1991, 50, 179–211. [Google Scholar] [CrossRef]
- Rogers, E. Diffusion of Innovations, 4th ed.; The Free Press: New York, NY, USA, 2003. [Google Scholar]
- Tornatzky, L.; Fleischer, M. The Process of Technology Innovation; Lexington Books: Lexington, KY, USA, 1990. [Google Scholar]
- Venkatesh, V.; Bala, H. Technology Acceptance Model 3 and a Research Agenda on Interventions. Decis. Sci. 2008, 39, 273–315. [Google Scholar] [CrossRef] [Green Version]
- Prokopy, L.; Floress, K.; Klotthor-Weinkauf, D.; Baumgart-Getz, A. Determinants of agricultural best management practice adoption: Evidence from the literature. J. Soil Water Conserv. 2008, 63, 300–311. [Google Scholar] [CrossRef]
- Tey, Y.S.; Brindal, M.K. Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precis. Agric. 2012, 13, 713–730. [Google Scholar] [CrossRef]
- Knowler, D.; Bradshaw, B. Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy 2007, 32, 25–48. [Google Scholar] [CrossRef]
- Pannell, D.J.; Marshall, G.R.; Barr, N.; Curtis, A.; Vanclay, F.; Wilkinson, R. Understanding and promoting adoption of conservation practices by rural landholders. Aust. J. Exp. Agric. 2006, 46, 1407–1424. [Google Scholar] [CrossRef] [Green Version]
- Baumgart-Getz, A.; Prokopy, L.S.; Floress, K. Why farmers adopt best management practice in the United States: A meta-analysis of the adoption literature. J. Environ. Manag. 2012, 96, 17–25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reimer, A.P.; Weinkauf, D.K.; Prokopy, L.S. The influence of perceptions of practice characteristics: An examination of agricultural best management practice adoption in two Indiana watersheds. J. Rural. Stud. 2012, 28, 118–128. [Google Scholar] [CrossRef]
- Tey, Y.S.; Li, E.; Bruwer, J.; Abdullah, A.M.; Brindal, M.; Radam, A.; Ismail, M.M.; Darham, S. The relative importance of factors influencing the adoption of sustainable agricultural practices: A factor approach for Malaysian vegetable farmers. Sustain. Sci. 2013, 9, 17–29. [Google Scholar] [CrossRef]
- Tornatzky, L.G.; Klein, K.J. Innovation characteristics and innovation adoption-implementation: A meta-analysis of findings. IEEE Trans. Eng. Manag. 1982, EM-29, 28–45. [Google Scholar] [CrossRef]
- Kapoor, K.K.; Dwivedi, Y.K.; Williams, M.D. Rogers’ Innovation Adoption Attributes: A Systematic Review and Synthesis of Existing Research. Inf. Syst. Manag. 2014, 31, 74–91. [Google Scholar] [CrossRef] [Green Version]
- Ryan, S.D.; Abitia, G.R.; Windsor, J.C. Factors affecting the adoption of knowledge management technologies: An international perspective. In Proceedings of the 6th Americas Conference on Information Systems (AMCIS 2000), Long Beach, CA, USA, 10–13 August 2000; pp. 1201–1294. Available online: http://aisel.aisnet.org/amcis2000/197/ (accessed on 15 October 2015).
- Lee, J. Discriminant analysis of technology adoption behavior: A case of internet technologies in small businesses. J. Comput. Inf. Syst. 2004, 44, 57–66. [Google Scholar] [CrossRef]
- Robinson, T. Advances in apple culture worldwide. Rev. Bras. Frutic. 2011, 33, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Vanclay, F. Barriers to Adoption: A General Overview of the Issues. Rural. Soc. 1992, 2, 10–12. [Google Scholar] [CrossRef]
- Harwood, J.L.; Heifner, R.G.; Coble, K.H.; Perry, J.E.; Somwaru, A. Managing Risk in Farming: Concepts, Research, and Analysis. US Department of Agriculture, Economic Research Service, Washington, DC. Available online: http://www.ers.usda.gov/media/1761672/aer774.pdf (accessed on 15 October 2015).
- Noltze, M.; Schwarze, S.; Qaim, M. Understanding the adoption of system technologies in smallholder agriculture: The system of rice intensification (SRI) in Timor Leste. Agric. Syst. 2012, 108, 64–73. [Google Scholar] [CrossRef]
- Lee, D.R. Agricultural Sustainability and Technology Adoption: Issues and Policies for Developing Countries. Am. J. Agric. Econ. 2005, 87, 1325–1334. [Google Scholar] [CrossRef]
- Green, L.; Fry, A.F.; Myerson, J. Discounting of Delayed Rewards: A Life-Span Comparison. Psychol. Sci. 1994, 5, 33–36. [Google Scholar] [CrossRef]
- Ahuja, R.; Jain, M.; Sawhney, A.; Arif, M. Adoption of BIM by architectural firms in India: Technology–organization–environment perspective. Arch. Eng. Des. Manag. 2016, 12, 311–330. [Google Scholar] [CrossRef] [Green Version]
- Feder, G.; Slade, R. The Role of Public Policy in the Diffusion of Improved Agricultural Technology. Am. J. Agric. Econ. 1985, 67, 423–428. [Google Scholar] [CrossRef]
- Antle, J.M. Econometric Estimation of Producers’ Risk Attitudes. Am. J. Agric. Econ. 1987, 69, 509–522. [Google Scholar] [CrossRef]
- Rosenzweig, M.R.; Binswanger, H.P. Wealth, Weather Risk and the Composition and Profitability of Agricultural Investments. Econ. J. 1993, 103, 56. [Google Scholar] [CrossRef] [Green Version]
- Dercon, S.; Christiaensen, L. Consumption risk, technology adoption and poverty traps: Evidence from Ethiopia. J. Dev. Econ. 2011, 96, 159–173. [Google Scholar] [CrossRef] [Green Version]
- Feder, G.; Just, R.E.; Zilberman, D. Adoption of Agricultural Innovations in Developing Countries: A Survey. Econ. Dev. Cult. Chang. 1985, 33, 255–298. [Google Scholar] [CrossRef] [Green Version]
- Feder, G.; Umali, D.L. The adoption of agricultural innovations. Technol. Forecast. Soc. Chang. 1993, 43, 215–239. [Google Scholar] [CrossRef]
- Place, F.; Dewees, P. Policies and incentives for the adoption of improved fallows. Agrofor. Syst. 1999, 47, 323–343. [Google Scholar] [CrossRef]
- Owens, T.; Hoddinott, J.; Kinsey, B. The Impact of Agricultural Extension on Farm Production in Resettlement Areas of Zimbabwe. Econ. Dev. Cult. Chang. 2003, 51, 337–357. [Google Scholar] [CrossRef] [Green Version]
- Birkhaeuser, D.; Evenson, R.E.; Feder, G. The Economic Impact of Agricultural Extension: A Review. Econ. Dev. Cult. Chang. 1991, 39, 607–650. [Google Scholar] [CrossRef]
- Dinar, A.; Karagiannis, G.; Tzouvelekas, V. Evaluating the impact of agricultural extension on farms’ performance in Crete: A nonneutral stochastic frontier approach. Agric. Econ. 2007, 36, 135–146. [Google Scholar] [CrossRef]
- Kassie, M.; Jaleta, M.; Shiferaw, B.; Mmbando, F.; Mekuria, M. Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania. Technol. Forecast. Soc. Chang. 2013, 80, 525–540. [Google Scholar] [CrossRef]
- Tey, Y.S. The Adoption of Sustainable Agricultural Practices: An Integrative Approach for Malaysian Vegetable Farmers. Ph.D. Thesis, The University of Adelaide, Adelaide, Australia, 2013. [Google Scholar]
- D’Emden, F.H.; Llewellyn, R.S.; Burton, M.P. Adoption of conservation tillage in Australian cropping regions: An application of duration analysis. Technol. Forecast. Soc. Chang. 2006, 73, 630–647. [Google Scholar] [CrossRef]
- Dankyi, A.; Andah, K.; Moris, M.M.; Fosu, Y. Farmer characteristics, ecological zones and adoption decisions: A tobit model application for maize technology in Ghana. Agric. Food Sci. J. Ghana 2006, 4, 341–351. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Predicting and Changing Behavior: The Reasoned Action Approach; Taylor and Francis: New York, NY, USA, 2010. [Google Scholar]
- Bamberg, S. How does environmental concern influence specific environmentally related behaviors? A new answer to an old question. J. Environ. Psychol. 2003, 23, 21–32. [Google Scholar] [CrossRef]
- Maliuk, T.; Pcholkina, N.; Kozlova, L.; Yeremenko, O. Nitrogen in Soil Profile and Fruits in the Intensive Apple Cultivation Technology. Mod. Dev. Paths Agric. Prod. 2019, 737–751. [Google Scholar] [CrossRef]
- Fallahi, E.; Neilsen, D.; Neilsen, G.H.; Fallahi, B.; Shafii, B. Efficient Irrigation for Optimum Fruit Quality and Yield in Apples. HortScience 2010, 45, 1616–1625. [Google Scholar] [CrossRef] [Green Version]
- Im, I.; Kim, Y.; Han, H.-J. The effects of perceived risk and technology type on users’ acceptance of technologies. Inf. Manag. 2008, 45, 1–9. [Google Scholar] [CrossRef]
- Zhu, K.; Dong, S.; Xu, S.; Kraemer, K.L. Innovation diffusion in global contexts: Determinants of post-adoption digital transformation of European companies. Eur. J. Inf. Syst. 2006, 15, 601–616. [Google Scholar] [CrossRef]
- Yang, W.J.; Ye, X.S. The Uncertainty and Multi-level Risk Prevention System of Chinese Agriculture. Guizhou Social Sci. 2008, 10, 94–98. [Google Scholar] [CrossRef]
- Feng, X.L.; Chen, Z.X.; Huo, X.X. Influencing factors of apple farmer adaptation to meteorological disasters. Resour. Sci. 2015, 37, 2491–2500. [Google Scholar]
- Lu, Q.N. The distribution and ecologic factors of apples in China. Sci. Agric. Sin. 1980, 46–51. [Google Scholar]
- Wossen, T.; Abdoulaye, T.; Alene, A.; Haile, M.G.; Feleke, S.; Olanrewaju, A.; Manyong, V. Impacts of extension access and cooperative membership on technology adoption and household welfare. J. Rural. Stud. 2017, 54, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Sheng, L. Reach for good apple—Intensive cultivation mode and key technology of apple dwarf stock in Loess Plateau. China Rural Sci. Technol. 2017, 09, 10–11. [Google Scholar] [CrossRef]
- Schumacker, R.E.; Lomax, R.G. A Beginner’s Guide to Structural Equation Modeling; Psychology Press: New York, NY, USA, 2004. [Google Scholar]
- Hu, L.; Bentler, P.M. Evaluating model fit. In Structural Equation Modeling: Concepts, Issues, and Applications; Hoyle, R.H., Ed.; Sage: Thousand Oaks, CA, USA, 1995; pp. 76–99. [Google Scholar]
- Shevlin, M.; Miles, J. Effects of sample size, model specification and factor loadings on the GFI in confirmatory factor analysis. Pers. Individ. Differ. 1998, 25, 85–90. [Google Scholar] [CrossRef]
- Fornell, C.; Bookstein, F.L. Two Structural Equation Models: LISREL and PLS Applied to Consumer Exit-Voice Theory. J. Mark. Res. 1982, 19, 440. [Google Scholar] [CrossRef] [Green Version]
- Bagozzi, R.P.; Yi, Y. On the evaluation of structural equation models. J. Acad. Mark. Sci. 1988, 16, 74–94. [Google Scholar] [CrossRef]
- Fornell, C.; Larcker, D.F. Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. J. Mark. Res. 1981, 18, 39–50. [Google Scholar] [CrossRef]
- Arbuckle, J.G.; Roesch-McNally, G. Cover crop adoption in Iowa: The role of perceived practice characteristics. J. Soil Water Conserv. 2015, 70, 418–429. [Google Scholar] [CrossRef] [Green Version]
- Batz, F. The influence of technology characteristics on the rate and speed of adoption. Agric. Econ. 1999, 21, 121–130. [Google Scholar] [CrossRef]
- Gardial, S.F.; Clemons, D.S.; Woodruff, R.B.; Schumann, D.W.; Burns, M.J. Comparing Consumers’ Recall of Prepurchase and Postpurchase Product Evaluation Experiences. J. Consum. Res. 1994, 20, 548–560. [Google Scholar] [CrossRef]
- Thompson, D.V.; Hamilton, R.W.; Rust, R.T. Feature Fatigue: When Product Capabilities Become Too Much of a Good Thing. J. Mark. Res. 2005, 42, 431–442. [Google Scholar] [CrossRef]
- Daberkow, S.G.; McBride, W.D. Farm and Operator Characteristics Affecting the Awareness and Adoption of Precision Agriculture Technologies in the US. Precis. Agric. 2003, 4, 163–177. [Google Scholar] [CrossRef]
- Ribaudo, M.O.; Johansson, R.C. Nutrient Management Use at the Rural–Urban Fringe: Does Demand for Environmental Quality Play a Role? Rev. Agric. Econ. 2007, 29, 689–699. [Google Scholar] [CrossRef]
- Paustian, M.; Theuvsen, L. Adoption of precision agriculture technologies by German crop farmers. Precis. Agric. 2016, 18, 701–716. [Google Scholar] [CrossRef]
- Doss, C.; Mwangi, W.; Verkuijl, H.; de Groote, H. Adoption of Maize and Wheat Technologies in Eastern Africa: A Synthesis of Findings of 22 Case Studies; CYMMYT Economics Working Paper 03-01; CYMMIT: Mexico, D.F., Mexico, 2003. [Google Scholar]
- Zhang, C.Y.; Chang, Q.; Huo, X.X. Can the Moderate scale Management Really Reduce the Production Costs of Agricultural Products: An Empirical Analysis Based on 661 Shaanxi Apple Farmers. J. Agrotech. Econ. 2018, 10, 26–35. [Google Scholar] [CrossRef]
- Daxini, A.; Ryan, M.; O’Donoghue, C.; Barnes, A. Understanding farmers’ intentions to follow a nutrient management plan using the theory of planned behaviour. Land Use Policy 2019, 85, 428–437. [Google Scholar] [CrossRef]
- Smith, R.E. Land Tenure, Fixed Investment, and Farm Productivity: Evidence from Zambia’s Southern Province. World Dev. 2004, 32, 1641–1661. [Google Scholar] [CrossRef]
- Trope, Y.; Liberman, N. Temporal construal. Psychol. Rev. 2003, 110, 403–421. [Google Scholar] [CrossRef] [PubMed]
- Adegbola, P.; Gardebroek, C. The effect of information sources on technology adoption and modification decisions. Agric. Econ. 2007, 37, 55–65. [Google Scholar] [CrossRef]
- Kerner, M.S.; Grossman, A.H. Attitudinal, Social, and Practical Correlates to Fitness Behavior: A Test of the Theory of Planned Behavior. Percept. Mot. Ski. 1998, 87, 1139–1154. [Google Scholar] [CrossRef] [PubMed]
- Conner, M.; Sheeran, P.; Norman, P.; Armitage, C.J. Temporal stability as a moderator of relationships in the Theory of Planned Behaviour. Br. J. Soc. Psychol. 2000, 39, 469–493. [Google Scholar] [CrossRef] [PubMed]
- Ajzen, I. Attitudes, Personality and Behavior, 2nd ed.; Open University Press: New York, NY, USA, 2005. [Google Scholar]
Latent Variables | Two Order Latent Variable | Observed Variables | Description | Average Value | Standard Deviation | |
---|---|---|---|---|---|---|
SIACS adoption | Adoption intention | AI1 | Adoption Attitudes | We are willing to adopt SIACS: Likert scale (1 D strongly disagree; 5 D strongly agree) | 3.54 | 1.13 |
AI2 | Promotion intention | I would recommend SIACS to others: Likert scale (1 D strongly disagree; 5 D strongly agree) | 3.07 | 1.33 | ||
Adoption intensity | AIE1 | Cultivation pattern | Has the dwarf anvil intensification model been adopted? categorical (yes = 1, no = 0) | 0.47 | 0.50 | |
AIE2 | Nutrient management | Burying chemical fertilizer = 1, burying organic fertilizer = 2, burying of chemical and organic fertilizers = 3, burying of chemical fertilizers and spreading of organic fertilizers = 3, water fertilization and buried organic fertilizer = 4, water fertilization = 4, spreading of organic fertilizer = 4, water fertilization and spreading of organic fertilizer = 5 | 1.89 | 1.52 | ||
AII3 | Irrigation | Large flood = 1, furrow = 2, pit = 3, sprinkler = 4, drip = 5 | 1.65 | 1.44 | ||
Technology | Relative advantage | RA1 | Labor saving | I think SIACS technology is easy to mechanize and saves labor compared to traditional techniques: Likert scale (1 D strongly disagree; 5 D strongly agree) | 3.28 | 1.41 |
RA2 | Increased production | I think the advantage of SIACS is that its high-density planting can dramatically increase average acre yields: Likert scale (1 D strongly disagree; 5 D strongly agree) | 2.67 | 1.38 | ||
Perceived barriers | PB1 | Complexity | I find the SIACS technique easy to grasp and manipulate: Likert scale (1 D strongly disagree; 5 D strongly agree) | 3.19 | 1.22 | |
PB2 | Perceived risk | SIACS is likely to fall short of expectations and disappoint me: Likert scale (1 D strongly disagree; 5 D strongly agree) | 2.95 | 1.16 | ||
Organization | Organization size | OS1 | Area | Acreage of apples: Continuous (hectares) | 11.83 | 28.72 |
OS2 | Number of employees | Number of permanent employees: Continuous (ren) | 10.54 | 25.29 | ||
Management capacity | MC1 | Formal education | Literacy of decision makers: categorical (no education = 1, primary = 2, middle school = 3, high school = 4, college and above = 5) | 3.54 | 0.94 | |
MC2 | Technical specialization | Whether to hire a technician specializing in SIACS management: categorical (yes = 1, no = 0) | 0.26 | 0.44 | ||
Risk response capacity | RRC1 | Market risk response | If the market price for apples is low, would you choose to sell them cheaply or store them in cold storage until the price is right: categorical (store = 1, sell = 0) | 0.65 | 0.48 | |
RRC3 | Natural risk response | Whether agricultural insurance has been purchased: categorical (yes = 1, no = 0) | 0.47 | 0.50 | ||
Environment | Public agricultural extension services | PAES1 | Government extension efforts | Strong government support for SIACS adoption: Likert scale (1 D strongly disagree; 5 D strongly agree) | 4.17 | 1.22 |
PAES2 | Extension training | Participation in SIACS-related technical training events organized by the government has been very helpful to organizations: Likert scale (1 D strongly disagree; 5 D strongly agree) | 3.76 | 1.20 | ||
Agroecological endowments | AE1 | Ecological suitability | Based on apple climate suitability zoning criteria: apple climate suitability zoning table (1 point for each condition) | 3.06 | 1.65 | |
AE2 | Stability of irrigation water | Orchards can be irrigated promptly when water is scarce: Likert scale (1 D strongly disagree; 5 D strongly agree) | 2.94 | 1.63 |
Annual Average Temperature (°C) | Annual Precipitation (mm) | Average Temperature in Mid-January (°C) | Annual Extreme Lowest Temperature (°C) | Average Temperature in June–August (°C) | Number of Days >35 °C | Average Minimum Temperature in Summer (°C) | |
---|---|---|---|---|---|---|---|
The most suitable area | 9–11 | 560–750 | >−14 | >−27 | 19–23 | <6 | 15–18 |
Range of Standardized Path Loadings | Convergent Validity (p-Value) | Composite Reliability | Average Variance Extracted | |
---|---|---|---|---|
PB | 0.805–0.866 | All < 0.01 | 0.765 | 0.699 |
RA | 0.826–0.862 | All < 0.01 | 0.779 | 0.713 |
MC | 0.861–0.893 | All < 0.01 | 0.837 | 0.769 |
OS | 0.531–0.894 | All < 0.01 | 0.853 | 0.541 |
RRC | 0.778–0.889 | All < 0.01 | 0.763 | 0.698 |
AE | 0.811–0.949 | All < 0.01 | 0.846 | 0.779 |
PAES | 0.701–0.995 | All < 0.01 | 0.809 | 0.741 |
AI | 0.775–0.897 | All < 0.01 | 0.769 | 0.703 |
AIE | 0.786–0.820 | All < 0.01 | 0.693 | 0.569 |
PB | RA | MC | OS | RRC | AE | PAES | WTA | SIACSA | |
---|---|---|---|---|---|---|---|---|---|
PB | 0.836 | ||||||||
RA | −0.359 | 0.844 | |||||||
MC | −0.52 | 0.395 | 0.877 | ||||||
OS | −0.403 | 0.294 | 0.600 | 0.735 | |||||
RRC | −0.413 | 0.196 | 0.482 | 0.303 | 0.835 | ||||
AE | −0.418 | 0.465 | 0.458 | 0.379 | 0.253 | 0.883 | |||
PAES | −0.28 | 0.464 | 0.264 | 0.278 | 0.302 | 0.344 | 0.861 | ||
AI | −0.511 | 0.524 | 0.376 | 0.311 | 0.192 | 0.542 | 0.344 | 0.838 | |
AIE | −0.631 | 0.672 | 0.655 | 0.482 | 0.552 | 0.688 | 0.55 | 0.458 | 0.754 |
Index | x2 | df | x2/df | CFI | GFI | AGFI | RMSEA |
---|---|---|---|---|---|---|---|
Fitted values | 229.805 | 123 | 1.868 | 0.897 | 0.943 | 0.842 | 0.065 |
Recommended values | The smaller the better | The bigger the better | <3 | >0.8 | >0.9 | >0.8 | <0.08 |
Hypothesis | Path From | Path to | R2 | Standard Error S.E. | Critical Ratio C.R. | p | Path Coefficient | Supported |
---|---|---|---|---|---|---|---|---|
H1a | Perceived barriers | SIACS adoption intention | 0.364 | 0.066 | −4.041 | *** | −0.344 | Yes |
H2a | Relative advantage | 0.047 | 3.484 | *** | 0.285 | Yes | ||
H3a | Management capacity | 0.219 | 0.253 | 0.800 | 0.026 | No | ||
H4a | Organizational size | 0.006 | 0.403 | 0.687 | 0.038 | No | ||
H5a | Risk response capacity | 0.172 | −0.826 | 0.409 | 0.071 | No | ||
H6a | Agroecological endowments | 0.043 | 4.456 | *** | 0.361 | Yes | ||
H7a | Public agricultural extension services | 0.058 | 2.235 | 0.025 | 0.173 | Yes | ||
H1b | Perceived barriers | SIACS adoption decision | 0.871 | 0.068 | −3.795 | *** | −0.382 | Yes |
H2b | Relative advantage | 0.052 | 3.895 | *** | 0.409 | Yes | ||
H3b | Management capacity | 0.194 | 2.257 | 0.024 | 0.242 | Yes | ||
H4b | Organizational size | 0.005 | 0.631 | 0.528 | 0.058 | No | ||
H5b | Risk response capabilities | 0.159 | 3.011 | 0.003 | 0.278 | Yes | ||
H6b | Agroecological endowments | 0.056 | 5.696 | *** | 0.699 | Yes | ||
H7b | Public agricultural extension services | 0.059 | 3.545 | *** | 0.324 | Yes | ||
H8 | Adoption intention | 0.099 | −3.164 | 0.002 | 0.363 | Yes |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Liu, J.; Li, T.; Chao, J.; Gao, X. Factors Affecting New Agricultural Business Entities’ Adoption of Sustainable Intensification Practices in China: Evidence from the Main Apple-Producing Areas in the Loess Plateau. Agronomy 2021, 11, 2435. https://doi.org/10.3390/agronomy11122435
Wang Z, Liu J, Li T, Chao J, Gao X. Factors Affecting New Agricultural Business Entities’ Adoption of Sustainable Intensification Practices in China: Evidence from the Main Apple-Producing Areas in the Loess Plateau. Agronomy. 2021; 11(12):2435. https://doi.org/10.3390/agronomy11122435
Chicago/Turabian StyleWang, Zhao, Jianhong Liu, Tongsheng Li, Jing Chao, and Xupeng Gao. 2021. "Factors Affecting New Agricultural Business Entities’ Adoption of Sustainable Intensification Practices in China: Evidence from the Main Apple-Producing Areas in the Loess Plateau" Agronomy 11, no. 12: 2435. https://doi.org/10.3390/agronomy11122435
APA StyleWang, Z., Liu, J., Li, T., Chao, J., & Gao, X. (2021). Factors Affecting New Agricultural Business Entities’ Adoption of Sustainable Intensification Practices in China: Evidence from the Main Apple-Producing Areas in the Loess Plateau. Agronomy, 11(12), 2435. https://doi.org/10.3390/agronomy11122435