Short-Term Effects of Biosolid Application on Two Mediterranean Agricultural Soils and Durum Wheat Yield
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils and Amendments
2.2. Experimental Design and Soil Sampling Scheme
2.3. Soil Chemical Analysis
2.4. Carbon Mineralization of Biosolid Amended Soils
2.5. Plant Analysis
2.6. Statistical Analysis
3. Results
3.1. Changes of Soil Chemical Properties after DPS Application
3.1.1. Effect on Soil pH and Electrical Conductivity (EC)
3.1.2. Changes in Total Organic Carbon and Total Organic Nitrogen
3.1.3. Variation of Mineral Nitrogen (N-NH4+ and N-NO3−) and Available P
3.1.4. Variation of Nutrients (Ca2+, Mg2+, K+ and Na+)
3.1.5. Effect on Cation Exchange Capacity
3.2. Effect of De Inking Paper Sludge on Carbon Mineralization
3.3. Effect of DPS on Nutrient Status, Yield, and Root Length of Durum Wheat
3.3.1. Grain Yield and Nutrient Status
3.3.2. Straw
3.3.3. Root Length and Biomass
3.4. Metal Content
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hébert, M. Guide sur le Recyclage des Matières Résiduelles Ferilisantes: Critères de Référence et Normes Réglementaires; Ministry of Sustainable Development, Environment, and Fight Against Climate Change: Quebec City, QC, Canada, 2015; Available online: http://www.environnement.gouv.qc.ca/matieres/mat_res/fertilisantes/critere/guide-mrf.pdf (accessed on 26 June 2020).
- Marouani, E.; Ziadi, N.; Lévesque, V.; Benzina, N.K.; Bouslimi, B.; Koubaa, A. Mitigation of CO2, CH4 and N2O from Acidic Clayey Soil Amended with Fertilizer Pellets Based on Al-kaline Organic Residues. Waste Biomass Valorization 2020, 1–15. [Google Scholar] [CrossRef]
- Faubert, P.; Barnabé, S.; Bouchard, S.; Côté, R.; Villeneuve, C. Pulp and paper mill sludge management practices: What are the challenges to assess the impacts on greenhouse gas emissions? Resour. Conserv. Recycl. 2016, 108, 107–133. [Google Scholar] [CrossRef] [Green Version]
- Marouani, E.; Benzina, N.K.; Ziadi, N.; Bouslimi, B.; Abida, K.; Tlijani, H.; Koubaa, A. CO2 Emission and Change in the Fertility Parameters of a Calcareous Soil Following Annual Applications of Deinking Paper Sludge (The Case of Tunisia). Agronomy 2020, 10, 956. [Google Scholar] [CrossRef]
- Marouani, E.; Benzina, N.K.; Ziadi, N.; Bouslimi, B.; Abouda, A.; Koubaa, A. Deinking sludge compost stability and maturity assessment using Fourier transform infrared spectroscopy and thermal analysis. Waste Manag. Res. 2019, 37, 1043–1057. [Google Scholar] [CrossRef] [PubMed]
- Camberato, J.J.; Gagnon, B.; A Angers, D.; Chantigny, M.H.; Pan, W.L. Pulp and paper mill by-products as soil amendments and plant nutrient sources. Can. J. Soil Sci. 2006, 86, 641–653. [Google Scholar] [CrossRef]
- Fierro, A.; Angers, D.A.; Beauchamp, C.J. Restoration of ecosystem function in an abandoned sandpit: Plant and soil responses to paper de-inking sludge. J. Appl. Ecol. 1999, 36, 244–253. [Google Scholar] [CrossRef]
- Ziadi, N.; Gagnon, B.; Nyiraneza, J. Crop yield and soil fertility as affected by papermill biosolids and liming by-products. Can. J. Soil Sci. 2013, 93, 319–328. [Google Scholar] [CrossRef]
- Filiatrault, P.; Camiré, C.; Norrie, J.P.; Beauchamp, C.J. Effects of de-inking paper sludge on growth and nutritional status of alder and aspen. Resour. Conserv. Recycl. 2006, 48, 209–226. [Google Scholar] [CrossRef]
- Rashid, M.; Barry, D.; Goss, M. Papermill biosolids application to agricultural lands: Benefits and environmental concerns with special reference to situation in Canada. Soil Environ. 2006, 25, 85–98. [Google Scholar]
- Chantigny, M. Émissions de protoxyde d’azote (N2O) en Agriculture, Contribution des Amendements Organiques, des Fertilisants Miné-Raux et du Labour. In Proceedings of the 65e Congrès de l’Ordre Agronomique du Québec; 2018. Available online: https://www.agrireseau.net/agroenvironnement/documents/chantigny.pdf (accessed on 26 January 2020).
- Barriga, S.; Méndez, A.; Camara, J.; Guerrero, F.; Gascó, G. Agricultural valorisation of de-inking paper sludge as organic amendment in different soils. J. Therm. Anal. Calorim. 2010, 99, 981–986. [Google Scholar] [CrossRef]
- Annabi, M.; Bahri, H.; Latiri, K. Statut organique et respiration microbienne des sols du nord de la Tunisie. Biotechnologie, Agronomie. Société Environ. 2009, 13, 401. [Google Scholar]
- Latiri, K.; Lhomme, J.; Annabi, M.; Setter, T. Wheat production in Tunisia: Progress, inter-annual variability and relation to rainfall. Eur. J. Agron. 2010, 33, 33–42. [Google Scholar] [CrossRef]
- Chamekh, Z.; Karmous, C.; Ayadi, S.; Sahli, A.; Hammami, Z.; Fraj, M.B.; Benaissa, N.; Trifa, Y.; Slim-Amara, H. Stability analysis of yield component traits in 25 durum wheat (Triticum durum Desf.) genotypes under contrasting irrigation water salinity. Agric. Water Manag. 2015, 152, 1–6. [Google Scholar] [CrossRef]
- Legrain, X.; Berding, F.; Dondeyne, S.; Schad, P.; Chapelle, J. Base de Référence Mondiale pour les Ressources en Sols 2014. Système International de Classification des Sols pour Nommer les Sols et Élaborer des Légendes de Cartes Pédologiques. Available online: http://www.fao.org/3/i3794fr/I3794FR.pdf (accessed on 26 June 2020).
- Nunes, J.R.; Cabral, F.; López-Piñeiro, A. Short-term effects on soil properties and wheat production from secondary paper sludge application on two Mediterranean agricultural soils. Bioresour. Technol. 2008, 99, 4935–4942. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pauwels, J.; Van Ranst, E.; Verloo, M.; Mvondo, Z.E.A. Manuel de Laboratoire de Pedologie: Methodes D’analyses de Sols et de Plantes, Equipement, Gestion de Stocks de Verrerie et de Produits Chimiques. 1992. Available online: http://hdl.handle.net/1854/LU-223183 (accessed on 20 June 2020).
- Nelson, D.W.; Sommers, L.E. Total carbon, organic carbon, and organic matter. In Methods of Soil Analysis: Part 3 Chemical Methods; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1996; Volume 5, pp. 961–1010. [Google Scholar] [CrossRef]
- Olsen, S.R. Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; United States Department of Agriculture: Washington, DC, USA, 1954.
- Waring, S.A.; Bremner, J.M. Ammonium Production in Soil under Waterlogged Conditions as an Index of Nitrogen Availability. Nat. Cell Biol. 1964, 201, 951–952. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Richards, J.E. Chemical characterization of plant tissue. Soil sampling and methods of analysis. Lewis Ann. Arbor. 1993, 15, 115–139. [Google Scholar]
- Bremner, J.M.; Sparks, D.L.; Page, A.L.; Helmke, P.A.; Loeppert, R.H.; Soltanpour, P.N.; Tabatabai, M.A.; Johnston, C.T.; Sumner, M.E. Nitrogen-Total. Methods of Soil Analysis: Part 3 Chemical Methods; Soil Science Society of America and American Society of Agronomy: Madison, WI, USA, 1982; Volume 2, pp. 595–624. [Google Scholar] [CrossRef]
- SAS Institute Inc. Cary, NC, USA. 2008. Available online: https://support.sas.com/resources/papers/proceedings/pdfs/sgf2008/190-2008.pdf (accessed on 20 June 2020).
- Cabral, F.; Vasconcelos, E. Agricultural use of combined primary/secondary pulp mill sludge. Agrochimica 1993, 37, 409–417. [Google Scholar]
- Luo, X.-S.; Yu, S.; Zhu, Y.-G.; Li, X.-D. Trace metal contamination in urban soils of China. Sci. Total Environ. 2012, 421–422, 17–30. [Google Scholar] [CrossRef]
- Dos Santos Rheinheimer, D.; Anghinoni, I. Accumulation of soil organic phosphorus by soil tillage and cropping sys-tems under subtropical conditions. Commun. Soil Sci. Plant Anal. 2003, 34, 2339–2354. [Google Scholar] [CrossRef]
- Weil, R.R.; Magdoff, F. Significance of soil organic matter to soil quality and health. In Soil Organic Matter in Sustainable Agriculture; CRC Press Inc.: Boca Raton, LA, USA, 2004; pp. 1–43. [Google Scholar]
- Naveed, M.; Herath, L.; Moldrup, P.; Arthur, E.; Nicolaisen, M.; Norgaard, T.; Ferré, T.P.; De Jonge, L.W. Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural field. Appl. Soil Ecol. 2016, 103, 44–55. [Google Scholar] [CrossRef]
- Faubert, P.; Bélisle, C.L.; Bertrand, N.; Bouchard, S.; Chantigny, M.H.; Paré, M.C.; Rochette, P.; Ziadi, N.; Villeneuve, C. Land application of pulp and paper mill sludge may reduce greenhouse gas emissions compared to landfilling. Resour. Conserv. Recycl. 2019, 150, 104415. [Google Scholar] [CrossRef]
- Faubert, P.; Lemay-Bélisle, C.; Bertrand, N.; Bouchard, S.; Chantigny, M.H.; Durocher, S.; Paré, M.C.; Rochette, P.; Tremblay, P.; Ziadi, N.; et al. Greenhouse gas emissions following land application of pulp and paper mill sludge on a clay loam soil. Agric. Ecosyst. Environ. 2017, 250, 102–112. [Google Scholar] [CrossRef] [Green Version]
- Hirte, J.; Leifeld, J.; Abiven, S.; Mayer, J. Maize and wheat root biomass, vertical distribution, and size class as affected by fertilization intensity in two long-term field trials. Field Crops Res. 2018, 216, 197–208. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Siebielec, G.; Siebielec, S.; Pecio, M. The Impact of Exogenous Organic Matter on Wheat Growth and Mineral Nitrogen Availability in Soil. Agronomy 2020, 10, 1314. [Google Scholar] [CrossRef]
Chemical Properties | Unit | clCM Soil | coLV Soil |
---|---|---|---|
Clay | % | 51.60 ± 6.44 | 34.06 ± 4.62 |
Silt | % | 42.20 ± 6.41 | 36.36 ± 6.70 |
Sand | % | 6.20 ± 0.32 | 29.64 ± 0.26 |
TOC | g kg−1 | 5.80 ± 0.08 | 4.60 ± 0.02 |
pH (1:5) | 7.84 ± 0.10 | 5.73 ± 0.06 | |
EC | μS cm−1 | 175.60 ± 5.06 | 107.38 ± 4.02 |
Total N | % | 0.13 ± 0.01 | 0.15 ± 0.01 |
Available P | mg kg−1 | 67.62 ± 9.12 | 18.73 ± 4.86 |
Kexchangeable | mg kg−1 | 472.61 ± 6.90 | 400.91 ± 2.30 |
CEC | cmolc kg−1 | 23.08 ± 0.63 | 19.90 ± 1.41 |
SFC | % | 26.06 ± 0.15 | 30.86 ± 0.48 |
Total CaCO3 | % | 25.52 ± 0.81 | 0 |
Chemical Properties | Unit | DPS | SS |
---|---|---|---|
Moisture content | % | 73 | 82 |
Organic C | g kg−1 | 315 ± 25 | 399 ± 30 |
pH | 7.80 ± 0.30 | 7.30 ± 0.10 | |
Total N | g kg−1 | 2.91 ± 0.60 | 2.67 ± 0.10 |
K | g kg−1 | 7.23 ± 3.0 | 3.96 ± 0.40 |
P | g kg−1 | 0.35 ± 0.20 | 2.64 ± 1.10 |
Na | g kg−1 | 1.8 ± 0.30 | ND |
Ca | g kg−1 | 122 ± 19 | 92.20 ± 5.0 |
Mg | g kg−1 | 4.49 ± 0.40 | 1.46 |
Fe | g kg−1 | 1.06 ± 0.10 | ND |
Cu | mg kg−1 | 51.4 ± 7.0 | <0.396 |
Mn | g kg−1 | 0.52 ± 0.10 | ND |
Zn | mg kg−1 | 101 ± 15 | 225 |
C:N | 108.24 | 149.4 | |
C:P | 900 | 151.1 | |
Ca:Mg | 27.17 | 63.15 |
pH | OC | TN | NH4+ | NO3− | avP | Ca2+ | Na+ | Mg2+ | K+ | |
---|---|---|---|---|---|---|---|---|---|---|
F value | ||||||||||
Soil (s) | 1953 4 ** | 11.1 ** | 453 6 ** | 30.9 ** | 29.1 ** | 6779 8 ** | 191.9 ** | 70.1 ** | 97.5 ** | 848 7 ** |
Treatment (T) | 6.8 ** | 4.7 ** | 15.9 ** | 5.5 ** | 6.1 ** | 1174.7 * | 15.4 ** | 780.7 ** | 6.4 ** | 5.0 ** |
S*T | 3.1 ** | 0.4 NS | 7.0 ** | 4.6 ** | 3.6 ** | 1431.8 ** | 11.1 ** | 39.9 ** | 6.0 ** | 7.3 ** |
pH | OC | TN | NH4+ | NO3− | P | Ca2+ | Na+ | Mg2+ | K+ | |
---|---|---|---|---|---|---|---|---|---|---|
g kg−1 | gkg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | mg kg−1 | ||
Soil 1 clCM | ||||||||||
Control | 8.2 b | 5.8 b | 0.10 c | 110.9 b | 139.9 a b | 42.4 e d | 1629.5 b | 1235.8 c | 1190.7 a | 472.6 a b |
DPS30 | 8.0 c | 5.6 a | 0.17 a | 119.0 a b | 140.5 b | 43.3 d | 2297.4 b | 1381.6 a | 453.6 b | 503.7 a |
DPS60 | 8.6 a | 4.8 b | 0.10 c | 135.8 a | 166.0 a b | 88.4 a | 748.0 c | 1100.9 d | 569.2 b | 469.8 b |
DPS30F | 8.5 a | 4.8 b | 0.09 d | 99.1 b | 136.0 a b | 46.4 c | 3259.0 a | 1176.5 d | 521.2 b | 477.3 b |
DPS60F | 8.4 a | 4.9 b | 0.09 d | 129.4 b | 156.4 a b | 47.8 b | 3195.4 a | 1349.2 a b | 1101.6 a | 484.9 b |
MIXED | 8.3 b | 4.7 c | 0.12 c | 131.2 a | 164.7 a | 42.3 e | 694.5 d | 1306.0 b | 1069.2 a | 477.3 b c |
SS5 | 8.4 b | 5.0 b | 0.14 b | 120.2 b | 148.0 a b | 30.4 g | 1709.7 b | 1457.1 a | 318.4 b | 494.3 b |
SS10 | 8.3 b | 4.6 c | 0.14 b | 129.8 a | 174.2 a | 35.6 f | 1763.1 b | 1349.0 b | 388.8 b | 481.1 b |
Soil 2 coLV | ||||||||||
Control | 6.1 a b | 4.6 b | 0.19 b | 182.5 b | 222.9 b | 12.3 h | 614.2 c | 901.2 c | 146.4 b c | 400.9 b |
DPS30 | 6.3 a b | 5.5 a | 0.20 a | 119.6 c | 146.5 c | 20.8 d | 614.6 c | 982.2 b | 161.6 a b | 383.0 c |
DPS60 | 6.6 a | 4.2 b | 0.19 b | 140.1 c | 175.1 c | 22.8 c | 560.9 b | 809.5 d | 193.1 a b | 407.5 b |
DPS30F | 6.3 a b c | 4.7 b | 0.17 c | 147.1 c | 182.0 c | 19.8 e | 747.9 a b | 809.5 d | 163.3 a b | 400.0 c |
DPS60F | 6.5 a | 4.6 b | 0.17 c | 124.7 c | 170.2 c | 36.4 b | 848.2 a | 1521.9 a | 198.7 a b | 435.8 a |
MIXED | 6.4 a | 4.0 c | 0.18 b | 237.0 a | 296.9 b | 15.9 f | 641.1 b | 841.9 c | 162.3 a | 390.5 c |
SS5 | 6.2 b c | 4.5 b | 0.19 b | 128.1 c | 157.2 c | 15.1 g | 523.1 c | 906.6 b c | 129.6 b | 405.6 a b |
SS10 | 6.2 c | 3.9 c | 0.17 c | 218.1 b | 305.9 a | 69.3 a | 514.7 c | 831.1 c | 129.6 b | 405.6 a b |
Soil | Calcaric Cambisol | Cromic Luvisol | ||||||
---|---|---|---|---|---|---|---|---|
Treatments | C0 (mgC kg−1) | K (Day−1) | C0 * k (mg kg−1 Day−1) | R2 | C0 (mgC kg−1) | k (Day−1) | C0 * k (mg kg−1 Day−1) | R2 |
Control | 231.9 | 0.024 | 5.6 | 0.99 | 339.6 | 0.116 | 39.4 | 0.87 |
DPS30 | 340.8 | 0.019 | 6.4 | 0.99 | 364.7 | 0.104 | 37.9 | 0.87 |
DPS60 | 301.3 | 0.024 | 7.2 | 0.98 | 364.8 | 0.114 | 41.5 | 0.88 |
MIXED | 495.1 | 0.013 | 6.2 | 0.99 | 417.6 | 0.092 | 38.2 | 0.88 |
SS10 | 306.6 | 0.041 | 12.6 | 0.94 | 404.6 | 0.076 | 30.9 | 0.87 |
ControlF | 243.6 | 0.028 | 6.8 | 0.97 | 327.6 | 0.118 | 38.8 | 0.83 |
DPS30F | 274.0 | 0.028 | 7.6 | 0.98 | 337.5 | 0.111 | 37.5 | 0.85 |
DPS60F | 297.1 | 0.033 | 9.8 | 0.98 | 460.7 | 0.078 | 36.12 | 0.91 |
Soil Type | Grain Yield g Pot−1 | N % | P % | K % | Ca % | Mg % | Na % |
---|---|---|---|---|---|---|---|
Soil 1 clCM | |||||||
Control | 30.21 b | 3.65 a | 0.33 b | 0.45 b | 0.28 b | 0.02 c | 0.73 c |
DPS30 | 15.67 c | 2.59 c | 0.41 a | 0.61 a | 0.40 a | 0.02 c | 0.84 c |
DPS60 | 6.90 d | 3.37 b | 0.67 a | 0.79 a | 0.40 a | 0.04 a | 1.04 b |
DPS30F | 48.52 a | 1.74 d | 0.12 c | 0.40 b | 0.20 b | 0.02 c | 0.57 d |
DPS60F | 5.75 d | 3.59 a | 0.29 b | 0.49 b | 0.20 b | 0.02 c | 0.75 c |
MIXED | 45.10 a | 2.88 c | 0.13 c | 0.43 b | 0.16 c | 0.03 b | 0.75 c |
SS5 | 55.15 a | 3.20 b | 0.35 b | 0.41 b | 0.17 c | 0.02 c | 0.47 d |
SS10 | 61.75 a | 3.22 b | 0.47 a | 0.46 b | 0.19 c | 0.03 b | 1.66 a |
Soil 2 coLV | |||||||
Control | 38.52 b | 3.24 b | 0.54 b | 0.32 b | 0.24 b | 0.02 b | 0.66 b |
DPS30 | 11.35 d | 3.66 a | 0.20 c | 0.23 c | 0.17 c | 0.01 c | 0.62 b |
DPS60 | 3.25 e | 1.16 d | 0.17 c | 0.38 a | 0.35 a | 0.05 a | 1.23 a |
DPS30F | 38.27 b | 3.43 a | 0.64 b | 0.32 b | 0.20 c | 0.01 c | 0.56 b |
DPS60F | 44.32 a | 3.42 a | 0.53 b | 0.25 c | 0.19 c | 0.02 b | 0.63 b |
MIXED | 28.02 c | 2.01 c | 1.05 a | 0.36 a | 0.18 c | 0.01 c | 0.66 b |
SS5 | 30.14 c | 2.85 c | 1.31 a | 0.34 ab | 0.21 b | 0.02 b | 0.53 b |
SS10 | 31.17 c | 3.58 a | 1.32 a | 0.33 ab | 0.14 d | 0.02 b | 0.55 b |
Straw Yield g Pot−1 | P % | K % | Ca % | Mg % | Na % | |
---|---|---|---|---|---|---|
Soil 1 clCM | ||||||
Control | 49.95 c | 0.33 d | 1.04 c | 0.16 c | 0.52 b | 2.00 b |
DPS30 | 56.45 b | 0.41 c | 0.44 d | 0.37 a | 0.74 a | 2.11 b |
DPS60 | 27.47 e | 0.67 a | 0.59 d | 0.34 a | 0.26 c | 2.17 b |
DPS30F | 56.08 b | 0.12 d | 1.91 a | 0.17 c | 0.47 b | 2.08 b |
DPS60F | 25.45 e | 0.29 d | 0.98 c | 0.20 b | 0.44 b | 1.99 b |
MIXED | 65.05 a | 0.13 d | 1.25 b | 0.24 b | 0.35 b | 3.39 a |
SS5 | 34.27 d | 0.35 d | 0.80 d | 0.19 c | 0.29 c | 1.79 c |
SS10 | 63.70 a | 0.47 b | 0.55 d | 0.15 c | 0.39 b | 1.66 c |
Soil 2 coLV | ||||||
Control | 43.05 b | 0.14 c | 0.59 b | 0.16 a | 0.17 b | 1.63 b |
DPS30 | 26.32 d | 0.62 a | 1.94 a | 0.16 a | 0.19 ab | 1.68 b |
DPS60 | 12.85 e | 0.30 b | 0.26 c | 0.16 a | 0.15 b | 1.56 b |
DPS30F | 43.87 b | 0.09 d | 0.66 b | 0.16 a | 0.09 c | 1.65 b |
DPS60F | 49.80 a | 0.12 c | 0.63 b | 0.16 a | 0.19 ab | 1.81 a |
MIXED | 29.04 d | 0.13 c | 0.52 b | 0.17 a | 0.09 c | 1.60 b |
SS5 | 37.15 c | 0.06 d | 0.52 b | 0.16 a | 0.12 b | 1.66 b |
SS10 | 41.77 b | 0.13 c | 0.51 b | 0.13 a | 0.30 a | 1.91 a |
Root Length cm | Root Biomass g | N % | P % | K % | Ca % | Mg % | Na % | |
---|---|---|---|---|---|---|---|---|
Soil 1 clCM | ||||||||
Control | 15.75 c | 40.43 e | 2.25 a | 0.07 c | 0.24 b | 0.46 b | 0.52 b | 1.15 b |
DPS30 | 26.25 b | 84.70 a | 2.28 a | 0.09 c | 0.08 c | 0.61 a | 0.74 a | 0.88 c |
DPS60 | 31.25 a | 72.25 b | 1.46 c | 0.13 b | 0.10 c | 0.34 c | 0.26 e | 0.76 c |
DPS30F | 22.75 b | 49.43 c | 0.61 e | 0.05 c | 0.25 b | 0.37 c | 0.47 c | 0.94 c |
DPS60F | 28.75 a | 47.28 d | 1.28 c | 0.08 c | 0.31 a | 0.40 b | 0.43 c | 1.35 a |
MIXED | 29.12 a | 53.92 c | 1.99 b | 0.25 a | 0.14 c | 0.45 b | 0.36 d | 1.37 a |
SS5 | 24.68 b | 50.82 c | 1.35 c | 0.23 a | 0.30 a | 0.40 c | 0.29 d | 0.88 c |
SS10 | 26.60 b | 73.15 b | 1.05 d | 0.24 a | 0.20 b | 0.48 b | 0.39 d | 1.13 b |
Soil 2 coLV | ||||||||
Control | 11.02 b | 55.95 c | 1.74 b | 0.15 c | 0.09 d | 0.34 b | 0.68 a | 1.25 c |
DPS30 | 2.50 d | 81.51 a | 1.60 b | 0.14 b | 0.43 a | 0.33 b | 0.49 b | 0.59 e |
DPS60 | 4.37 d | 47.00 d | 2.13 a | 0.19 b | 0.32 b | 0.36 a | 0.22 c | 1.64 a |
DPS30F | 10.87 b | 72.74 a | 1.38 c | 0.17 b | 0.25 b | 0.33 b | 0.24 c | 1.31 b c |
DPS60F | 14.00 a | 60.98 b | 2.03 a | 0.19 b | 0.31 b | 0.42 a | 0.14 d | 1.52 b |
MIXED | 8.87 c | 48.39 d | 1.09 d | 0.46 a | 0.17 c | 0.25 c | 0.20 c | 0.82 d |
SS5 | 11.25 b | 62.13 b | 1.33 c | 0.07 d | 0.13 c | 0.25 c | 0.06 e | 0.95 d |
SS10 | 10.37 b | 64.73 b | 1.56 b | 0.11 c | 0.19 c | 0.20 c | 0.16 d | 0.62 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marouani, E.; Zarai, B.; Boudabbous, K.; Kolsi Benzina, N.; Ziadi, N.; Zoghlami, R.I.; Bouslimi, B.; Koubaa, A. Short-Term Effects of Biosolid Application on Two Mediterranean Agricultural Soils and Durum Wheat Yield. Agronomy 2021, 11, 709. https://doi.org/10.3390/agronomy11040709
Marouani E, Zarai B, Boudabbous K, Kolsi Benzina N, Ziadi N, Zoghlami RI, Bouslimi B, Koubaa A. Short-Term Effects of Biosolid Application on Two Mediterranean Agricultural Soils and Durum Wheat Yield. Agronomy. 2021; 11(4):709. https://doi.org/10.3390/agronomy11040709
Chicago/Turabian StyleMarouani, Emna, Besma Zarai, Khaoula Boudabbous, Naïma Kolsi Benzina, Noura Ziadi, Rahma Inès Zoghlami, Besma Bouslimi, and Ahmed Koubaa. 2021. "Short-Term Effects of Biosolid Application on Two Mediterranean Agricultural Soils and Durum Wheat Yield" Agronomy 11, no. 4: 709. https://doi.org/10.3390/agronomy11040709
APA StyleMarouani, E., Zarai, B., Boudabbous, K., Kolsi Benzina, N., Ziadi, N., Zoghlami, R. I., Bouslimi, B., & Koubaa, A. (2021). Short-Term Effects of Biosolid Application on Two Mediterranean Agricultural Soils and Durum Wheat Yield. Agronomy, 11(4), 709. https://doi.org/10.3390/agronomy11040709