Relationship between MODIS Derived NDVI and Yield of Cereals for Selected European Countries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grain Yield Data
2.2. Remote Sensing Data
2.3. Statistical Analysis
3. Results
3.1. Spatiotemporal Variability of Grain Yield and NDVI
3.2. Relationships between NDVI and Grain Yield
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAOSTAT. Available online: http://www.fao.org/faostat/en/#home (accessed on 12 January 2021).
- Lecerf, R.; Ceglar, A.; López-Lozano, R.; Van Der Velde, M.; Baruth, B. Assessing the Information in Crop Model and Meteorological Indicators to Forecast Crop Yield over Europe. Agric. Syst. 2019, 168, 191–202. [Google Scholar] [CrossRef]
- Van der Velde, M.; Nisini, L. Performance of the MARS-Crop Yield Forecasting System for the European Union: Assessing Accuracy, in-Season, and Year-to-Year Improvements from 1993 to 2015. Agric. Syst. 2019, 168, 203–212. [Google Scholar] [CrossRef]
- Van der Velde, M.; van Diepen, C.A.; Baruth, B. The European Crop Monitoring and Yield Forecasting System: Celebrating 25 Years of JRC MARS Bulletins. Agric. Syst. 2019, 168, 56–57. [Google Scholar] [CrossRef]
- Basso, B.; Liu, L. Seasonal crop yield forecast: Methods, applications, and accuracies. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2019; Volume 154, pp. 201–255. ISBN 978-0-12-817406-7. [Google Scholar]
- Becker-Reshef, I.; Vermote, E.; Lindeman, M.; Justice, C. A Generalized Regression-Based Model for Forecasting Winter Wheat Yields in Kansas and Ukraine Using MODIS Data. Remote Sens. Environ. 2010, 114, 1312–1323. [Google Scholar] [CrossRef]
- Zhang, X.; Zhang, Q. Monitoring Interannual Variation in Global Crop Yield Using Long-Term AVHRR and MODIS Observations. ISPRS J. Photogramm. Remote Sens. 2016, 114, 191–205. [Google Scholar] [CrossRef] [PubMed]
- Franch, B.; Vermote, E.; Roger, J.-C.; Murphy, E.; Becker-Reshef, I.; Justice, C.; Claverie, M.; Nagol, J.; Csiszar, I.; Meyer, D.; et al. A 30+ Year AVHRR Land Surface Reflectance Climate Data Record and Its Application to Wheat Yield Monitoring. Remote Sens. 2017, 9, 296. [Google Scholar] [CrossRef] [Green Version]
- Skakun, S.; Vermote, E.; Roger, J.C.; Franch, B. Combined use of Landsat-8 and Sentinel-2A images for winter crop mapping and winter wheat yield assessment at regional scale. AIMS Geosci. 2017, 3, 163–186. [Google Scholar] [CrossRef] [PubMed]
- Mirasi, A.; Mahmoudi, A.; Navid, H.; Valizadeh Kamran, K.; Asoodar, M.A. Evaluation of Sum-NDVI Values to Estimate Wheat Grain Yields Using Multi-Temporal Landsat OLI Data. Geocarto Int. 2019, 1–16. [Google Scholar] [CrossRef]
- Fieuzal, R.; Bustillo, V.; Collado, D.; Dedieu, G. Combined Use of Multi-Temporal Landsat-8 and Sentinel-2 Images for Wheat Yield Estimates at the Intra-Plot Spatial Scale. Agronomy 2020, 10, 327. [Google Scholar] [CrossRef] [Green Version]
- Rouse, J.W., Jr.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; Progress Report; Texas A&M University: College Station, TX, USA, 1973. [Google Scholar]
- Panek, E.; Gozdowski, D. Analysis of Relationship between Cereal Yield and NDVI for Selected Regions of Central Europe Based on MODIS Satellite Data. Remote Sens. Appl. Soc. Environ. 2020, 17, 100286. [Google Scholar] [CrossRef]
- Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaria-Artigas, A. Incorporating Yearly Derived Winter Wheat Maps into Winter Wheat Yield Forecasting Model. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Seoul, Korea, 10–15 July 2016; IEEE: Beijing, China, 2016; pp. 7164–7167. [Google Scholar]
- Smith, R.C.G.; Adams, J.; Stephens, D.J.; Hick, P.T. Forecasting Wheat Yield in a Mediterranean-Type Environment from the NOAA Satellite. Aust. J. Agric. Res. 1995, 46, 113–125. [Google Scholar] [CrossRef]
- Maloom, J.M.; Saludes, R.B.; Dorado, M.A. Development of a GIS-Based Model for Predicting Rice Yield. Philip. J. Crop. Sci. 2014, 39, 8–1913. [Google Scholar]
- Kancheva, R.; Borisova, D.; Georgiev, G. Spectral Predictors of Crop Development and Yield. In Proceedings of the 2007 3rd International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 14–16 June 2007; IEEE: Istanbul, Turkey, 2007; pp. 247–251. [Google Scholar]
- Mkhabela, M.S.; Bullock, P.; Raj, S.; Wang, S.; Yang, Y. Crop Yield Forecasting on the Canadian Prairies Using MODIS NDVI Data. Agric. For. Meteorol. 2011, 151, 385–393. [Google Scholar] [CrossRef]
- Huang, J.; Wang, X.; Li, X.; Tian, H.; Pan, Z. Remotely Sensed Rice Yield Prediction Using Multi-Temporal NDVI Data Derived from NOAA’s-AVHRR. PLoS ONE 2013, 8, e70816. [Google Scholar] [CrossRef]
- Stas, M.; Van Orshoven, J.; Dong, Q.; Heremans, S.; Zhang, B. A Comparison of Machine Learning Algorithms for Regional Wheat Yield Prediction Using NDVI Time Series of SPOT-VGT. In Proceedings of the 2016 Fifth International Conference on Agro-Geoinformatics (Agro-Geoinformatics), Tianjin, China, 18–20 July 2016; IEEE: Tianjin, China, 2016; pp. 1–5. [Google Scholar]
- Liu, W.T.; Kogan, F. Monitoring Brazilian Soybean Production Using NOAA/AVHRR Based Vegetation Condition Indices. Int. J. Remote Sens. 2002, 23, 1161–1179. [Google Scholar] [CrossRef]
- Kowalik, W.; Dabrowska-Zielinska, K.; Meroni, M.; Raczka, T.U.; de Wit, A. Yield Estimation Using SPOT-VEGETATION Products: A Case Study of Wheat in European Countries. Int. J. Appl. Earth Obs. Geoinf. 2014, 32, 228–239. [Google Scholar] [CrossRef]
- Torino, M.S.; Ortiz, B.V.; Fulton, J.P.; Balkcom, K.S.; Wood, C.W. Evaluation of Vegetation Indices for Early Assessment of Corn Status and Yield Potential in the Southeastern United States. Agron. J. 2014, 106, 1389–1401. [Google Scholar] [CrossRef]
- Figueiredo, G.K.D.A.; Brunsell, N.A.; Higa, B.H.; Rocha, J.V.; Lamparelli, R.A.C. Correlation Maps to Assess Soybean Yield from EVI Data in Paraná State, Brazil. Sci. Agric. 2016, 73, 462–470. [Google Scholar] [CrossRef]
- Qader, S.H.; Dash, J.; Atkinson, P.M. Forecasting Wheat and Barley Crop Production in Arid and Semi-Arid Regions Using Remotely Sensed Primary Productivity and Crop Phenology: A Case Study in Iraq. Sci. Total Environ. 2018, 613–614, 250–262. [Google Scholar] [CrossRef] [Green Version]
- Kolotii, A.; Kussul, N.; Shelestov, A.; Skakun, S.; Yailymov, B.; Basarab, R.; Lavreniuk, M.; Oliinyk, T.; Ostapenko, V. Comparison of Biophysical and Satellite Predictors for Wheat Yield Forecasting in Ukraine. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7/W3, 39–44. [Google Scholar] [CrossRef] [Green Version]
- López-Lozano, R.; Duveiller, G.; Seguini, L.; Meroni, M.; García-Condado, S.; Hooker, J.; Leo, O.; Baruth, B. Towards Regional Grain Yield Forecasting with 1km-Resolution EO Biophysical Products: Strengths and Limitations at Pan-European Level. Agric. For. Meteorol. 2015, 206, 12–32. [Google Scholar] [CrossRef]
- Li, G.; Zhang, H.; Wu, X.; Shi, C.; Huang, X.; Qin, P. Canopy Reflectance in Two Castor Bean Varieties (Ricinus communis L.) for Growth Assessment and Yield Prediction on Coastal Saline Land of Yancheng District, China. Ind. Crops Prod. 2011, 33, 395–402. [Google Scholar] [CrossRef]
- Shrestha, R.; Di, L.; Yu, E.G.; Kang, L.; Shao, Y.; Bai, Y. Regression Model to Estimate Flood Impact on Corn Yield Using MODIS NDVI and USDA Cropland Data Layer. J. Integr. Agric. 2017, 16, 398–407. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Campbell, J.B.; Taff, G.N.; Zheng, B. An Analysis of Cropland Mask Choice and Ancillary Data for Annual Corn Yield Forecasting Using MODIS Data. Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 78–87. [Google Scholar] [CrossRef]
- GIMMS|Global Agricultural Monitoring System. Available online: https://glam1.gsfc.nasa.gov/ (accessed on 12 January 2021).
- Global Croplands. Available online: https://croplands.org/app/map?lat=0&lng=0&zoom=2 (accessed on 12 January 2021).
- Thorup-Kristensen, K.; Salmerón Cortasa, M.; Loges, R. Winter Wheat Roots Grow Twice as Deep as Spring Wheat Roots, Is This Important for N Uptake and N Leaching Losses? Plant Soil 2009, 322, 101–114. [Google Scholar] [CrossRef]
- Mazurenko, B.; Kalenska, S.; Honchar, L.; Novytska, N. Grain Yield Response of Facultative and Winter Triticale for Late Autumn Sowing in Different Weather Conditions. Agron. Res. 2020, 18, 183–193. [Google Scholar] [CrossRef]
- Whitcraft, A.K.; Vermote, E.F.; Becker-Reshef, I.; Justice, C.O. Cloud Cover throughout the Agricultural Growing Season: Impacts on Passive Optical Earth Observations. Remote Sens. Environ. 2015, 156, 438–447. [Google Scholar] [CrossRef]
- Rembold, F.; Atzberger, C.; Savin, I.; Rojas, O. Using Low Resolution Satellite Imagery for Yield Prediction and Yield Anomaly Detection. Remote Sens. 2013, 5, 1704–1733. [Google Scholar] [CrossRef] [Green Version]
- Maselli, F.; Romanelli, S.; Bottai, L.; Maracchi, G. Processing of GAC NDVI Data for Yield Forecasting in the Sahelian Region. Int. J. Remote Sens. 2000, 21, 3509–3523. [Google Scholar] [CrossRef]
- Brisson, N.; Gate, P.; Gouache, D.; Charmet, G.; Oury, F.-X.; Huard, F. Why Are Wheat Yields Stagnating in Europe? A Comprehensive Data Analysis for France. Field Crop. Res. 2010, 119, 201–212. [Google Scholar] [CrossRef]
- Goodwin, L.D.; Leech, N.L. Understanding correlation: Factors that affect the size of r. J. Exp. Educ. 2006, 74, 249–266. [Google Scholar] [CrossRef]
- Iizumi, T.; Kotoku, M.; Kim, W.; West, P.C.; Gerber, J.S.; Brown, M.E. Uncertainties of Potentials and Recent Changes in Global Yields of Major Crops Resulting from Census- and Satellite-Based Yield Datasets at Multiple Resolutions. PLoS ONE 2018, 13, e0203809. [Google Scholar] [CrossRef] [PubMed]
- Kyratzis, A.C.; Skarlatos, D.P.; Menexes, G.C.; Vamvakousis, V.F.; Katsiotis, A. Assessment of Vegetation Indices Derived by UAV Imagery for Durum Wheat Phenotyping under a Water Limited and Heat Stressed Mediterranean Environment. Front. Plant Sci. 2017, 8, 1114. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vivekar, A. Evaluation of Methodology for Estimating Crop Yield from Multispectral UAV Images. Remote Sens. 2015, 7, 4026–4047. [Google Scholar]
Country | All Cereals | Wheat | Barley |
---|---|---|---|
Austria | 58.8% | 22.0% | 10.5% |
Belgium | 36.4% | 23.4% | 5.0% |
Bulgaria | 52.1% | 34.7% | 3.0% |
Croatia | 56.9% | 16.9% | 6.2% |
Czechia | 53.7% | 32.8% | 13.0% |
Denmark | 59.8% | 18.0% | 33.6% |
Estonia | 51.2% | 22.6% | 20.2% |
Finland | 40.5% | 7.9% | 18.1% |
France | 49.4% | 28.3% | 9.6% |
Germany | 51.8% | 25.8% | 13.8% |
Hungary | 55.0% | 23.8% | 5.7% |
Ireland | 59.4% | 13.2% | 42.0% |
Latvia | 52.7% | 32.3% | 9.2% |
Lithuania | 59.8% | 36.7% | 10.7% |
Poland | 71.6% | 22.2% | 8.9% |
Romania | 61.5% | 24.7% | 4.9% |
Slovakia | 55.3% | 30.0% | 9.2% |
Slovenia | 54.1% | 15.2% | 11.4% |
Sweden | 35.9% | 14.5% | 14.1% |
United Kingdom | 51.1% | 28.7% | 18.7% |
Area | Cereals. Total Grain Yield (t/ha) | Wheat Grain Yield (t/ha) | Barley Grain Yield (t/ha) | Average NDVI 1 (CV in % within the Seasons and between Years) | Final Cumulative NDVI—cNDVI 2 (CV in % Across Years) |
---|---|---|---|---|---|
Austria | 6.41 ± 0.55 | 5.31 ± 0.69 | 5.31 ± 0.57 | 0.61 ± 0.11 (18.2) | 102.4 ± 3.0 (2.9) |
Belgium | 8.84 ± 0.87 | 8.66 ± 0.88 | 8.09 ± 0.87 | 0.65 ± 0.07 (11.2) | 109.2 ± 3.2 (3.0) |
Bulgaria | 4.66 ± 0.62 | 4.36 ± 0.57 | 3.97 ± 0.41 | 0.58 ± 0.10 (16.6) | 98.0 ± 5.3 (5.4) |
Croatia | 5.76 ± 0.75 | 5.10 ± 0.63 | 4.16 ± 0.50 | 0.60 ± 0.10 (16.9) | 101.5 ± 3.8 (3.8) |
Czechia | 5.47 ± 0.62 | 5.68 ± 0.73 | 4.96 ± 0.58 | 0.60 ± 0.13 (21.7) | 101.1 ± 4.0 (4.0) |
Denmark | 6.23 ± 0.64 | 7.23 ± 0.70 | 5.53 ± 0.54 | 0.62 ± 0.14 (22.1) | 103.5 ± 6.6 (6.4) |
Estonia | 3.21 ± 0.69 | 3.49 ± 0.75 | 3.17 ± 0.71 | 0.58 ± 0.19 (32.6) | 96.6 ± 3.4 (3.5) |
Finland | 3.53 ± 0.28 | 3.77 ± 0.41 | 3.59 ± 0.26 | 0.54 ± 0.20 (36.5) | 90.4 ± 2.8 (3.1) |
France | 7.03 ± 0.57 | 6.95 ± 0.71 | 6.32 ± 0.51 | 0.64 ± 0.06 (9.1) | 108.2 ± 2.2 (2.1) |
Germany | 7.07 ± 0.57 | 7.58 ± 0.60 | 6.49 ± 0.63 | 0.63 ± 0.10 (15.4) | 106.6 ± 4.1 (3.8) |
Hungary | 5.35 ± 0.86 | 4.68 ± 0.66 | 4.34 ± 0.67 | 0.57 ± 0.10 (18.2) | 95.5 ± 4.3 (4.5) |
Ireland | 7.97 ± 0.82 | 9.27 ± 1.08 | 7.57 ± 0.77 | 0.76 ± 0.05 (7.1) | 127.5 ± 3.8 (3.0) |
Latvia | 3.53 ± 0.62 | 3.99 ± 0.68 | 2.98 ± 0.54 | 0.59 ± 0.19 (31.4) | 99.3 ± 4.1 (4.1) |
Lithuania | 3.70 ± 0.59 | 4.27 ± 0.68 | 3.27 ± 0.52 | 0.58 ± 0.17 (30.0) | 97.2 ± 4.0 (4.1) |
Poland | 3.79 ± 0.32 | 4.46 ± 0.33 | 3.59 ± 0.31 | 0.59 ± 0.13 (23.0) | 98.4 ± 3.2 (3.2) |
Romania | 4.04 ± 1.05 | 3.72 ± 0.78 | 3.38 ± 0.69 | 0.58 ± 0.11 (19.6) | 96.7 ± 5.7 (5.9) |
Slovakia | 4.99 ± 0.90 | 4.68 ± 0.88 | 4.07 ± 0.81 | 0.58 ± 0.13 (22.5) | 97.2 ± 3.9 (4.1) |
Slovenia | 5.95 ± 0.59 | 4.97 ± 0.38 | 4.53 ± 0.30 | 0.65 ± 0.10 (16.0) | 110.0 ± 3.0 (2.7) |
Sweden | 5.12 ± 0.80 | 6.05 ± 0.92 | 4.57 ± 0.71 | 0.61 ± 0.14 (23.1) | 102.8 ± 4.2 (4.1) |
United Kingdom | 7.06 ± 0.53 | 7.88 ± 0.68 | 5.95 ± 0.38 | 0.70 ± 0.08 (11.2) | 117.5 ± 4.5 (3.8) |
Days of the Year | Austria | Belgium | Bulgaria | Croatia | Czechia | Denmark | Estonia | Finland | France | Germany | Hungary | Ireland | Latvia | Lithuania | Poland | Romania | Slovakia | Slovenia | Sweden | United Kingdom |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
57–65 | 0.52 | −0.46 | 0.32 | 0.78 | 0.79 | 0.70 | 0.52 | 0.19 | −0.51 | 0.76 | 0.52 | 0.23 | 0.88 | 0.85 | 0.59 | 0.23 | 0.75 | 0.46 | 0.68 | 0.15 |
65–73 | 0.54 | −0.49 | 0.55 | 0.79 | 0.77 | 0.68 | 0.57 | 0.06 | −0.50 | 0.67 | 0.73 | 0.27 | 0.90 | 0.82 | 0.58 | 0.44 | 0.84 | 0.35 | 0.26 | 0.06 |
73–81 | 0.47 | −0.34 | 0.68 | 0.71 | 0.82 | 0.69 | 0.60 | 0.26 | −0.22 | 0.81 | 0.70 | 0.21 | 0.83 | 0.79 | 0.78 | 0.64 | 0.83 | 0.38 | 0.72 | 0.18 |
81–89 | 0.53 | −0.17 | 0.60 | 0.67 | 0.78 | 0.61 | 0.87 | 0.34 | −0.03 | 0.80 | 0.81 | 0.23 | 0.83 | 0.82 | 0.82 | 0.53 | 0.78 | 0.44 | 0.52 | 0.13 |
89–97 | 0.55 | −0.25 | 0.50 | 0.70 | 0.78 | 0.66 | 0.73 | 0.39 | −0.17 | 0.54 | 0.78 | 0.31 | 0.79 | 0.75 | 0.58 | 0.49 | 0.66 | 0.45 | 0.49 | 0.32 |
97–105 | 0.77 | −0.21 | 0.31 | 0.45 | 0.79 | 0.70 | 0.67 | 0.23 | −0.50 | 0.59 | 0.78 | 0.28 | 0.58 | 0.58 | 0.78 | 0.57 | 0.72 | 0.55 | 0.66 | 0.23 |
105–113 | 0.71 | −0.50 | 0.26 | 0.60 | 0.71 | 0.52 | 0.63 | 0.16 | −0.50 | 0.29 | 0.82 | 0.25 | 0.76 | 0.62 | 0.50 | 0.55 | 0.70 | 0.72 | 0.56 | 0.20 |
113–121 | 0.59 | −0.66 | 0.16 | 0.64 | 0.76 | 0.40 | 0.56 | 0.26 | −0.19 | 0.30 | 0.86 | 0.51 | 0.58 | 0.61 | 0.53 | 0.44 | 0.80 | 0.69 | 0.28 | 0.49 |
121–129 | 0.70 | 0.46 | 0.14 | 0.86 | 0.84 | 0.25 | 0.28 | −0.26 | 0.23 | 0.72 | 0.84 | 0.28 | 0.28 | 0.45 | 0.24 | 0.22 | 0.88 | 0.84 | 0.25 | 0.43 |
129–137 | −0.28 | 0.18 | 0.19 | 0.62 | 0.27 | 0.49 | 0.08 | −0.34 | −0.31 | 0.69 | 0.50 | 0.58 | 0.23 | 0.49 | 0.43 | 0.48 | 0.32 | −0.68 | 0.34 | 0.52 |
137–145 | −0.01 | −0.29 | −0.09 | 0.35 | 0.38 | 0.49 | −0.25 | −0.56 | −0.02 | 0.63 | 0.27 | 0.74 | −0.21 | 0.17 | −0.32 | 0.13 | 0.30 | 0.07 | 0.10 | 0.59 |
145–153 | −0.02 | 0.15 | −0.30 | −0.15 | 0.67 | 0.41 | −0.11 | −0.47 | −0.19 | 0.85 | 0.28 | 0.69 | −0.23 | 0.22 | 0.13 | −0.36 | 0.62 | −0.10 | 0.37 | 0.70 |
153–161 | 0.28 | −0.50 | −0.29 | −0.26 | 0.51 | 0.61 | 0.06 | −0.02 | −0.21 | 0.13 | 0.14 | 0.21 | 0.05 | 0.23 | 0.31 | −0.36 | 0.59 | −0.54 | 0.88 | 0.59 |
161–169 | 0.48 | −0.01 | −0.09 | −0.03 | 0.23 | 0.77 | 0.25 | 0.48 | −0.52 | 0.07 | 0.16 | −0.05 | 0.25 | 0.18 | 0.49 | −0.21 | 0.52 | 0.14 | 0.77 | −0.03 |
169–177 | 0.23 | −0.42 | 0.20 | 0.45 | 0.02 | 0.62 | 0.66 | 0.38 | −0.44 | −0.32 | 0.00 | 0.24 | 0.44 | 0.36 | 0.59 | 0.17 | −0.30 | 0.49 | 0.55 | −0.08 |
177–185 | 0.07 | −0.26 | 0.33 | 0.68 | 0.05 | 0.66 | 0.39 | 0.74 | −0.32 | 0.30 | 0.20 | 0.57 | 0.40 | 0.36 | 0.63 | 0.06 | −0.21 | 0.36 | 0.79 | −0.07 |
185–193 | −0.04 | 0.16 | 0.50 | 0.85 | −0.14 | 0.55 | 0.59 | 0.66 | 0.00 | 0.27 | 0.33 | 0.63 | 0.56 | 0.25 | 0.51 | 0.51 | −0.30 | 0.13 | 0.80 | −0.15 |
193–201 | −0.09 | 0.21 | 0.52 | 0.79 | −0.36 | 0.55 | 0.61 | 0.75 | −0.18 | 0.35 | 0.55 | 0.63 | 0.78 | 0.25 | 0.13 | 0.63 | 0.02 | 0.10 | 0.82 | 0.04 |
201–209 | 0.47 | 0.55 | 0.53 | 0.75 | −0.21 | 0.57 | 0.63 | 0.75 | 0.07 | 0.34 | 0.46 | 0.69 | 0.67 | 0.15 | −0.11 | 0.65 | −0.05 | 0.67 | 0.75 | 0.28 |
209–217 | 0.48 | 0.28 | 0.49 | 0.69 | −0.08 | 0.56 | 0.41 | 0.55 | −0.09 | 0.43 | 0.39 | 0.68 | 0.39 | −0.12 | −0.24 | 0.61 | 0.00 | 0.95 | 0.64 | 0.01 |
217–224 | 0.53 | 0.17 | 0.36 | 0.60 | −0.09 | 0.67 | 0.44 | 0.59 | 0.09 | 0.38 | 0.30 | 0.65 | 0.27 | −0.20 | −0.09 | 0.50 | −0.08 | 0.92 | 0.59 | −0.01 |
Day of the Year | Austria | Belgium | Bulgaria | Croatia | Czechia | Denmark | Estonia | Finland | France | Germany | Hungary | Ireland | Latvia | Lithuania | Poland | Romania | Slovakia | Slovenia | Sweden | United Kingdom |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
65 | 0.52 | −0.46 | 0.32 | 0.78 | 0.79 | 0.70 | 0.52 | 0.19 | −0.51 | 0.76 | 0.52 | 0.23 | 0.88 | 0.85 | 0.59 | 0.23 | 0.75 | 0.46 | 0.68 | 0.15 |
73 | 0.54 | −0.49 | 0.45 | 0.84 | 0.78 | 0.69 | 0.55 | 0.12 | −0.52 | 0.72 | 0.64 | 0.25 | 0.89 | 0.84 | 0.60 | 0.34 | 0.81 | 0.41 | 0.53 | 0.10 |
81 | 0.52 | −0.45 | 0.55 | 0.80 | 0.80 | 0.70 | 0.57 | 0.17 | −0.43 | 0.76 | 0.67 | 0.24 | 0.88 | 0.84 | 0.68 | 0.46 | 0.83 | 0.40 | 0.59 | 0.14 |
89 | 0.54 | −0.40 | 0.56 | 0.78 | 0.81 | 0.68 | 0.64 | 0.21 | −0.35 | 0.79 | 0.72 | 0.24 | 0.88 | 0.86 | 0.75 | 0.48 | 0.83 | 0.42 | 0.58 | 0.13 |
97 | 0.54 | −0.40 | 0.56 | 0.78 | 0.82 | 0.69 | 0.68 | 0.25 | −0.33 | 0.78 | 0.75 | 0.26 | 0.88 | 0.86 | 0.75 | 0.49 | 0.81 | 0.43 | 0.59 | 0.18 |
105 | 0.61 | −0.36 | 0.53 | 0.76 | 0.84 | 0.70 | 0.70 | 0.25 | −0.36 | 0.76 | 0.77 | 0.27 | 0.86 | 0.84 | 0.80 | 0.51 | 0.82 | 0.48 | 0.61 | 0.20 |
113 | 0.63 | −0.38 | 0.51 | 0.76 | 0.84 | 0.68 | 0.71 | 0.25 | −0.38 | 0.71 | 0.80 | 0.27 | 0.86 | 0.81 | 0.78 | 0.52 | 0.83 | 0.53 | 0.61 | 0.20 |
121 | 0.64 | −0.43 | 0.48 | 0.76 | 0.85 | 0.66 | 0.71 | 0.26 | −0.37 | 0.69 | 0.82 | 0.30 | 0.85 | 0.79 | 0.76 | 0.51 | 0.84 | 0.56 | 0.58 | 0.24 |
129 | 0.64 | −0.38 | 0.46 | 0.78 | 0.85 | 0.63 | 0.71 | 0.23 | −0.35 | 0.70 | 0.83 | 0.31 | 0.81 | 0.77 | 0.73 | 0.50 | 0.85 | 0.59 | 0.55 | 0.26 |
137 | 0.62 | −0.38 | 0.45 | 0.78 | 0.84 | 0.63 | 0.68 | 0.20 | −0.36 | 0.73 | 0.82 | 0.33 | 0.79 | 0.76 | 0.72 | 0.50 | 0.83 | 0.55 | 0.54 | 0.28 |
145 | 0.61 | −0.40 | 0.45 | 0.80 | 0.84 | 0.63 | 0.65 | 0.12 | −0.34 | 0.74 | 0.82 | 0.35 | 0.77 | 0.75 | 0.70 | 0.50 | 0.83 | 0.56 | 0.53 | 0.29 |
153 | 0.61 | −0.38 | 0.43 | 0.81 | 0.85 | 0.62 | 0.64 | 0.05 | −0.36 | 0.76 | 0.82 | 0.36 | 0.77 | 0.77 | 0.70 | 0.48 | 0.83 | 0.57 | 0.53 | 0.31 |
161 | 0.63 | −0.39 | 0.42 | 0.81 | 0.85 | 0.62 | 0.64 | 0.05 | −0.37 | 0.76 | 0.83 | 0.36 | 0.78 | 0.78 | 0.71 | 0.46 | 0.84 | 0.56 | 0.56 | 0.33 |
169 | 0.66 | −0.39 | 0.41 | 0.82 | 0.87 | 0.64 | 0.64 | 0.12 | −0.43 | 0.76 | 0.86 | 0.35 | 0.79 | 0.79 | 0.74 | 0.45 | 0.87 | 0.58 | 0.59 | 0.32 |
177 | 0.70 | −0.42 | 0.42 | 0.85 | 0.88 | 0.67 | 0.66 | 0.15 | −0.49 | 0.76 | 0.86 | 0.35 | 0.80 | 0.79 | 0.76 | 0.46 | 0.87 | 0.62 | 0.62 | 0.32 |
185 | 0.71 | −0.44 | 0.43 | 0.87 | 0.90 | 0.70 | 0.66 | 0.22 | −0.53 | 0.79 | 0.87 | 0.38 | 0.81 | 0.81 | 0.79 | 0.45 | 0.86 | 0.64 | 0.66 | 0.31 |
193 | 0.72 | −0.43 | 0.45 | 0.89 | 0.90 | 0.75 | 0.67 | 0.25 | −0.52 | 0.82 | 0.87 | 0.42 | 0.82 | 0.81 | 0.84 | 0.47 | 0.86 | 0.64 | 0.71 | 0.29 |
201 | 0.73 | −0.40 | 0.48 | 0.89 | 0.91 | 0.80 | 0.68 | 0.29 | −0.52 | 0.84 | 0.86 | 0.47 | 0.82 | 0.81 | 0.86 | 0.49 | 0.85 | 0.62 | 0.76 | 0.28 |
209 | 0.77 | −0.31 | 0.50 | 0.89 | 0.90 | 0.84 | 0.70 | 0.33 | −0.51 | 0.84 | 0.87 | 0.51 | 0.83 | 0.82 | 0.87 | 0.52 | 0.86 | 0.65 | 0.80 | 0.30 |
217 | 0.78 | −0.25 | 0.52 | 0.89 | 0.90 | 0.85 | 0.71 | 0.40 | −0.51 | 0.83 | 0.88 | 0.54 | 0.84 | 0.81 | 0.88 | 0.55 | 0.87 | 0.70 | 0.82 | 0.29 |
224 | 0.82 | −0.21 | 0.52 | 0.89 | 0.87 | 0.86 | 0.71 | 0.46 | −0.48 | 0.82 | 0.87 | 0.56 | 0.83 | 0.78 | 0.90 | 0.56 | 0.86 | 0.77 | 0.83 | 0.28 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Panek, E.; Gozdowski, D. Relationship between MODIS Derived NDVI and Yield of Cereals for Selected European Countries. Agronomy 2021, 11, 340. https://doi.org/10.3390/agronomy11020340
Panek E, Gozdowski D. Relationship between MODIS Derived NDVI and Yield of Cereals for Selected European Countries. Agronomy. 2021; 11(2):340. https://doi.org/10.3390/agronomy11020340
Chicago/Turabian StylePanek, Ewa, and Dariusz Gozdowski. 2021. "Relationship between MODIS Derived NDVI and Yield of Cereals for Selected European Countries" Agronomy 11, no. 2: 340. https://doi.org/10.3390/agronomy11020340
APA StylePanek, E., & Gozdowski, D. (2021). Relationship between MODIS Derived NDVI and Yield of Cereals for Selected European Countries. Agronomy, 11(2), 340. https://doi.org/10.3390/agronomy11020340