Irrigation with Activated Water Promotes Root Growth and Improves Water Use of Winter Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Experimental Design
2.1.1. Hydroponic Experiments
2.1.2. Field Experiments
2.2. Magnetization and Oxidation of Water
2.3. Sampling and Analysis
2.3.1. Hydroponic Plant Indices
2.3.2. Soil Water Content and Soil Water Storage under Field Experiments
2.3.3. Wheat Production
2.3.4. Soil Water Consumption, WUE and IWUE
2.4. Statistical Analyses
3. Results
3.1. Root Growth under Hydroponic Conditions
3.1.1. Germination Proportion
3.1.2. Root Vigor
3.1.3. Root Length Density (RLD), Root Weight Density (RWD) and Root Surface Area Density (RSD)
3.1.4. Root Morphology
3.1.5. Root/Shoot Ratios
3.1.6. Chlorophyll Content (SPAD)
3.2. WUE of the Field Experiments
3.2.1. SWC
3.2.2. Yield, WUE and IWUE
4. Discussion
4.1. Effects of Different Water Treatment Methods on Crop Growth
4.1.1. Effects Related to the Root System
4.1.2. Effects Related to Chlorophyll Content
4.2. Links between Root Traits and WUE Improvement
4.3. Implications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guan, D.H.; Zhang, Y.S.; Mahdi, M.A.; Wang, Q.Y.; Zhang, M.C.; Li, Z.H. Tillage practices effect on root distribution and water use efficiency of winter wheat under rainfed condition in the North China Plain. Soil Tillage Res. 2015, 146, 286–295. [Google Scholar] [CrossRef]
- Islam, M.R.; Eneji, A.E.; Ren, C.Z.; Hu, Y.G.; Chen, G.; Xue, X.Z. Oat-based cropping system for sustainable agricultural development in arid regions of northern China. J. Agric. Biotechnol. Ecol. 2010, 3, 1–8. [Google Scholar]
- Varga, B.; Vida, G.; Varga-László, E.; Bencze, S.; Veisz, O. Effect of simulating drought in various phenophases on the water use efficiency of winter wheat. J. Agron. Crop Sci. 2015, 201, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Xie, Y.X.; Zhang, H.; Zhu, Y.J.; Zhao, L.; Yang, J.H.; Cha, F.N.; Liu, C.; Wang, C.Y.; Guo, T.C. Grain yield and water use of winter wheat as affected by water and sulfur supply in the North China Plain. J. Integr. Agric. 2017, 16, 614–625. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.X.; Zhang, M.; Li, J.P.; Liu, Z.Q.; Zhao, Z.G.; Zhang, Y.H.; Zhou, S.L.; Wang, Z.M. Improving water use efficiency and grain yield of winter wheat by optimizing irrigations in the North China Plain. Field Crops Res. 2018, 221, 219–227. [Google Scholar] [CrossRef]
- Ray, D.K.; Ramankutty, N.; Mueller, N.D.; West, P.C.; Foley, J.A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 2012, 3, 812–818. [Google Scholar] [CrossRef] [Green Version]
- Xiao, G.J.; Wang, J. Research on progress of rainwater harvesting agriculture on the Loess Plateau of China. Acta Ecol. Sin. 2003, 23, 1003–1011, (In Chinese with English abstract). [Google Scholar]
- Bierkens, M.F.P.; Wada, Y. Non-renewable groundwater use and groundwater depletion: A review. Environ. Res. Lett. 2019, 14, 1–43. [Google Scholar] [CrossRef]
- Ali, S.; Xu, Y.Y.; Ma, X.C.; Ahmad, I.; Manzoor; Jia, Q.M.; Akmal, M.; Hussain, Z.; Arif, M.; Cai, T.; et al. Deficit irrigation strategies to improve winter wheat productivity and regulating root growth under different planting patterns. Agric. Water Manag. 2019, 219, 1–11. [Google Scholar] [CrossRef]
- Currell, M.J.; Han, D.M.; Chen, Z.Y.; Cartwright, I. Sustainability of groundwater usage in northern China: Dependence on palaeowaters and effects on water quality, quantity and ecosystem health. Hydrol. Process. 2012, 26, 4050–4066. [Google Scholar] [CrossRef]
- Du, T.S.; Kang, S.Z.; Zhang, J.H.; Davies, W.J. Deficit irrigation and sustainable water-resource strategies in agriculture for China’s food security. J. Exp. Bot. 2015, 66, 2253–2269. [Google Scholar] [CrossRef] [PubMed]
- Wu, P.T.; Feng, H.; Niu, W.Q.; Zhao, X.N. Research emphasis and reflection of strategy for water saving agriculture in China. Sci. Technol. Rev. 2006, 24, 86–88, (In Chinese with English abstract). [Google Scholar]
- Zhao, H.X.; Zhang, P.; Wang, Y.Y.; Ning, T.Y.; Xu, C.L.; Wang, P. Canopy morphological changes and water use efficiency in winter wheat under different irrigation treatments. J. Integr. Agric. 2020, 19, 1105–1116. [Google Scholar] [CrossRef]
- Ambashta, R.D.; Sillanpää, M. Water purification using magnetic assistance: A review. J. Hazard. Mater. 2010, 180, 38–49. [Google Scholar] [CrossRef]
- Zhu, L.F.; Zhang, J.H.; Yu, S.M.; Hu, Z.H.; Jin, Q.Y. Magnetized water irrigation enhanced rice growth and development, improved yield and quality. Trans. Chin. Soc. Agric. Eng. 2014, 30, 107–114, (In Chinese with English abstract). [Google Scholar]
- Esmaeilnezhad, E.; Choi, H.J.; Schaffie, M.; Gholizadeh, M.; Ranjbar, M. Characteristics and applications of magnetized water as a green technology. J. Clean. Prod. 2017, 161, 908–921. [Google Scholar] [CrossRef]
- Mostafazadeh, F.B.; Khoshravesh, M.; Mousavi, S.F.; Kiani, A.R. Effects of magnetized water on soil chemical components underneath trickle irrigation. J. Irrig. Drain. Eng. 2012, 138, 1075–1081. [Google Scholar] [CrossRef]
- Wang, Q.J.; Zhang, J.H.; Men, Q.; Tan, S.; Zhou, L.W.; Liu, X.Y. Experiment on physical and chemical characteristics of activated brackish water by magnetization or ionization. Trans. Chin. Soc. Agric. Eng. 2016, 32, 60–66, (In Chinese with English abstract). [Google Scholar]
- Al-Ogaidi, A.A.M.; Wayayok, A.; Rowshon, M.K.; Abdullah, A.F. The influence of magnetized water on soil water dynamics under drip irrigation systems. Agric. Water Manag. 2017, 180, 70–77. [Google Scholar] [CrossRef]
- Surendran, U.; Sandeep, O.; Mammen, G.; Joseph, E.J. A novel technique of magnetic treatment of saline and hard water for irrigation and its impact on cow pea growth and water properties. Int. J. Agric. Environ. Biotechnol. 2013, 6, 85–92. [Google Scholar]
- Mu, Y.; Zhao, G.Q.; Zhao, Q.Q.; Liu, H.; Wang, Q.J. Advances in the application of activated water irrigation. J. Agric. Res. Environ. 2019, 36, 403–411, (In Chinese with English abstract). [Google Scholar]
- Wang, Q.J.; Sun, Y.; Ning, S.R.; Zhang, J.H.; Zhou, B.B.; Su, L.J.; Shan, Y.Y. Effects of activated irrigation water on soil physicochemical properties and crop growth and analysis of the probable pathway. Adv. Earth Sci. 2019, 34, 660–670, (In Chinese with English abstract). [Google Scholar]
- Maffei, M.E. Magnetic field effects on plant growth, development, and evolution. Front. Plant Sci. 2014, 5, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Selim, A.H.; Zayed, M.A.H.; Zayed, M.A.T. Magnetic field treated water effects on germination, growth and physio-chemical aspects of some economic plants. Acta Bot. Hung. 2013, 55, 99–116. [Google Scholar] [CrossRef]
- Zhang, L.H. Molecular dynamics simulation of mechanism of increasing vegetable yield by irrigated magnetization water. J. Qingdao Univ. (Natural Science Edition) 2005, 18, 58–62, (In Chinese with English abstract). [Google Scholar]
- Feng, S.W.; Gu, S.B.; Zhang, H.B.; Wang, D. Root vertical distribution is important to improve water use efficiency and grain yield of wheat. Field Crops Res. 2017, 214, 131–141. [Google Scholar] [CrossRef]
- Peng, B.; Liu, X.W.; Dong, X.J.; Xue, Q.W.; Neely, C.B.; Marek, T.; Ibrahim, A.M.H.; Zhang, G.R.; Leskovar, D.I.; Rudd, J.C. Root morphological traits of winter wheat under contrasting environments. J. Agron. Crop Sci. 2019, 205, 571–585. [Google Scholar] [CrossRef]
- Lv, G.H.; Song, J.Q.; Bai, W.B.; Wu, Y.F.; Liu, Y.; Kang, Y.H. Effects of different irrigation methods on micro-environments and root distribution in winter wheat fields. J. Integr. Agric. 2015, 14, 1658–1672. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.Y.; Zhang, X.Y.; Liu, X.W.; Shao, L.W.; Sun, H.Y.; Chen, S.Y. Incorporating root distribution factor to evaluate soil water status for winter wheat. Agric. Water Manag. 2015, 153, 32–41. [Google Scholar] [CrossRef]
- Hochholdinger, F. Untapping root system architecture for crop improvement. J. Exp. Bot. 2016, 67, 4431–4433. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.Y.; Liu, W.X.; Li, Q.X.; Ma, D.Y.; Lu, H.F.; Feng, W.; Xie, Y.X.; Zhu, Y.J.; Guo, T.C. Effects of different irrigation and nitrogen regimes on root growth and its correlation with above-ground plant parts in high-yielding wheat under field conditions. Field Crops Res. 2014, 165, 138–149. [Google Scholar] [CrossRef]
- Lynch, J.P. Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops. Plant Physiol. 2011, 156, 1041–1049. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xue, Y.G.; Wang, Z.Q.; Yang, J.C.; Zhang, J.H. Morphological and physiological traits of roots and their relationships with shoot growth insuper rice. Field Crops Res. 2009, 113, 31–40. [Google Scholar] [CrossRef]
- Ding, Y.F.; Liang, Y.C.; Zhu, J.; Zhao, J. Effects of silicon on plant growth, photosynthetic parameters and soluble sugar content in leaves of wheat under drought stress. Plant Nutr. Fertil. Sci. 2007, 13, 471–478, (In Chinese with English abstract). [Google Scholar]
- Dai, X.L.; Wang, Y.C.; Dong, X.C.; Qian, T.F.; Yin, L.J.; Dong, S.X.; Chu, J.P.; He, M.R. Delayed sowing can increase lodging resistance while maintaining grain yield and nitrogen use efficiency in winter wheat. Crop J. 2017, 5, 541–552. [Google Scholar] [CrossRef]
- Ma, S.C.; Wang, T.C.; Guan, X.K.; Zhang, X. Effect of sowing time and seeding rate on yield components and water use efficiency of winter wheat by regulating the growth redundancy and physiological traits of root and shoot. Field Crops Res. 2018, 221, 166–174. [Google Scholar] [CrossRef]
- Zhang, X.; Huang, G.; Bian, X.; Zhao, Q. Effects of root interaction and nitrogen fertilization on the chlorophyll content, root activity, photosynthetic characteristics of intercropped soybean and microbial quantity in the rhizosphere. Plant Soil Environ. 2013, 59, 80–88. [Google Scholar] [CrossRef]
- Gregory, P.J. Root growth and activity. In Physiology and Determination of Crop Yield, American Society of Agronomy; Boote, K.J., Bennett, J.M., Sinclair, T.R., Paulsen, G.M., Eds.; American Society of Agronomy: Madison, WI, USA, 1994; pp. 65–93. [Google Scholar]
- Shahzad, A.; Xu, Y.Y.; Irshad, A.; Jia, Q.M.; Ma, X.C.; Hidayat, U.; Mukhtar, A.; Muhammad, A.; Ihsanullah, D.; Ren, X.L.; et al. Tillage and deficit irrigation strategies to improve winter wheat production through regulating root development under simulated rainfall conditions. Agric. Water Manag. 2018, 209, 44–54. [Google Scholar] [CrossRef]
- Wu, Y.C.; Zhou, S.L.; Wang, Z.M.; Feng, H.Y.; Lu, L.Q.; Wang, R.Z. Recovery of residual fertilizer-nitrogen by wheat in a winter wheat–summer maize rotation in the North China Plain: A soil column study. Agron. J. 2009, 101, 925–932. [Google Scholar] [CrossRef]
- Zhou, S.L.; Wu, Y.C.; Wang, Z.M.; Lu, L.Q.; Wang, R.Z. The nitrate leached below maize root zone is available for deep-rooted wheat in winter wheat-summer maize rotation in the North China Plain. Environ. Pollut. 2008, 152, 723–730. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, N.; Zhang, Y.S.; Li, K.; Zhou, Y.Y.; Zhang, M.C.; Li, Z.H. Exogenous application of glycine betaine improved water use efficiency in winter wheat (Triticum aestivum L.) via modulating photosynthetic efficiency and antioxidative capacity under conventional and limited irrigation conditions. Crop J. 2019, 7, 635–650. [Google Scholar] [CrossRef]
- Xu, C.L.; Tao, H.B.; Tian, B.J.; Gao, Y.B.; Ren, J.H.; Wang, P. Limited-irrigation improves water use efficiency and soil reservoir capacity through regulating root and canopy growth of winter wheat. Field Crops Res. 2016, 196, 268–275. [Google Scholar] [CrossRef]
- Qiu, G.Y.; Wang, L.M.; He, X.H.; Zhang, X.Y.; Chen, S.Y.; Chen, J.; Yang, Y.H. Water use efficiency and evapotranspiration of winter wheat and its response to irrigation regime in the North China Plain. Agric. Forest Meteorol. 2008, 148, 1848–1859. [Google Scholar] [CrossRef]
- Lin, W.; Liu, W.Z.; Zhou, S.S.; Liu, C.F. Influence of plastic film mulch on maize water use efficiency in the Loess Plateau of China. Agric. Water Manag. 2019, 224, 1–7. [Google Scholar] [CrossRef]
- Li, J.P.; Xu, X.X.; Lin, G.; Wang, Y.Q.; Liu, Y.; Zhang, M.; Zhou, J.Y.; Wang, Z.M.; Zhang, Y.H. Micro-irrigation improves grain yield and resource use efficiency by co-locating the roots and N-fertilizer distribution of winter wheat in the North China Plain. Sci. Total Environ. 2018, 643, 367–377. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, H.Z.; Yang, X.W.; Meng, Z.J.; He, D.X. Soil water effect on root activity, root weight density, and grain yield in winter wheat. Crop Sci. 2017, 57, 437–443. [Google Scholar] [CrossRef]
- Emil, C.; Aleksandra, S. Magnetic water treatment—A review of the latest approaches. Chemosphere 2018, 203, 54–67. [Google Scholar] [CrossRef]
- Savostin, P.V. Magnetic growth relations in plants. Planta 1964, 12, 327. [Google Scholar]
- Surendran, U.; Sandeep, O.; Joseph, E.J. The impacts of magnetic treatment of irrigation water on plant, water and soil characteristics. Agric. Water Manag. 2016, 178, 21–29. [Google Scholar] [CrossRef]
- Sadeghipour, O.; Aghaei, P. Improving the growth of cowpea (Vigna unguiculata L. Walp.) by magnetized water. J. Biodivers. Environ. Sci. 2013, 3, 37–43. [Google Scholar]
- Dong, Z.Y.; Zhang, X.D.; Li, J.; Zhang, C.; Wei, T.; Yang, Z.; Cai, T.; Zhang, P.; Ding, R.X.; Jia, Z.K. Photosynthetic characteristics and grain yield of winter wheat (Triticum aestivum L.) in response to fertilizer, precipitation, and soil water storage before sowing under the ridge and furrow system: A path analysis. Agric. For. Meteorol. 2019, 272, 12–19. [Google Scholar] [CrossRef]
- Wang, C.; She, H.Z.; Liu, X.B.; Hu, D.; Ruan, R.W.; Shao, M.B.; Zhang, L.Y.; Zhou, L.B.; Zhang, G.B.; Wu, D.Q.; et al. Effects of fertilization on leaf photosynthetic characteristics and grain yield in tartary buckwheat Yunqiao. Photosynthetica 2017, 55, 77–84. [Google Scholar] [CrossRef]
- Babar, M.A.; Reynolds, M.P.; Ginkel, M.V.; Klatt, A.R.; Raun, W.R.; Stone, M.L. Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll, and canopy temperature in wheat. Crop Sci. 2006, 46, 1046–1057. [Google Scholar] [CrossRef]
- Broge, N.H.; Mortensen, J.V. Deriving green crop area index and canopy chlorophyll density of winter wheat from spectral reflectance data. Remote Sens. Environ. 2002, 81, 45–57. [Google Scholar] [CrossRef]
- Wei, K. Research on Soil Water-Salt Distribution and Cotton Growth Characteristics Using De-Electronic Brackish Water Drip Irrigation with Plastic Mulch. Ph.D. Thesis, Xi’an University of Technology, Xi’an, China, 2018. (In Chinese with English abstract). [Google Scholar]
- Wang, Z.M.; Wang, P.; Li, X.H.; Li, J.M.; Lu, L.Q. Principle and technology of water-saving, fertilizer-saving, high-yielding and simple cultivation in winter wheat. Rev. China Agric. Sci. Technol. 2006, 8, 38–44, (In Chinese with English abstract). [Google Scholar]
- Çakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crops Res. 2004, 89, 1–16. [Google Scholar] [CrossRef]
- Jia, Q.M.; Chen, K.Y.; Chen, Y.Y.; Ali, S.; Manzoor; Sohail, A.; Fahad, S. Mulch covered ridges affect grain yield of maize through regulating root growth and root-bleeding sap under simulated rainfall conditions. Soil Tillage Res. 2018, 175, 101–111. [Google Scholar] [CrossRef]
- Çelik, Ö.; Atak, Ç.; Rzakulieva, A. Stimulation of rapid regeneration by a magnetic field in Paulownia node cultures. J. Cent. Eur. Agric. 2008, 9, 297–304. [Google Scholar]
- Yin, Y.A.; Chen, L.; Li, L.H.; Fan, X.Y.; Wang, Y.Q.; Chen, Y.F. Effects of activated water on agronomic characteristics of rice by drip irrigation under mulch film. China Rice 2018, 24, 70–72, (In Chinese with English abstract). [Google Scholar]
- Otsuka, I.; Ozeki, S. Does magnetic treatment of water change its properties? J. Phys. Chem. B 2006, 110, 1509–1512. [Google Scholar] [CrossRef]
- Zhou, Q.; Ristenpart, W.D.; Stroeve, P. Magnetically induced decrease in droplet contact angle on nanostructured surfaces. Langmuir ACS J. Surf. Coll. 2011, 27, 11747–11751. [Google Scholar] [CrossRef] [PubMed]
- Toledo, E.J.L.; Ramalho, T.C.; Magriotis, Z.M. Influence of magnetic field on physical-chemical properties of the liquid water: Insights from experimental and theoretical models. J. Mol. Struct. 2008, 888, 409–415. [Google Scholar] [CrossRef]
Treatment | Test Water | |
---|---|---|
Pure Groundwater | Brackish Water | |
CK | CK−G | CK−B |
Magnetization | GM | BM |
Oxidation | GO | BO |
Magnetization + oxidation | G(M+O) | B(M+O) |
Oxidation + magnetization | G(O+M) | B(O+M) |
Type of Irrigation Water | Single Irrigation Amount (mm) | Total Irrigation Amount (mm) | |
---|---|---|---|
IG | Pure groundwater | 60 | 180 |
IGM | Magnetized water | 60 | 180 |
IGO | Oxidized water | 60 | 180 |
IG(M+O) | Magnetized + oxidized water | 60 | 180 |
IG(O+M) | Oxidized + magnetized water | 60 | 180 |
Treatment | Root Length Density (cm cm−3) | Root Weight Density (×10−5 g cm−3) | Root Surface Area Density (cm2 cm−3) | |
---|---|---|---|---|
Pure groundwater | CK−G | 0.34 c | 3.31 b | 0.04 d |
GM | 0.57 ab | 5.75 a | 0.07 bc | |
GO | 0.61 a | 5.82 a | 0.09 a | |
G(M+O) | 0.63 a | 5.35 a | 0.08 ab | |
G(O+M) | 0.42 b | 4.14 b | 0.06 c | |
Brackish water | CK−B | 0.40 b | 2.49 b | 0.05 b |
BM | 0.43 ab | 3.48 a | 0.06 b | |
BO | 0.56 ab | 4.15 a | 0.07 ab | |
B(M+O) | 0.44 ab | 3.69 a | 0.05 b | |
B(O+M) | 0.63 a | 3.87 a | 0.10 a | |
F−value | Water quality | 1.01 | 51.85 ** | 0.31 |
Activation methods | 2.40 | 12.72 ** | 2.20 | |
Water quality × Activation methods | 8.18 ** | 5.93 * | 12.49 ** |
Treatment | Root Dry Weight (g Plant−1) | Root Tissue Density (g cm−3) | Root Fineness (cm cm−3) | Root Length Ratio (cm g−1) | Root Mass Ratio (g g−1) | |
---|---|---|---|---|---|---|
Pure groundwater | CK−G | 0.17 b | 0.060 b | 641.55 b | 301.09 b | 0.026 b |
GM | 0.28 a | 0.066 ab | 741.16 ab | 400.06 ab | 0.037 a | |
GO | 0.29 a | 0.082 a | 782.09 a | 503.34 a | 0.044 a | |
G(M+O) | 0.27 a | 0.068 ab | 802.18 a | 399.33 ab | 0.041 a | |
G(O+M) | 0.21 b | 0.081 a | 810.40 a | 433.96 a | 0.040 a | |
Brackish water | CK−B | 0.12 b | 0.044 c | 570.22 b | 605.92 a | 0.037 b |
BM | 0.17 a | 0.058 ab | 727.79 bc | 666.83 a | 0.062 a | |
BO | 0.21 a | 0.057 ab | 898.06 a | 761.68 a | 0.064 a | |
B(M+O) | 0.19 a | 0.067 a | 814.88 ab | 664.67 a | 0.049 ab | |
B(O+M) | 0.18 a | 0.050 bc | 676.76 bc | 741.25 a | 0.044 ab | |
Water quality | 51.38 ** | 20.99 ** | 0.46 | 72.85 ** | 23.67 ** | |
F−value | Activation methods | 15.44 ** | 3.20 * | 9.27 ** | 3.35 * | 8.08 ** |
Water quality × Activation methods | 3.06 * | 2.43 | 2.50 | 0.10 | 2.08 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Zhou, B.; Mu, Y.; Wang, Y.; Liu, Y.; Wang, L. Irrigation with Activated Water Promotes Root Growth and Improves Water Use of Winter Wheat. Agronomy 2021, 11, 2459. https://doi.org/10.3390/agronomy11122459
Zhao G, Zhou B, Mu Y, Wang Y, Liu Y, Wang L. Irrigation with Activated Water Promotes Root Growth and Improves Water Use of Winter Wheat. Agronomy. 2021; 11(12):2459. https://doi.org/10.3390/agronomy11122459
Chicago/Turabian StyleZhao, Guoqing, Beibei Zhou, Yan Mu, Yanhui Wang, Yuqi Liu, and Li Wang. 2021. "Irrigation with Activated Water Promotes Root Growth and Improves Water Use of Winter Wheat" Agronomy 11, no. 12: 2459. https://doi.org/10.3390/agronomy11122459
APA StyleZhao, G., Zhou, B., Mu, Y., Wang, Y., Liu, Y., & Wang, L. (2021). Irrigation with Activated Water Promotes Root Growth and Improves Water Use of Winter Wheat. Agronomy, 11(12), 2459. https://doi.org/10.3390/agronomy11122459