Effects of Fertilizers and Manures on Temporal Yield Variability of Winter Rye
Abstract
:1. Introduction
- (Q1)
- What combination of Ca, N, P, and K leads to the lowest temporal yield variability for winter rye?
- (Q2)
- What are the effects of additional organic inputs on temporal yield variability of rye?
- (Q3)
- Are there correlations between soil organic carbon content and temporal yield variability of rye?
- (Q4)
- Do the effects of fertilizer and soil organic matter differ between (i) dry and (ii) average or wet years?
2. Materials and Methods
2.1. The Skierniewice Long-Term Experiment
2.2. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Organic Input Yes | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca | Ca NPK | Ca PK | ||||||||||||
Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 |
Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 |
Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 |
Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 |
Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 |
Ca NK | Ca NP. | NPK | ||||||||||||
Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 |
Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 |
Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 |
Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 |
Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 |
Organic input No | ||||||||||||||
Ca | Ca NPK | Ca PK | ||||||||||||
Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 |
Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 |
Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 |
Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 |
Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 |
Ca NK | Ca NP. | NPK | ||||||||||||
Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 | Crop 1 |
Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 | Crop 2 |
Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 | Crop 3 |
Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 | Crop 4 |
Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 | Crop 5 |
Month | Precipitation Sum [mm] | Air Temperature [°C] | ||
---|---|---|---|---|
Mean | Min–Max | Mean | Min–Max | |
January | 25 | (5.1–80.0) | −1.1 | (−8.4–10.1) |
February | 18.3 | (3.4–66.1) | −2.4 | (−11.2–8.6) |
March | 41.1 | (6.4–118.0) | 8.2 | (5.4–12.0) |
April | 60 | (21.3–132.0) | 13.9 | (10.6–17.1) |
May | 64.4 | (5.1–176.1) | 16.8 | (14.5–19.3) |
June | 80.7 | (16.7–203.3) | 18.7 | (15.2–22.8) |
July | 63.2 | (7.4–164.7) | 17.9 | (15.3–22.2) |
August | 101.1 | (46.4–195.6) | 15.1 | (13.1–17.0) |
September | 21.2 | (8.0–78.7) | 13.5 | (7.2–15.3) |
October | 20 | (6.8–68.1) | 8.1 | (5.0–12.2) |
November | 22 | (7.3–87.0) | 4.3 | (2.7–9.5) |
December | 35.7 | (11.7–92.8) | 2.1 | (−0.7–8.8) |
Annual | 552.7 | (400.7–854.5) | 8.3 | (6.6–9.9) |
References
- Ceglar, A.; Zampieri, M.; Gonzalez-Reviriego, N.; Ciais, P.; Schauberger, B.; Van der Velde, M. Time-Varying impact of climate on maize and wheat yields in France since 1900. Environ. Res. Lett. 2020, 15, 094039. [Google Scholar] [CrossRef]
- Müller, C.; Elliott, J.; Pugh, T.A.M.; Ruane, A.C.; Ciais, P.; Balkovic, J.; Deryng, D.; Folberth, C.; Izaurralde, R.C.; Jones, C.D.; et al. Global patterns of crop yield stability under additional nutrient and water inputs. PLoS ONE 2018, 13, e0198748. [Google Scholar] [CrossRef]
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef] [Green Version]
- Chmielewski, F.-M.; Köhn, W. Impact of weather on yield components of winter rye over 30 years. Agric. For. Meteorol. 2000, 102, 253–261. [Google Scholar] [CrossRef]
- Krueger, E.S.; Ochsner, T.E.; Porter, P.M.; Baker, J.M. Winter rye cover crop management influences on soil water, soil nitrate, and corn development. Agron. J. 2011, 103, 316–323. [Google Scholar] [CrossRef]
- Filipek, T.; Skowrońska, M. Current dominant causes and effects of acidification of soils under agricultural use in Poland. Acta Agrophysica 2013, 20, 283–294. [Google Scholar]
- Kirchmann, H.; Börjesson, G.; Bolinder, M.A.; Kätterer, T.; Djodjic, F. Soil properties currently limiting crop yields in Swedish agriculture—An analysis of 90 yield survey districts and 10 long-term field experiments. Eur. J. Agron. 2020, 120, 126132. [Google Scholar] [CrossRef]
- Onofri, A.; Seddaiu, G.; Piepho, H.-P. Long-Term Experiments with cropping systems: Case studies on data analysis. Eur. J. Agron. 2016, 77, 223–235. [Google Scholar] [CrossRef]
- Macholdt, J.; Piepho, H.-P.; Honermeier, B. Does fertilization impact production risk and yield stability across an entire crop rotation? Insights from a long-term experiment. F. Crop. Res. 2019, 238, 82–92. [Google Scholar] [CrossRef]
- Berzsenyi, Z.; Győrffy, B.; Lap, D. Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long-term experiment. Eur. J. Agron. 2000, 13, 225–244. [Google Scholar] [CrossRef]
- Hadasch, S.; Laidig, F.; Macholdt, J.; Bönecke, E.; Piepho, H.P. Trends in mean performance and stability of winter wheat and winter rye yields in a long-term series of variety trials. F. Crop. Res. 2020, 252, 107792. [Google Scholar] [CrossRef]
- Macholdt, J.; Honermeier, B. Impact of highly varying seeding densities on grain yield and yield stability of winter rye cultivars under the influence of delayed sowing under sandy soil conditions. Arch. Agron. Soil Sci. 2017, 63, 1977–1992. [Google Scholar] [CrossRef]
- Schmidt, L.; Warnstorff, K.; Dörfel, H.; Leinweber, P.; Lange, H.; Merbach, W. The influence of fertilization and rotation on soil organic matter and plant yields in the long-termEternal Rye trial in Halle (Saale), Germany. J. Plant Nutr. Soil Sci. 2000, 163, 639–648. [Google Scholar] [CrossRef]
- Wiesmeier, M.; Poeplau, C.; Sierra, C.A.; Maier, H.; Frühauf, C.; Hübner, R.; Kühnel, A.; Spörlein, P.; Geuß, U.; Hangen, E.; et al. Projected loss of soil organic carbon in temperate agricultural soils in the 21st century: Effects of climate change and carbon input trends. Sci. Rep. 2016, 6, 32525. [Google Scholar] [CrossRef] [Green Version]
- Macholdt, J.; Gyldengren, J.G.; Diamantopoulos, E.; Styczen, M.E. How will future climate depending agronomic management impact the yield risk of wheat cropping systems? A regional case study of Eastern Denmark. J. Agric. Sci. 2021, 1–16. [Google Scholar] [CrossRef]
- Oleksiak, T. Progress in rye breeding and its practical utilization in production in Poland in the years 1986–2000. Biul. IHAR 2006, 220, 171–178. [Google Scholar]
- Reckling, M.; Ahrends, H.; Chen, T.-W.; Eugster, W.; Hadasch, S.; Knapp, S.; Laidig, F.; Linstädter, A.; Macholdt, J.; Piepho, H.-P.; et al. Methods of yield stability analysis in long-term field experiments. A review. Agron. Sustain. Dev. 2021. accepted. [Google Scholar]
- Gilmour, A.R.; Gogel, B.J.; Cullis, B.R.; Thompson, R.; Butler, D.; Cherry, M.; Collins, D.; Dutkowski, G.; Harding, S.A.; Haskard, K.; et al. ASReml User Guide Release 3.0; Hp1 1ES, VSN International Ltd.: Hemel Hempstead, UK, 2009. [Google Scholar]
- Welham, S.; Cullis, B.; Gogel, B.; Gilmour, A.; Thompson, R. Prediction in linear mixed models. Aust. New Zeal. J. Stat. 2004, 46, 325–347. [Google Scholar] [CrossRef]
- Shukla, G.K. Some statistical aspects of partitioning genotype-environmental components of variability. Heredity 1972, 29, 237–245. [Google Scholar] [CrossRef]
- Szwed, M. Projections of changes of areal evapotranspiration for different land-use units in the Wielkopolska Region (Poland). Theor. Appl. Climatol. 2017, 130, 291–304. [Google Scholar] [CrossRef] [Green Version]
- Stępień, W.; Kobiałka, M. Effect of long-term organic and mineral fertilisation on selected physico-chemical soil properties in rye monoculture and five-year crop rotation. Soil Sci. Annu. 2019, 70, 34–38. [Google Scholar] [CrossRef] [Green Version]
- van der Bom, F.; Magid, J.; Jensen, L.S. Long-Term P and K fertilisation strategies and balances affect soil availability indices, crop yield depression risk and N use. Eur. J. Agron. 2017, 86, 12–23. [Google Scholar] [CrossRef]
- Chloupek, O.; Hrstkova, P.; Schweigert, P. Yield and its stability, crop diversity, adaptability and response to climate change, weather and fertilisation over 75 years in the Czech Republic in comparison to some European countries. F. Crop. Res. 2004, 85, 167–190. [Google Scholar] [CrossRef]
- Varvel, G.E. Crop rotation and nitrogen effects on normalized grain yields in a long-term study. Agron. J. 2000, 92, 938–941. [Google Scholar] [CrossRef] [Green Version]
- Ellmer, F.; Baumecker, M. (Static nutrient depletion experiment Thyrow. Results after 65 experimental years). Arch. Agron. Soil Sci. 2005, 51, 151–161. [Google Scholar] [CrossRef]
- Cakmak, I. The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J. Plant Nutr. Soil Sci. 2005, 168, 521–530. [Google Scholar] [CrossRef]
- Marcinkonis, S. Nutrient leaching in dominant lithuanian soils. Arch. Agron. Soil Sci. 2006, 52, 183–191. [Google Scholar] [CrossRef]
- Iizumi, T.; Wagai, R. Leveraging drought risk reduction for sustainable food, soil and climate via soil organic carbon sequestration. Sci. Rep. 2019, 9, 19744. [Google Scholar] [CrossRef] [PubMed]
- Márton, L. Impact of rainfall, liming, nitrogen (N), phosphorus (P 2 O 5 ), potassium (K 2 O), calcium (CaO), magnesium (MgO) mineral fertilization on triticale (× Triticosecale Wittmack) yield in a monoculture in Hungary. Cereal Res. Commun. 2008, 36, 333–341. [Google Scholar] [CrossRef]
- Guo, Z.; Han, J.; Li, J.; Xu, Y.; Wang, X.; Li, Y. Correction: Effects of long-term fertilization on soil organic carbon mineralization and microbial community structure. PLoS ONE 2019, 14, e0216006. [Google Scholar] [CrossRef]
- Körschens, M.; Albert, E.; Armbruster, M.; Barkusky, D.; Baumecker, M.; Behle-Schalk, L.; Bischoff, R.; Čergan, Z.; Ellmer, F.; Herbst, F.; et al. Effect of mineral and organic fertilization on crop yield, nitrogen uptake, carbon and nitrogen balances, as well as soil organic carbon content and dynamics: Results from 20 European long-term field experiments of the twenty-first century. Arch. Agron. Soil Sci. 2013, 59, 1017–1040. [Google Scholar] [CrossRef]
- Johnston, A.E.; Poulton, P.R.; Coleman, K. Chapter 1, Soil Organic Matter: Its importance in sustainable agriculture and carbon dioxide fluxes. Adv. Agron. 2009, 101, 1–57. [Google Scholar] [CrossRef]
- Seremesic, S.; Milosev, D.; Djalovic, I.; Zeremski, T.; Ninkov, J. Management of soil organic carbon in maintaining soil productivity and yield stability of winter wheat. Plant Soil Environ. 2011, 57, 216–221. [Google Scholar] [CrossRef] [Green Version]
- Holland, J.E.; White, P.J.; Glendining, M.J.; Goulding, K.W.T.; McGrath, S.P. Yield responses of arable crops to liming—An evaluation of relationships between yields and soil pH from a long-term liming experiment. Eur. J. Agron. 2019, 105, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Bona, L.; Wright, R.J.; Baligar, V.C.; Matuz, J. Screening wheat and other small grains for acid soil tolerance. Landsc. Urban Plan. 1993, 27, 175–178. [Google Scholar] [CrossRef]
- Slootmaker, L.A.J. Tolerance to high soil acidity in wheat related species, rye and triticale. Euphytica 1974, 23, 505–513. [Google Scholar] [CrossRef]
- Pinto-Carnide, O.; Guedes-Pinto, H. Differential aluminum tolerance of Portuguese rye populations and North European rye cultivars. Agronomie 2000, 20, 93–99. [Google Scholar] [CrossRef]
Mineral Fertilization Treatment | Additional Organic Input | pH in KCl | Hydrolytic Acidity [mmol/kg] | C Organic [g/kg Soil] | N Total [g/kg Soil] | P Available [g/kg Soil] | K Available [g/kg Soil] |
---|---|---|---|---|---|---|---|
Ca | No | 6.1 | 24.3 | 3.9 | 0.40 | 0.011 | 0.042 |
CaPK | No | 6.5 | 10.8 | 4.2 | 0.35 | 0.019 | 0.152 |
CaNK | No | 6.2 | 13.7 | 4.2 | 0.42 | 0.017 | 0.115 |
CaNP | No | 6.3 | 12.8 | 4.1 | 0.47 | 0.102 | 0.040 |
CaNPK | No | 6.1 | 11.6 | 4.6 | 0.57 | 0.084 | 0.116 |
NPK | No | 3.9 | 37.5 | 4.5 | 0.59 | 0.078 | 0.098 |
Ca | Yes | 6.2 | 24.6 | 4.2 | 0.48 | 0.021 | 0.056 |
CaPK | Yes | 6.6 | 12.2 | 4.6 | 0.59 | 0.060 | 0.135 |
CaNK | Yes | 6.3 | 14.5 | 4.7 | 0.70 | 0.029 | 0.125 |
CaNP | Yes | 6.5 | 13.4 | 4.5 | 0.70 | 0.053 | 0.054 |
CaNPK | Yes | 6.3 | 14.5 | 5.1 | 0.70 | 0.063 | 0.109 |
NPK | Yes | 4.1 | 37.7 | 5.0 | 0.66 | 0.050 | 0.102 |
Mineral Fertilization Treatment | Additional Organic Input | Mean Yield of Winter Rye [t/ha] | Correlation Coefficients between CWB and Mean Yield of Winter Rye | ||||
---|---|---|---|---|---|---|---|
Dry Years | Non-Dry Years | ||||||
Ca | No | 1.56 | a | 1.50 | a | −0.12 | |
CaPK | No | 1.78 | a | 1.74 | a | −0.03 | |
CaNK | No | 2.80 | a | 2.99 | a | −0.02 | |
CaNP | No | 3.09 | a | 3.78 | b | 0.36 | * |
CaNPK | No | 4.02 | a | 4.34 | b | 0.16 | |
NPK | No | 3.88 | a | 4.38 | b | 0.27 | |
Ca | Yes | 2.34 | a | 2.78 | b | 0.27 | |
CaPK | Yes | 2.68 | a | 3.03 | b | 0.22 | |
CaNK | Yes | 3.28 | a | 3.79 | b | 0.28 | |
CaNP | Yes | 3.60 | a | 4.15 | b | 0.43 | * |
CaNPK | Yes | 3.89 | a | 4.52 | b | 0.46 | * |
NPK | Yes | 3.87 | a | 4.33 | b | 0.39 | * |
Soil Properties | Mean Yield of Winter Rye Across All Study Growing Seasons (1966–2015) | Mean Yield of Winter Rye from 2011–2015 Period (Last 5 Growing Seasons) | Mean Yield of Winter Rye from 2006–2015 Period (Last 10 Growing Seasons) | Temporal Yield Variability of Winter Rye |
---|---|---|---|---|
Soil organic carbon | 0.83 | 0.91 | 0.88 | −0.60 |
pH in KCl | −0.67 | −0.78 | −0.77 | 0.49 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Studnicki, M.; Macholdt, J.; Macdonald, A.; Stępień, W. Effects of Fertilizers and Manures on Temporal Yield Variability of Winter Rye. Agronomy 2021, 11, 519. https://doi.org/10.3390/agronomy11030519
Studnicki M, Macholdt J, Macdonald A, Stępień W. Effects of Fertilizers and Manures on Temporal Yield Variability of Winter Rye. Agronomy. 2021; 11(3):519. https://doi.org/10.3390/agronomy11030519
Chicago/Turabian StyleStudnicki, Marcin, Janna Macholdt, Andy Macdonald, and Wojciech Stępień. 2021. "Effects of Fertilizers and Manures on Temporal Yield Variability of Winter Rye" Agronomy 11, no. 3: 519. https://doi.org/10.3390/agronomy11030519
APA StyleStudnicki, M., Macholdt, J., Macdonald, A., & Stępień, W. (2021). Effects of Fertilizers and Manures on Temporal Yield Variability of Winter Rye. Agronomy, 11(3), 519. https://doi.org/10.3390/agronomy11030519