VISmaF: Synthetic Tree for Immersive Virtual Visualization in Smart Farming. Part I: Scientific Background Review and Model Proposal †
Abstract
:1. Introduction
2. Plant and Crop Models
2.1. Functional–Structural Plant Models (FSPM)
2.2. Functional Plant Models (FPM)
2.3. Structural Plant Models (SPM)
2.4. Critical Comparison of Modeling Systems in Agronomical Applications
3. 3D Tree-Rendering Techniques
3.1. Particle Systems and Procedural Methods
3.2. Rule-Based Methods
3.3. Hybrid Methods
4. VISmaF: Synthetic Tree for Immersive Virtual Visualization in Smart Farming Model Porposal
- A biological mathematical model to simulate the internode and branch growth;
- A 3D structure module to render the tree.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
FSPM | Functional–Structural Plant Model |
FPM | Functional Plant Model |
SPM | Sctructural Plant Model |
ODE | Ordinary Differential Equation |
RGG | Relational Growth Grammars |
GU | Growth Units |
FU | Fruiting Units |
References
- Zhang, Q.L.; Pang, M.Y. A survey of Modeling and Rendering Trees; Springer: Berlin/Heidelberg, Germany, 2008; pp. 757–764. [Google Scholar]
- Boudon, F.; Meyer, A.; Godin, C. Survey on Computer Representations of Trees for Realistic and Efficient Rendering. Research Report 2301, LIRIS UMR CNRS 5205. 2006. Available online: https://hal.inria.fr/hal-00830069/file/LIRIS-RR-2006-003.pdf (accessed on 1 September 2021).
- Ulam, S. Patterns of growth of figures: Mathematical aspects. In Module, Proportion, Symmetry, Rhythm; G. Braziller: New York, NY, USA, 1966; pp. 64–74. [Google Scholar]
- Greene, N. Voxel space automata: Modeling with stochastic growth processes in voxel space. In SIGGRAPH’89: Proceedings of the 16th Annual Conference on Computer Graphics and Interactive Techniques; Association for Computing Machinery: New York, NY, USA, 1989. [Google Scholar]
- Honda, H. Description of the form of trees by the parameters of the tree-like body: Effects of the branching angle and the branch length on the shape of the tree-like body. J. Theor. Biol. 1971, 31, 331–338. [Google Scholar] [CrossRef]
- Lindenmayer, A. Mathematical models for cellular interactions in development I. Filaments with one-sided inputs. J. Theor. Biol. 1968, 18, 280–299. [Google Scholar] [CrossRef]
- Prusinkiewicz, P.; Lindenmayer, A. The Algorithmic Beauty of Plants; Springer: New York, NY, USA, 1996. [Google Scholar]
- Oppenheimer, P. Real time design and animation of fractal plants and trees. In ACM Siggraph Computer Graphics; Association for Computing Machinery: New York, NY, USA, 1986; Volume 20, pp. 55–64. [Google Scholar]
- Deussen, O.; Lintermann, B. Digital Design of Nature: Computer Generated Plants and Organics; Springer: Berlin/Heidelberg, Germany, 2006. [Google Scholar]
- Louarn, G.; Song, Y. Two decades of functional–structural plant modelling: Now addressing fundamental questions in systems biology and predictive ecology. Ann. Bot. 2020, 126, 501–509. [Google Scholar] [CrossRef]
- Zhu, B.; Liu, F.; Xie, Z.; Guo, Y.; Li, B.; Ma, Y. Quantification of light interception within image-based 3-D reconstruction of sole and intercropped canopies over the entire growth season. Ann. Bot. 2020, 126, 701–712. [Google Scholar] [CrossRef] [Green Version]
- Che, Y.; Wang, Q.; Xie, Z.; Zhou, L.; Li, S.; Hui, F.; Wang, X.; Li, B.; Ma, Y. Estimation of maize plant height and leaf area index dynamics using an unmanned aerial vehicle with oblique and nadir photography. Ann. Bot. 2020, 126, 765–773. [Google Scholar] [CrossRef]
- Lama, G.F.C.; Crimaldi, M.; Pasquino, V.; Padulano, R.; Chirico, G.B. Bulk Drag Predictions of Riparian Arundo donax Stands through UAV-Acquired Multispectral Images. Water 2021, 13, 1333. [Google Scholar] [CrossRef]
- Pirk, S.; Niese, T.; Deussen, O.; Neubert, B. Capturing and animating the morphogenesis of polygonal tree models. ACM Trans. Graph. TOG 2012, 31, 169. [Google Scholar] [CrossRef] [Green Version]
- Makowski, M.; Hädrich, T.; Scheffczyk, J.; Michels, D.L.; Pirk, S.; Pałubicki, W. Synthetic silviculture: Multi-scale modeling of plant ecosystems. ACM Trans. Graph. 2019, 38, 131. [Google Scholar] [CrossRef]
- Magnor, M.A.; Grau, O.; Sorkine-Hornung, O.; Theobalt, C. Digital Representations of the Real World: How to Capture, Model, and Render Visual Reality; AK Peters/CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Lama, G.F.C.; Errico, A.; Francalanci, S.; Solari, L.; Preti, F.; Chirico, G.B. Evaluation of Flow Resistance Models Based on Field Experiments in a Partly Vegetated Reclamation Channel. Geosciences 2020, 10, 47. [Google Scholar] [CrossRef] [Green Version]
- Millar, A.J.; Urquiza, U.; Freeman, P.L.; Hume, A.; Plotkin, G.D.; Sorokina, O.; Zardilis, A.; Zielinski, T. Practical steps to digital organism models, from laboratory model species to ‘Crops in silico. J. Exp. Bot. 2019, 70, 2403–2418. [Google Scholar] [CrossRef] [Green Version]
- Henke, M.; Kurth, W.; Buck-Sorlin, G. FSPM-P: Towards a general functional-structural plant model for robust and comprehensive model development. Front. Comput. Sci. 2016, 10, 1103–1117. [Google Scholar] [CrossRef]
- Cournède, P.H.; Kang, M.Z.; Mathieu, A.; Barczi, J.F.; Yan, H.P.; Hu, B.G. Structural Factorization of Plants to Compute Their Functional and Architectural Growth. Funct. Archit. Growth 2006, 82, 427–438. [Google Scholar] [CrossRef]
- Room, P.; Hanan, J.; Prusinkiewicz, P. Virtual plants: New perspectives for ecologists, pathologists and agricultural scientists. Trends Plant Sci. 1996, 1, 33–38. [Google Scholar] [CrossRef]
- Gumbau, J.; Chover, M.; Remolar, I.; Rebollo, C. View-dependent pruning for real-time rendering of trees. Comput. Graph. 2011, 35, 364–374. [Google Scholar] [CrossRef]
- Boudon, F.; Persello, S.; Jestin, A.; Briand, A.S.; Grechi, I.; Fernique, P.; Guédon, Y.; Léchaudel, M.; Lauri, P.E.; Normand, F. V-Mango: A functional–structural model of mango tree growth, development and fruit production. Ann. Bot. 2020, 126, 745–763. [Google Scholar] [CrossRef]
- Vries, J. How Plants Balance Competitive Growth and Defence: An Analysis of Virtual Plants in Dynamic Interactions. Ph.D. Dissertation, Wageningen University, Wageningen, The Netherlands, 2019. [Google Scholar]
- Lecarpentier, C.; Barillot, R.; Blanc, E.; Abichou, M.; Goldringer, I.; Barbillon, P. WALTer: A three-dimensional wheat model to study competition for light through the prediction of tillering dynamics. Ann. Bot. 2019, 123, 961–975. [Google Scholar] [CrossRef]
- Wu, A.; Doherty, A.; Farquhar, G.D.; Hammer, G.L. Simulating daily field crop canopy photosynthesis: An integrated software package. Funct. Plant Biol. 2018, 45, 362–377. [Google Scholar] [CrossRef] [Green Version]
- Zhou, X.; Schnepf, A.; Lacointe, A.; Vanderborght, J.; Leitner, D.; Vereecken, H.; Lobet, G. Presentation of CPlantBox: A whole functional-structural plant model (root and shoot) coupled with a mechanistic resolution of carbon and water flows. In Proceedings of the 2018 6th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA), Hefei, China, 4–8 November 2018; pp. 147–151. [Google Scholar] [CrossRef]
- Crimaldi, M.; Cartenì, F.; Giannino, F. VISmaF: Synthetic Tree for Immersive Virtual Visualization in Smart Farming. Part II: Model Development, Validation and Results. Available online: https://sciforum.net/manuscripts/9880/manuscript.pdf (accessed on 28 September 2021).
- DeJong, T.M.; Da Silva, D.; Vos, J.; Escobar-Gutiérrez, A.J. Using functional–structural plant models to study, understand and integrate plant development and ecophysiology. Ann. Bot. 2011, 108, 987–989. [Google Scholar] [CrossRef] [Green Version]
- Godin, C.; Sinoquet, H. Functional–structural plant modelling. New Phytol. 2005, 166, 705–708. [Google Scholar] [CrossRef]
- Godin, C. Representing and encoding plant architecture: A review. Ann. For. Sci. 2000, 57, 413–438. [Google Scholar] [CrossRef]
- Chaudhury, A.; Godin, C. Geometry Reconstruction of Plants. In Intelligent Image Analysis for Plant Phenotyping; CRC Press: Boca Raton, FL, USA, 2020; pp. 119–142. [Google Scholar]
- Kahlen, K.; Chen, T.W. Predicting Plant Performance Under Simultaneously Changing Environmental Conditions—The Interplay Between Temperature, Light, and Internode Growth. Front. Plant Sci. 2015, 6, 1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Van Westreenen, A.; Anten, N.P.; Evers, J.B.; Marcelis, L.F. Disentangling the effects of photosynthetically active radiation and red to far-red ratio on plant photosynthesis under canopy shading: A simulation study using a functional–structural plant model. Ann. Bot. 2020, 126, 635–646. [Google Scholar] [CrossRef] [PubMed]
- Lam, Z.; King, S.A. Simulating tree growth based on internal and environmental factors. In Proceedings of the 3rd International Conference on Computer Graphics and Interactive Techniques in Australasia and South East Asia, Dunedin, New Zealand, 29 November–2 December 2005; Association for Computing Machinery: Dunedin, New Zealand, 2005. GRAPHITE’05. pp. 99–107. [Google Scholar] [CrossRef]
- Barczi, J.F.; Rey, H.; Caraglio, Y.; de Reffye, P.; Barthélémy, D.; Dong, Q.X.; Fourcaud, T. AmapSim: A Structural Whole-plant Simulator Based on Botanical Knowledge and Designed to Host External Functional Models. Ann. Bot. 2008, 101, 1125–1138. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, X.R.; Schnepf, A.; Vanderborght, J.; Leitner, D.; Lacointe, A.; Vereecken, H.; Lobet, G. CPlantBox, a whole-plant modelling framework for the simulation of water- and carbon-related processes. Silico Plants 2020, 2, diaa001. [Google Scholar] [CrossRef] [Green Version]
- De Reffye, P.; Hu, B.; Kang, M.; Letort, V.; Jaeger, M. Two decades of research with the GreenLab model in Agronomy. Ann. Bot. 2020. [Google Scholar] [CrossRef]
- Allen, M.T.; Prusinkiewicz, P.; DeJong, T.M. Using L-systems for modeling source-sink interactions, architecture and physiology of growing trees: The L-PEACH model. New Phytol. 2005, 166, 869–880. [Google Scholar] [CrossRef] [Green Version]
- Bailey, B.N. Helios: A Scalable 3D Plant and Environmental Biophysical Modeling Framework. Front. Plant Sci. 2019, 10, 1185. [Google Scholar] [CrossRef] [PubMed]
- Kniemeyer, O.; Buck-Sorlin, G.; Kurth, W. GroIMP as a platform for functional-structural modelling of plants. Frontis 2007, 22, 43–52. [Google Scholar]
- Lescourret, F.; Moitrier, N.; Valsesia, P.; Génard, M. QualiTree, a virtual fruit tree to study the management of fruit quality. I. Model development. Trees 2011, 25, 519–530. [Google Scholar] [CrossRef]
- Dauzat, J.; Franck, N.; Rapidel, B.; Luquet, D.; Vaast, P. Simulation of ecophysiological processes on 3D virtual stands with the ARCHIMED simulation platform. In Proceedings of the 2006 Second International Symposium on Plant Growth Modeling and Applications, Beijing, China, 13–17 November 2006; pp. 101–108. [Google Scholar] [CrossRef]
- Sinoquet, H.; Le Roux, X.; Adam, B.; Ameglio, T.; Daudet, F.A. RATP: A model for simulating the spatial distribution of radiation absorption, transpiration and photosynthesis within canopies: Application to an isolated tree crown. Plant Cell Environ. 2001, 24, 395–406. [Google Scholar] [CrossRef]
- Sarlikioti, V.; de Visser, P.H.B.; Buck-Sorlin, G.H.; Marcelis, L.F.M. How plant architecture affects light absorption and photosynthesis in tomato: Towards an ideotype for plant architecture using a functional–structural plant model. Ann. Bot. 2011, 108, 1065–1073. [Google Scholar] [CrossRef] [Green Version]
- Pradal, C.; Dufour-Kowalski, S.; Boudon, F.; Fournier, C.; Godin, C. OpenAlea: A visual programming and component-based software platform for plant modelling. Funct. Plant Biol. 2008, 35, 751–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costes, E.; Smith, C.; Renton, M.; Guédon, Y.; Prusinkiewicz, P.; Godin, C. MAppleT: Simulation of apple tree development using mixed stochastic and biomechanical models. Funct. Plant Biol. 2008, 35, 936–950. [Google Scholar] [CrossRef] [Green Version]
- Louarn, G.; Lebon, E.; Lecoeur, J. “Top-vine”, a topiary approach based architectural model to simulate vine canopy structure. In Proceedings of the XIV International GESCO Viticulture Congress, Geisenheim, Germany, 23–27 August 2005; pp. 464–470. [Google Scholar]
- Leroy, C.; Sabatier, S.; Wahyuni, N.S.; Barczi, J.F.; Dauzat, J.; Laurans, M.; Auclair, D. Virtual trees and light capture: A method for optimizing agroforestry stand design. Agrofor. Syst. 2009, 77, 37–47. [Google Scholar] [CrossRef]
- Xia, N.; Li, A.; Lin, W. Simulation and Quantitative Analysis of Branching Patterns of the Plum Tree. J. Comput. Sci. Technol. Updat. 2014, 1, 9–18. [Google Scholar] [CrossRef]
- Sellier, D.; Fourcaud, T. Crown structure and wood properties: Influence on tree sway and response to high winds. Am. J. Bot. 2009, 96, 885–896. [Google Scholar] [CrossRef] [PubMed]
- Griffon, S.; de Coligny, F. AMAPstudio: An editing and simulation software suite for plants architecture modelling. Ecol. Model. 2014, 290, 3–10. [Google Scholar] [CrossRef]
- Duchemin, L.; Eloy, C.; Badel, E.; Moulia, B. Tree crowns grow into self-similar shapes controlled by gravity and light sensing. J. R. Soc. Interface 2018, 15, 20170976. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakocevic, M.; Matsunaga, F.T.; Novaes, M.P.; Oyamada, R.S.; Scholz, M.B.D.S.; Griffon, S.; Dauzat, J.; Costes, E. How density and planting pattern affect coffee plant structure and berry distribution in first production year? In Proceedings of the 25th International Conference on Coffee Science, ASIC 2014, Armenia, Colombia, 8–13 September 2014; Association Scientifique Internationale du Café: Paris, France, 2014. [Google Scholar]
- Momo Takoudjou, S.; Ploton, P.; Sonké, B.; Hackenberg, J.; Griffon, S.; de Coligny, F.; Kamdem, N.G.; Libalah, M.; Mofack, G.I.; Le Moguédec, G.; et al. Using terrestrial laser scanning data to estimate large tropical trees biomass and calibrate allometric models: A comparison with traditional destructive approach. Methods Ecol. Evol. 2018, 9, 905–916. [Google Scholar] [CrossRef]
- Magistri, F.; Chebrolu, N.; Behley, J.; Stachniss, C. Towards In-Field Phenotyping Exploiting Differentiable Rendering with Self-Consistency Loss. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 13960–13966. [Google Scholar] [CrossRef]
- Ahmed, M.; Aslam, M.A.; Fayyaz-ul-Hassan; Hayat, R.; Nasim, W.; Akmal, M.; Mubeen, M.; Hussain, S.; Ahmad, S. Nutrient Dynamics and the Role of Modeling. In Building Climate Resilience in Agriculture: Theory, Practice and Future Perspective; Jatoi, W.N., Mubeen, M., Ahmad, A., Cheema, M.A., Lin, Z., Hashmi, M.Z., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 297–316. [Google Scholar] [CrossRef]
- Schnepf, A.; Leitner, D.; Landl, M.; Lobet, G.; Mai, T.H.; Morandage, S.; Sheng, C.; Zörner, M.; Vanderborght, J.; Vereecken, H. CRootBox: A structural–functional modelling framework for root systems. Ann. Bot. 2018, 121, 1033–1053. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, M.; Heuvelink, E.; Carvalho, S.M.P.; Reffye, P.d. A virtual plant that responds to the environment like a real one: The case for chrysanthemum. New Phytol. 2012, 195, 384–395. [Google Scholar] [CrossRef] [PubMed]
- Cournède, P.H.; Mathieu, A.; Houllier, F.; Barthélémy, D.; de Reffye, P. Computing Competition for Light in the GREENLAB Model of Plant Growth: A Contribution to the Study of the Effects of Density on Resource Acquisition and Architectural Development. Ann. Bot. 2007, 101, 1207–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, L.; Mailhol, J.C.; Rey, H.; Griffon, S.; Auclair, D.; De Reffye, P. Comparing an empirical crop model with a functional structural plant model to account for individual variability. Eur. J. Agron. 2014, 53, 16–27. [Google Scholar] [CrossRef]
- Letort, V.; Mahe, P.; Cournède, P.H.; De Reffye, P.; Courtois, B. Quantitative genetics and functional–structural plant growth models: Simulation of quantitative trait loci detection for model parameters and application to potential yield optimization. Ann. Bot. 2008, 101, 1243–1254. [Google Scholar] [CrossRef] [PubMed]
- Baey, C.; Didier, A.; Lemaire, S.; Maupas, F.; Cournède, P.H. Parametrization of five classical plant growth models applied to sugar beet and comparison of their predictive capacity on root yield and total biomass. Ecol. Model. 2014, 290, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, D.; Qin, L.; DeBuse, C.; DeJong, T.M. Measuring and modelling seasonal patterns of carbohydrate storage and mobilization in the trunks and root crowns of peach trees. Ann. Bot. 2014, 114, 643–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lopez, G.; Favreau, R.R.; Smith, C.; Costes, E.; Prusinkiewicz, P.; DeJong, T.M. Integrating simulation of architectural development and source–sink behaviour of peach trees by incorporating Markov chains and physiological organ function submodels into L-PEACH. Funct. Plant Biol. 2008, 35, 761–771. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fei, Z.; Olenskyj, A.G.; Bailey, B.N.; Earles, M. Enlisting 3D crop models and GANs for more data efficient and generalizable fruit detection. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops, Virtual, 24–26 November 2021; pp. 1269–1277. [Google Scholar]
- Ponce de León, M.A.; Bailey, B.N. A 3D model for simulating spatial and temporal fluctuations in grape berry temperature. Agric. For. Meteorol. 2021, 306, 108431. [Google Scholar] [CrossRef]
- Salter, W.T.; Shrestha, A.; Barbour, M.M. Open source 3D phenotyping of chickpea plant architecture across plant development. Plant Methods 2021, 17, 95. [Google Scholar] [CrossRef] [PubMed]
- Bahr, C.; Schmidt, D.; Kahlen, K. Missing Links in Predicting Berry Sunburn in Future Vineyards. Front. Plant Sci. 2021, 12, 2178. [Google Scholar] [CrossRef] [PubMed]
- Qu, H.; Zhu, Q.; Guo, M.; Lu, Z. Simulation of carbon-based model for virtual plants as complex adaptive system. Simul. Model. Pract. Theory 2010, 18, 677–695. [Google Scholar] [CrossRef]
- Coussement, J.R.; De Swaef, T.; Lootens, P.; Roldán-Ruiz, I.; Steppe, K. Introducing turgor-driven growth dynamics into functional–structural plant models. Ann. Bot. 2018, 121, 849–861. [Google Scholar] [CrossRef] [PubMed]
- Kang, F.; Cournède, P.H.; Lecoeur, J.; Letort, V. SUNLAB: A functional–structural model for genotypic and phenotypic characterization of the sunflower crop. Ecol. Model. 2014, 290, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Henke, M.; Huckemann, S.; Kurth, W.; Sloboda, B. Reconstructing Leaf Growth Based on Non-Destructive Digitizing and Low-Parametric Shape Evolution for Plant Modelling over a Growth Cycle. Silva Fenn. 2014, 48. [Google Scholar] [CrossRef] [Green Version]
- Streit, K.; Henke, M.; Bayol, B.; Cournède, P.H.; Sievänen, R.; Kurth, W. Impact of geometrical traits on light interception in conifers: Analysis using an FSPM for Scots pine. In Proceedings of the 2016 IEEE International Conference on Functional-Structural Plant Growth Modeling, Simulation, Visualization and Applications (FSPMA), Qingdao, China, 7–11 November 2016; pp. 194–203. [Google Scholar] [CrossRef]
- Auzmendi, I.; Hanan, J. Using L-studio to Visualize Data and Modify Plant Architecture for Agronomic Purposes: Visualization and modification of plant architecture with L-studio. In Proceedings of the 2018 6th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications (PMA), Hefei, China, 4–8 November 2018; pp. 43–49. [Google Scholar] [CrossRef]
- Anderson, N.T.; Walsh, K.B.; Wulfsohn, D. Technologies for Forecasting Tree Fruit Load and Harvest Timing—From Ground, Sky and Time. Agronomy 2021, 11, 1409. [Google Scholar] [CrossRef]
- Zheng, J.; Tarin, M.W.K.; Jiang, D.; Li, M.; Zhang, M.; Chen, L.; He, T.; Hong, X.; Zheng, Y. Various distances and orientations influenced the branching traits of Dendrocalamus minor var. amoenus in Dongshan Island, China. Glob. Ecol. Conserv. 2021, 26, e01468. [Google Scholar] [CrossRef]
- Lauri, P.E. Tree architecture and functioning facing multispecies environments: We have gone only halfway in fruit-trees. Am. J. Bot. 2021, 108, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Mirás-Avalos, J.M.; Egea, G.; Nicolás, E.; Génard, M.; Vercambre, G.; Moitrier, N.; Valsesia, P.; González-Real, M.M.; Bussi, C.; Lescourret, F. QualiTree, a virtual fruit tree to study the management of fruit quality. II. Parameterisation for peach, analysis of growth-related processes and agronomic scenarios. Trees 2011, 25, 785–799. [Google Scholar] [CrossRef]
- Vezy, R.; Perez, R.P.; Grand, F.; Dauzat, J. Light Exchanges in Discrete Directions as an Alternative to Raytracing and Radiosity. 2020. Available online: https://www.researchgate.net/publication/344340475_Light_exchanges_in_discrete_directions_as_an_alternative_to_raytracing_and_radiosity?channel=doi&linkId=5f6a4ee6458515b7cf46d473&showFulltext=true (accessed on 1 August 2021).
- Leroy, C.; Laurans, M.; Dauzat, J.; Sabatier, S.A.; Auclair, D. Simulation of light transmission under Acacia mangium Willd. and Tecton grandis L. canopies and comparison with in situ measurements. In Proceedings of the International Worhshop on Smallholder Agroforestry Option for Degraded Soils, Malany, Indonesia, 18–21 August 2005. [Google Scholar]
- Prieto, J.A.; Louarn, G.; Perez Peña, J.; Ojeda, H.; Simonneau, T.; Lebon, E. A functional–structural plant model that simulates whole-canopy gas exchange of grapevine plants (Vitis vinifera L.) under different training systems. Ann. Bot. 2020, 126, 647–660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bouchon, J.; De Reffye, P.; Barthélémy, D. Modélisation et Simulation de l’Architecture des végéTaux. In Proceedings of the Colloque sur l’architecture des Arbres Fruitiers et Forestiers, Montpellier, France, 10 December 1997. [Google Scholar]
- Jaeger, M.; De Reffye, P.H. Basic concepts of computer simulation of plant growth. J. Biosci. 1992, 17, 275–291. [Google Scholar] [CrossRef]
- Grossman, Y.L.; DeJong, T.M. PEACH: A simulation model of reproductive and vegetative growth in peach trees. Tree Physiol. 1994, 14, 329–345. [Google Scholar] [CrossRef] [PubMed]
- Karwowski, R.; Prusinkiewicz, P. The L-system-based plant-modeling environment L-studio 4.0. In Proceedings of the 4th International Workshop on Functional-Structural Plant Models, Montpellier, France, 7–11 June 2004; pp. 403–405. [Google Scholar]
- Le Roux, X.; Lacointe, A.; Escobar-Gutiérrez, A.; Le Dizès, S. Carbon-based models of individual tree growth: A critical appraisal. Ann. For. Sci. 2001, 58, 469–506. [Google Scholar] [CrossRef] [Green Version]
- Sinclair, T.; Murphy, C.; Knoerr, K. Development and evaluation of simplified models for simulating canopy photosynthesis and transpiration. J. Appl. Ecol. 1976, 13, 813–829. [Google Scholar] [CrossRef]
- Friend, A. Modelling canopy CO2 fluxes: Are ‘big-leaf’simplifications justified? Glob. Ecol. Biogeogr. 2001, 10, 603–619. [Google Scholar] [CrossRef]
- Raupach, M.; Finnigan, J. ‘Single-layer models of evaporation from plant canopies are incorrect but useful, whereas multilayer models are correct but useless’: Discuss. Aust. J. Plant Physiol. 1988, 15, 705–716. [Google Scholar] [CrossRef]
- Hemmerling, R.; Kniemeyer, O.; Lanwert, D.; Kurth, W.; Buck-Sorlin, G. The rule-based language XL and the modelling environment GroIMP illustrated with simulated tree competition. Funct. Plant Biol. 2008, 35, 739–750. [Google Scholar] [CrossRef] [PubMed]
- Weber, J.; Penn, J. Creation and Rendering of Realistic Trees. In Proceedings of the SIGGRAPH’95: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 6–11 August 1995; pp. 119–128. [Google Scholar]
- Kurth, W.; Kniemeyer, O.; Buck-Sorlin, G. Relational Growth Grammars – A Graph Rewriting Approach to Dynamical Systems with a Dynamical Structure. In Unconventional Programming Paradigms; Banâtre, J.P., Fradet, P., Giavitto, J.L., Michel, O., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2005; pp. 56–72. [Google Scholar] [CrossRef]
- Plachetka, T. POV Ray: Persistence of vision parallel raytracer. In Proceedings of the Spring Conference on Computer Graphics, Budmerice, Slovakia, 23–25 April 1998; Volume 123. [Google Scholar]
- Měch, R.; Prusinkiewicz, P. Visual models of plants interacting with their environment. In Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques, New Orleans, Louisiana, 4–9 August 1996; pp. 397–410. [Google Scholar]
- Karwowski, R.; Prusinkiewicz, P. Design and Implementation of the L+C Modeling Language. In Proceedings of the 4th International Workshop, RULE 2003 (Connected RDP’03 Federated. Conference on Rewriting, Deduction, and Programming), Valencia, Spain, 9 June 2003; Volume 86, pp. 134–152. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Dai, Z.; Vivin, P.; Gambetta, G.A.; Henke, M.; Peccoux, A.; Ollat, N.; Delrot, S. A 3-D functional–structural grapevine model that couples the dynamics of water transport with leaf gas exchange. Ann. Bot. 2018, 121, 833–848. [Google Scholar] [CrossRef]
- Hallé, F.; Oldeman, R.A.; Tomlinson, P.B. Tropical Trees and Forests: An Architectural Analysis; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Boudon, F.; Pradal, C.; Cokelaer, T.; Prusinkiewicz, P.; Godin, C. L-Py: An L-system simulation framework for modeling plant architecture development based on a dynamic language. Front. Plant Sci. 2012, 3, 76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dauzat, J.; Rapidel, B.; Berger, A. Simulation of leaf transpiration and sap flow in virtual plants: Model description and application to a coffee plantation in Costa Rica. Agric. For. Meteorol. 2001, 109, 143–160. [Google Scholar] [CrossRef]
- De Visser, P.H.B.; van der Heijden, G.; Buck-Sorlin, G. Optimizing illumination in the greenhouse using a 3D model of tomato and a ray tracer. Front. Plant Sci. 2014, 5, 48. [Google Scholar] [CrossRef] [Green Version]
- Dieleman, J.A.; De Visser, P.H.B.; Meinen, E.; Grit, J.G.; Dueck, T.A. Integrating Morphological and Physiological Responses of Tomato Plants to Light Quality to the Crop Level by 3D Modeling. Front. Plant Sci. 2019, 10, 839. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Louarn, G.; Lecoeur, J.; Lebon, E. A Three-dimensional Statistical Reconstruction Model of Grapevine (Vitis vinifera) Simulating Canopy Structure Variability within and between Cultivar/Training System Pairs. Ann. Bot. 2008, 101, 1167–1184. [Google Scholar] [CrossRef] [Green Version]
- Barillot, R.; Huynh, P.; Gutiérrez, A.E.; Combes, D. L-Pea: An architectural model of pea (Pisum sativum) development. In Proceedings of the 7th International Conference on Functional Structure PLANT models, Saariselkä, Finland, 9–14 June 2013; p. 371. [Google Scholar]
- Ascher, D.; Lutz, M. Learning Python; O’Reilly: Newton, MA, USA, 1999. [Google Scholar]
- Councill, B.; Heineman, G.T. Definition of a software component and its elements. In Component-Based Software Engineering: Putting the Pieces Together; Springer: Berlin/Heidelberg, Germany, 2001; pp. 5–19. [Google Scholar]
- Yan, H.P.; Kang, M.Z.; De Reffye, P.; Dingkuhn, M. A dynamic, architectural plant model simulating resource-dependent growth. Ann. Bot. 2004, 93, 591–602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacointe, A.; Minchin, P.E.H. A Mechanistic Model to Predict Distribution of Carbon Among Multiple Sinks. In Phloem: Methods and Protocols; Liesche, J., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2019; pp. 371–386. [Google Scholar] [CrossRef]
- Han, L.; Costes, E.; Boudon, F.; Cokelaer, T.; Pradal, C.; Da Silva, D.; Faivre, R. Investigating the influence of geometrical traits on light interception efficiency of apple trees: A modelling study with MAppleT. In Proceedings of the 2012 IEEE 4th International Symposium on Plant Growth Modeling, Simulation, Visualization and Applications, Shanghai, China, 31 October–3 November 2012; pp. 152–159. [Google Scholar] [CrossRef] [Green Version]
- Bailey, B.N. A reverse ray-tracing method for modelling the net radiative flux in leaf-resolving plant canopy simulations. Ecol. Model. 2018, 368, 233–245. [Google Scholar] [CrossRef] [Green Version]
- Gueymard, C.A. Direct solar transmittance and irradiance predictions with broadband models. Part I: Detailed theoretical performance assessment. Solar Energy 2003, 74, 355–379. [Google Scholar] [CrossRef]
- Buckley, T.N.; Turnbull, T.L.; Adams, M.A. Simple models for stomatal conductance derived from a process model: Cross-validation against sap flux data. Plant Cell Environ. 2012, 35, 1647–1662. [Google Scholar] [CrossRef] [PubMed]
- Johnson, I. PlantMod: Exploring the Physiology of Plant Canopies; IMJ Software: Armidale, NSW, Australia, 2010. [Google Scholar]
- Farquhar, G.D.; von Caemmerer, S.v.; Berry, J.A. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 1980, 149, 78–90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Reffye, P.; Houllier, F.; Blaise, F.; Fourcaud, T. Essai sur les relations entre l’architecture d’un arbre et la grosseur de ses axes végétatifs. In Modélisation et Simulation de L’architecture des Végétaux; INRA, CIRAD-GERDAT-AMAP: Paris, France, 1997. [Google Scholar]
- Vermeiren, J.; Villers, S.L.Y.; Wittemans, L.; Vanlommel, W.; van Roy, J.; Marien, H.; Coussement, J.R.; Steppe, K. Quantifying the importance of a realistic tomato (Solanum lycopersicum) leaflet shape for 3-D light modelling. Ann. Bot. 2020, 126, 661–670. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Durand, J.B.; Caraglio, Y.; Heuret, P.; Nicolini, E. Segmentation-based approaches for characterising plant architecture and assessing its plasticity at different scales. In Proceedings of the FSPM07—5th International Workshop on Functional-Structural Plant Models, Napier, New Zealand, 4–9 November 2007; pp. 1–3. [Google Scholar]
- Guédon, Y.; Caraglio, Y.; Heuret, P.; Lebarbier, E.; Meredieu, C. Identifying and characterizing the ontogenetic component in tree development. In Proceedings of the 5th International Workshop on Functional-Structural Plant Models, Napier, New Zealand, 4–9 November 2007; pp. 1–5. [Google Scholar]
- Chelle, M.; Andrieu, B. The nested radiosity model for the distribution of light within plant canopies. Ecol. Model. 1998, 111, 75–91. [Google Scholar] [CrossRef]
- Ngao, J.; Adam, B.; Saudreau, M. Intra-crown spatial variability of leaf temperature and stomatal conductance enhanced by drought in apple tree as assessed by the RATP model. Agric. For. Meteorol. 2017, 237–238, 340–354. [Google Scholar] [CrossRef]
- Perez, R.; Vezy, R.; Brancheriau, L.; Boudon, F.; Raharjo, D.A.; Caliman, J.P.; Dauzat, J. Toward a functional-structural model of oil palm accounting for architectural plasticity in response to planting density. In Proceedings of the FSPM 2020: Towards Computable Plants. 9th International Conference on Functional-Structural Plant Models, Allemagne, Germany, 5–9 October 2020. [Google Scholar]
- Liu, Z.; Shen, C.; Li, Z.; Weng, T.; Deussen, O.; Cheng, Z.; Wang, D. Interactive modeling of trees using VR devices. In Proceedings of the 2019 International Conference on Virtual Reality and Visualization (ICVRV), Hong Kong, China, 21–22 November 2019; pp. 69–75. [Google Scholar] [CrossRef]
- Ubbens, J.; Cieslak, M.; Prusinkiewicz, P.; Stavness, I. The use of plant models in deep learning: An application to leaf counting in rosette plants. Plant Methods 2018, 14, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reeves, W.T. Particle systems—A technique for modeling a class of fuzzy objects. ACM Trans. Graph. 1983, 2, 91–108. [Google Scholar] [CrossRef]
- IDV. SpeedTree® [Computer Program]. Available online: https://store.speedtree.com/ (accessed on 1 August 2021).
- de la Re, A.; Abad, F.; Camahort, E.; Juan, M.C. Tools for Procedural Generation of Plants in Virtual Scenes; Springer: Berlin/Heidelberg, Germany, 2009; pp. 801–810. [Google Scholar]
- Diestel, W. Arbaro Tree Generation for Povray [Computer Program]. Available online: http://arbaro.sourceforge.net/ (accessed on 1 September 2021).
- OnyxComputing. OnyxTree [Computer Program]. Available online: http://www.onyxtree.com/ (accessed on 1 September 2021).
- XFrog. XFrog Plants [Computer Program]. Available online: http://xfrog.com/ (accessed on 1 September 2021).
- Laubwerk. Plants Kit 14® [Computer Program]. Available online: https://www.laubwerk.com/ (accessed on 1 August 2021).
- Pirk, S.; Stava, O.; Kratt, J.; Said, M.A.M.; Neubert, B.; Měch, R.; Benes, B.; Deussen, O. Plastic trees: Interactive self-adapting botanical tree models. ACM Trans. Graph. TOG 2012, 31, 50. [Google Scholar] [CrossRef]
- van Keulen, F.W. TheGrove3D© [Computer Program]. Available online: https://www.thegrove3d.com/ (accessed on 1 July 2021).
- Simulistics. Simile [Computer Program]. Available online: https://www.simulistics.com/products/simile.php (accessed on 1 June 2021).
Category | Name | Plant Part | Programming Lang. | Modeling Framework | 3D Output | Ref. |
---|---|---|---|---|---|---|
FSPM | AMAPSim | Shoot | C++ | AMAPstudio | Yes | [36] |
CPlantBox | Whole Plant | Python | Stand Alone—CRootBox | Yes | [37] | |
GreenLab | Shoot | Matlab, Java, C++, Scilab | GreenLab | Yes | [38] | |
L-PEACH | Whole Plant | L+C | L-Studio | Yes | [39] | |
Helios | Shoot | C++ | Stand Alone | Yes | [40] | |
GroIMP | Shoot | XL-System, Java | Stand Alone—GROGRA | Yes | [41] | |
V-Mango | Shoot | Python, L-Py, R | OpenAlea | Yes | [23] | |
QualiTree | Shoot | UML | Stand Alone | Partial | [42] | |
FPM | ARCHIMED | Shoot | Java | AMAPStudio | Yes | [43] |
RATP | Shoot | Python, F90 | OpenAlea | Partial | [44] | |
Tomato | Shoot | Java | GroIMP | Yes | [45] | |
SPM | OpenAlea | Shoot | Python | OpenAlea | Yes | [46] |
MAppleT | Shoot | C++, Python, L-Py | OpenAlea | Yes | [47] | |
Top-vine | Shoot | Python | OpenAlea | Yes | [48] |
Category | Name | Plant Organs | Plant-Plant Interaction | Plant-Soil Interaction | Modules/Processes | Aim of the Model | Agronomic Applications | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bud | Stems | Fruits | Leaves | Flowers | Roots | Carbon allocation | Photosynthesis | Water allocation | Other | ||||||
FSPM | AmapSim | x | x | x | x | Yes (external module) | No | x | x | Plant architecture; biomass/fruit production; carbon balance; light interception; stand design; pruning effects | Allometric models calibration; density and planting pattern effect on architecture; quantitative analysis of branching patterns; tree response to wind [49,50,51,52,53,54,55] | ||||
CPlantBox | x | x | No | Yes | x | x | Carbon and water balance | In-field phenotyping [56,57,58] | |||||||
GreenLab | x | x | x | x | Yes (static input) | No | x | x | x | Biomass production; optimization and control of farming systems | Phenotyping; plant breeding; crop management [38,59,60,61,62,63] | ||||
L-PEACH | x | x | x | x | x | No | No | x | x | Source/sink strength | Horticulture; carbon accumulation and fluxes ODEs solutions | Crop load effects; responses to canopy management [64,65] | |||
Helios | x | Yes (light competition only) | No | x | Energy balance; stomatal conductance; radiation model | Plant architecture; light interception | Vineyard management; grapevine disorder estimation; 3D phenotyping [66,67,68,69] | ||||||||
GroIMP | x | x | x | Yes (light competition only) | No | x | x | Radiation model | Tree structure generation; horticulture; carbon balance | Genotypic and phenotypic characterization; visualization of field-measured plant architectures [70,71,72,73,74,75] | |||||
V-Mango | x | x | No | No | x (to fruits) | x | Fruit production; tree phenology | Crop management [76,77,78] | |||||||
QualiTree | x | x | x | No | No | x | x | Fruit quality | Crop management [42,79] | ||||||
FPM | ARCHIMED | x | x | Yes | Yes (static water potential input) | x | Radiation balance; energy balance; sap flow | Ecophysiological processes modeling | Crop management [43,80,81] | ||||||
RATP | x | x | x | No | Yes (radiation exchange only) | x | Radiation absorption; transpiration | Light interception; leaf-gas exchanges | Test of plant functions; plant reaction to drought [44] | ||||||
Tomato | x | x | Yes (light competition only) | No | x | x | Radiation model | Plant architecture; horticulture; carbon balance | Genotypic and phenotypic characterization; visualization of field-measured plant architectures [45] | ||||||
SPM | OpenAlea | x | x | x | Yes | No | x | x | Radiation interception; transpiration; rainfall interception and distribution | Plant architecture analysis; ecophysiological processes; meristem modeling | Biomechanics; crop management [46] | ||||
MAppleT | x | x | x | Yes | No | x | Gravitrophism; light interception | Plant architecture | Biomechanics; crop management [47] | ||||||
Top-vine | x | x | Yes | No | x | Radiative balance; light interception | Plant architecture | Biomechanics; crop management; evaluation of vine training systems [48,82] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Crimaldi, M.; Cartenì, F.; Giannino, F. VISmaF: Synthetic Tree for Immersive Virtual Visualization in Smart Farming. Part I: Scientific Background Review and Model Proposal. Agronomy 2021, 11, 2458. https://doi.org/10.3390/agronomy11122458
Crimaldi M, Cartenì F, Giannino F. VISmaF: Synthetic Tree for Immersive Virtual Visualization in Smart Farming. Part I: Scientific Background Review and Model Proposal. Agronomy. 2021; 11(12):2458. https://doi.org/10.3390/agronomy11122458
Chicago/Turabian StyleCrimaldi, Mariano, Fabrizio Cartenì, and Francesco Giannino. 2021. "VISmaF: Synthetic Tree for Immersive Virtual Visualization in Smart Farming. Part I: Scientific Background Review and Model Proposal" Agronomy 11, no. 12: 2458. https://doi.org/10.3390/agronomy11122458
APA StyleCrimaldi, M., Cartenì, F., & Giannino, F. (2021). VISmaF: Synthetic Tree for Immersive Virtual Visualization in Smart Farming. Part I: Scientific Background Review and Model Proposal. Agronomy, 11(12), 2458. https://doi.org/10.3390/agronomy11122458