Root Response to Soil Water Status via Interaction of Crop Genotype and Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Materials
2.2. Experimental Design and Water Treatments
2.3. Measurements
2.4. Statistical Analysis
3. Results
3.1. Soil Moisture Content Distribution
3.2. Shoot and Root Growth under Different Soil Moisture Statuses
3.3. Root Distribution among Different Soil Layers and Soil Moisture Statuses
3.4. Analysis of Interaction between Biomass Production of Crops and Soil Moisture Environment
4. Discussion
4.1. Soil Moisture Status Affects Root Morphology and Distribution
4.2. Effect of Soil Moisture Status on Shoot and Root Biomass Production
4.3. Horizontal and Vertical Root Architecture Distribution across Soil Moisture Status
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. World Population Prospects 2019: Highlights; United Nations: New York, NY, USA, 2019. [Google Scholar]
- Rockström, J.; Karlberg, L.; Wani, S.P.; Barron, J.; Hatibu, N.; Oweis, T.; Bruggerman, A.; Farahani, J.; Qiang, Z. Managing water in rainfed agriculture—The need for a paradigm shift. Agric. Water Manag. 2010, 97, 543–550. [Google Scholar] [CrossRef] [Green Version]
- Giorgi, F.; Raffaele, F.; Coppola, E. The response of precipitation characteristics to global warming from climate projections. Earth Syst. Dyn. 2019, 10, 73–89. [Google Scholar] [CrossRef] [Green Version]
- Berg, A.; de Noblet-Ducoudre, N.; Sultan, B.; Lengaigne, M.; Guimberteau, M. Projections of climate change impacts on potential C4 crop productivity over tropical regions. Agric. For. Meteorol. 2013, 170, 89–102. [Google Scholar] [CrossRef]
- FAO. The Impact of Disasters and Crises on Agriculture and Food Security; FAO: Rome, Italy, 2018. [Google Scholar]
- Lynch, J.P. Roots of the second green revolution. Aust. J. Bot. 2007, 55, 493–512. [Google Scholar] [CrossRef]
- Den Herder, G.; Van Isterdael, G.; Beeckman, T.; De Smet, I. The roots of a new green revolution. Trends Plant Sci. 2010, 15, 600–607. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J. Root architecture and plant productivity. Plant Physiol. 1995, 109, 7–13. [Google Scholar] [CrossRef]
- Comas, L.H.; Becker, S.R.; Cruz, V.M.V.; Byrne, P.F.; Dierig, D.A. Root traits contributing to plant productivity under drought. Front. Plant Sci. 2013, 4, 442. [Google Scholar] [CrossRef] [Green Version]
- Suralta, R.; Inukai, Y.; Yamauchi, A. Shoot dry matter production in relation to root growth, oxygen transport and water uptake under transient soil moisture stresses in rice. Plant Soil 2010, 332, 87–104. [Google Scholar] [CrossRef]
- Vadez, V. Root hydraulics: The forgotten side of roots in drought adaptation. Field Crops Res. 2014, 165, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Wasson, A.P.; Richards, R.A.; Chatrath, R.; Misra, S.C.; Prasad, S.V.P.; Rebetzke, G.J.; Kirkegaard, J.A.; Christopher, J.; Watt, M. Traits and selection strategies to improve root systems and water uptake in water-limited wheat crops. J. Exp. Bot. 2012, 63, 3485–3498. [Google Scholar] [CrossRef] [Green Version]
- Weaver, J.E.; Jean, F.C.; Crist, J.W. Development and Activities of Roots of Crop Plants: A Study in Crop Ecology; Carnegie Institution of Washington: Washington, DC, USA, 1922. [Google Scholar]
- Yamauchi, T.; Colmer, T.D.; Pedersen, O.; Nakazono, M. Regulation of root traits for internal aeration and tolerance to soil waterlogging-flooding stress. Plant Physiol. 2018, 176, 1118–1130. [Google Scholar] [CrossRef] [Green Version]
- McMichael, B.; Quisenberry, J. The impact of the soil environment on the growth of root systems. Environ. Exp. Bot. 1993, 33, 53–61. [Google Scholar] [CrossRef]
- Grossman, J.D.; Rice, K.J. Evolution of root plasticity responses to variation in soil nutrient distribution and concentration. Evol. Appl. 2012, 5, 850–857. [Google Scholar] [CrossRef]
- Fry, E.L.; Evans, A.L.; Sturrock, C.J.; Bullock, J.M.; Bardgett, R.D. Root architecture governs plasticity in response to drought. Plant Soil 2018, 433, 189–200. [Google Scholar] [CrossRef] [Green Version]
- Gregory, P.J. Plant Roots: Growth, Activity and Interactions with the Soil; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Hund, A.; Ruta, N.; Liedgens, M. Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant Soil 2009, 318, 311–325. [Google Scholar] [CrossRef] [Green Version]
- Lynch, J.; Wojciechowski, T. Opportunities and challenges in the subsoil: Pathways to deeper rooted crops. J. Exp. Bot. 2015, 66, 2199–2210. [Google Scholar] [CrossRef] [Green Version]
- Uga, Y.; Sugimoto, K.; Ogawa, S.; Rane, J.; Ishitani, M.; Hara, N.; Kitomi, Y.; Inukai, Y.; Ono, K.; Kanno, N.; et al. Control of root system architecture by DEEPER ROOTING 1 increases rice yield under drought conditions. Nat. Genet. 2013, 45, 1097–1102. [Google Scholar] [CrossRef] [PubMed]
- Liao, H.; Rubio, G.; Yan, X.; Cao, A.; Brown, K.M.; Lynch, J.P. Effect of phosphorus availability on basal root shallowness in common bean. Plant Soil 2001, 232, 69–79. [Google Scholar] [CrossRef]
- Li, Y.; Song, X.; Li, S.; Salter, W.T.; Barbour, M.M. The role of leaf water potential in the temperature response of mesophyll conductance. New Phytol. 2020, 225, 1193–1205. [Google Scholar] [CrossRef] [PubMed]
- Orman-Ligeza, B.; Parizot, B.; Gantet, P.P.; Beeckman, T.; Bennett, M.J.; Draye, X. Post-embryonic root organogenesis in cereals: Branching out from model plants. Trends Plant Sci. 2013, 18, 459–467. [Google Scholar] [CrossRef] [PubMed]
- Coudert, Y.; Perin, C.; Courtois, B.; Khong, N.G.; Gantet, P. Genetic control of root development in rice, the model cereal. Trends Plant Sci. 2010, 15, 219–226. [Google Scholar] [CrossRef]
- Falconer, D.; Mackay, T. Introduction to Quantitative Genetics, 4th ed.; Addison Wesley Longman: Harlow, UK, 1996. [Google Scholar]
- MacMillan, K.; Emrich, K.; Pepho, H.-P.; Mullins, C.E.; Price, A.H. Assessing the importance of genotype× environment interaction for root traits in rice using a mapping population II: Conventional QTL analysis. Theor. Appl. Genet. 2006, 113, 953–964. [Google Scholar] [CrossRef]
- Lopez-Bucio, J.; Cruz-Ramirez, A.; Herrera-Estrella, L. The role of nutrient availability in regulating root architecture. Curr. Opin. Plant Biol. 2003, 6, 280–287. [Google Scholar] [CrossRef]
- Malamy, J. Intrinsic and environmental response pathways that regulate root system architecture. Plant Cell Environ. 2005, 28, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Ho, M.D.; McCannon, B.C.; Lynch, J.P. Optimization modeling of plant root architecture for water and phosphorus acquisition. J. Theor. Biol. 2004, 226, 331–340. [Google Scholar] [CrossRef]
- Singh, V.; van Oosterom, E.J.; Jordan, D.R.; Messina, C.D.; Cooper, M.; Hammer, G.L. Morphological and architectural development of root systems in sorghum and maize. Plant Soil 2010, 333, 287–299. [Google Scholar] [CrossRef]
- Lin, C.; Sauter, M. Control of adventitious root architecture in rice by darkness, light, and gravity. Plant Physiol. 2018, 176, 1352–1364. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Magalhães, P.C.; de Souza, T.C.; Lavinsky, A.O.; Albuquerque, P. Phenotypic plasticity of root system and shoots of Sorghum bicolor under different soil water levels during pre-flowering stage. Aust. J. Crop Sci. 2016, 10, 81–87. [Google Scholar]
- Myers, R. The root system of a grain sorghum crop. Field Crops Res. 1980, 3, 53–64. [Google Scholar] [CrossRef]
- Kano-Nakata, M.; Gowda, V.R.P.; Henry, A.; Serraj, R.; Inukai, Y.; Fujita, D.; Kobayashi, N.; Suralta, R.R.; Yamauchi, A. Functional roles of the plasticity of root system development in biomass production and water uptake under rainfed lowland conditions. Field Crops Res. 2013, 144, 288–296. [Google Scholar] [CrossRef]
- Kano-Nakata, M.; Nakamura, T.; Mitsuya, S.; Yamauchi, A. Plasticity in root system architecture of rice genotypes exhibited under different soil water distributions in soil profile. Plant Prod. Sci. 2019, 22, 501–509. [Google Scholar] [CrossRef]
- Kono, Y.; Yamauchi, A.; Nonoyama, T.; Tatsumi, J.; Kawamura, N. A revised experimental system of root-soil interaction for laboratory workr. Environ. Control Biol. 1987, 25, 141–151. [Google Scholar] [CrossRef]
- Yamauchi, A.; Kono, T.; Tatsumi, J. Quantitative analysis on root system structures of upland rice and maize. Jpn. J. Crop Sci. 1987, 56, 608–617. [Google Scholar] [CrossRef] [Green Version]
- Sandhu, N.; Raman, K.A.; Torres, R.O.; Audebert, A.; Dardou, A.; Kumar, A.; Henry, A. Rice root architectural plasticity traits and genetic regions for adaptability to variable cultivation and stress conditions. Plant Physiol. 2016, 171, 2562–2576. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gu, D.; Zhen, F.; Hannaway, D.B.; Zhu, Y.; Liu, L.; Cao, W.; Tang, L. Quantitative classification of rice (Oryza sativa L.) root length and diameter using image analysis. PLoS ONE 2017, 12, e0169968. [Google Scholar] [CrossRef]
- Passot, S.; Gnacko, F.; Moukouanga, D.; Lucas, M.; Guyomarc’h, S.; Ortega, B.M.; Atkinson, J.A.; Belko, M.N.; Bennett, M.J.; Gantet, P.; et al. Characterization of pearl millet root architecture and anatomy reveals three types of lateral roots. Front. Plant Sci. 2016, 7, 829. [Google Scholar] [CrossRef] [Green Version]
- Finlay, K.W.; Wilkinson, G.N. The analysis of adaptation in a plant-breeding programme. Aust. J. Agric. Res. 1963, 14, 742–754. [Google Scholar] [CrossRef] [Green Version]
- Vartapetian, B.B.; Jackson, M.B. Plant adaptations to anaerobic stress. Ann. Bot. 1997, 79, 3–20. [Google Scholar] [CrossRef]
- Biemelt, S.; Keetman, U.; Albrecht, G. Re-aeration following hypoxia or anoxia leads to activation of the antioxidative defense system in roots of wheat seedlings. Plant Physiol. 1998, 116, 651–658. [Google Scholar] [CrossRef] [Green Version]
- Yamauchi, T.; Abe, F.; Tsutsumi, N.; Nakazono, M. Root cortex provides a venue for gas-space formation and is essential for plant adaptation to waterlogging. Front. Plant Sci. 2019, 10, 259. [Google Scholar] [CrossRef]
- Galamay, T.O.; Kono, Y.; Yamauchi, A.; Shimizu, M. Comparative root anatomy of seminal and nodal root axes of summer cereals with special reference to the development of hypodermis and cortical sclerenchyma. Jpn. J. Crop Sci. 1991, 60, 184–190. [Google Scholar] [CrossRef] [Green Version]
- Promkhambut, A.; Polthanee, A.; Akkasaeng, C.; Younger, A. Growth, yield and aerenchyma formation of sweet and multipurpose sorghum (Sorghum bicolor L. Moench) as affected by flooding at different growth stages. Aust. J. Crop Sci. 2011, 5, 954–965. [Google Scholar]
- Kartika, K.; Sakagami, J.-I.; Lakitan, B.; Yabuta, S.; Wijaya, A.; Kadir, S.; Widuri, L.I.; Siaga, E.; Nakao, Y. Morpho-physiological response of Oryza glaberrima to gradual soil drying. Rice Sci. 2020, 27, 67–74. [Google Scholar] [CrossRef]
- Zegada-Lizarazu, W.; Iijima, M. Deep root water uptake ability and water use efficiency of pearl millet in comparison to other millet species. Plant Prod. Sci. 2005, 8, 454–460. [Google Scholar] [CrossRef]
- Kang, M.S. Using genotype-by-environment interaction for crop cultivar development. Adv. Agron. 1997, 62, 199–252. [Google Scholar]
- Borrell, A.K.; Mullet, J.E.; George-Jaeggli, B.; van Oosterom, E.J.; Hammer, G.L.; Klein, P.E.; Jordan, D.R. Drought adaptation of stay-green sorghum is associated with canopy development, leaf anatomy, root growth, and water uptake. J. Exp. Bot. 2014, 65, 6251–6263. [Google Scholar] [CrossRef]
- Ali, M.L.; Luetchens, J.; Nascimento, K.; Shaver, T.M.; Kruger, G.R.; Lorenz, A.J. Genetic variation in seminal and nodal root angle and their association with grain yield of maize under water-stressed field conditions. Plant Soil 2015, 397, 213–225. [Google Scholar] [CrossRef]
- Colmer, T.D.; Voesenek, L. Flooding tolerance: Suites of plant traits in variable environments. Funct. Plant Biol. 2009, 36, 665–681. [Google Scholar] [CrossRef]
- Yamauchi, T.; Shimamura, S.; Nakazono, M.; Mochizuki, T. Aerenchyma formation in crop species: A review. Field Crops Res. 2013, 152, 8–16. [Google Scholar] [CrossRef]
- Colmer, T. Long-distance transport of gases in plants. A perspective on internal aeration and radial oxygen loss from roots. Plant Cell Environ. 2003, 26, 17–36. [Google Scholar] [CrossRef] [Green Version]
Treatment | Shoot Traits | Root Traits | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SDW (mg Plant−1) | LA (cm2 Plant−1) | RDW (mg Plant−1) | NRL (m Plant−1) | LRL (m Plant−1) | TRL (m Plant−1) | SA (cm2 Plant−1) | VL (cm3 Plant−1) | |||||||||||||||||||||||||
Maize | ||||||||||||||||||||||||||||||||
GSD | 653.2 | ± | 64.0 | a | 1257.5 | ± | 58.1 | a | 117.7 | ± | 19.0 | a | 36.4 | ± | 6.7 | a | 128.9 | ± | 11.8 | a | 165.3 | ± | 14.2 | a | 1788.3 | ± | 189.3 | a | 18.1 | ± | 2.7 | a |
MSM | 513.9 | ± | 101.8 | b | 1034.4 | ± | 88.1 | b | 97.6 | ± | 12.3 | a | 31.4 | ± | 4.9 | a | 94.1 | ± | 15.7 | b | 125.5 | ± | 17.0 | b | 1460.8 | ± | 187.3 | b | 14.0 | ± | 2.5 | b |
CSW | 163.0 | ± | 30.4 | c | 351.9 | ± | 50.8 | c | 32.0 | ± | 5.3 | b | 12.2 | ± | 1.2 | b | 27.9 | ± | 3.2 | c | 40.1 | ± | 2.7 | c | 523.5 | ± | 26.9 | c | 5.5 | ± | 0.5 | c |
Millet | ||||||||||||||||||||||||||||||||
GSD | 487.0 | ± | 59.8 | a | 721.3 | ± | 115.5 | a | 88.5 | ± | 16.6 | a | 30.6 | ± | 5.5 | a | 156.9 | ± | 30.0 | a | 182.4 | ± | 33.3 | a | 1662.4 | ± | 242.2 | a | 11.9 | ± | 0.8 | a |
MSM | 282.8 | ± | 44.3 | b | 491.0 | ± | 39.3 | b | 62.2 | ± | 8.9 | b | 16.8 | ± | 3.3 | b | 117.0 | ± | 33.3 | b | 138.8 | ± | 26.5 | b | 1119.1 | ± | 218.3 | b | 7.9 | ± | 1.4 | b |
CSW | 271.1 | ± | 92.8 | b | 407.7 | ± | 95.5 | b | 38.1 | ± | 12.3 | c | 11.2 | ± | 5.1 | b | 70.2 | ± | 15.8 | b | 85.8 | ± | 19.3 | c | 690.0 | ± | 182.4 | c | 4.0 | ± | 0.6 | c |
Rice | ||||||||||||||||||||||||||||||||
GSD | 58.2 | ± | 21.6 | a | 93.2 | ± | 23.1 | a | 20.8 | ± | 8.0 | a | 11.6 | ± | 4.5 | ab | 27.3 | ± | 11.0 | a | 38.9 | ± | 12.6 | a | 352.8 | ± | 119.9 | ab | 2.7 | ± | 0.9 | a |
MSM | 50.8 | ± | 11.5 | a | 89.6 | ± | 24.2 | a | 26.1 | ± | 3.9 | a | 12.9 | ± | 2.2 | a | 35.9 | ± | 3.4 | a | 48.8 | ± | 5.6 | a | 421.0 | ± | 60.8 | a | 3.0 | ± | 0.5 | a |
CSW | 58.9 | ± | 20.6 | a | 98.8 | ± | 30.0 | a | 16.9 | ± | 4.2 | a | 7.2 | ± | 1.6 | b | 12.7 | ± | 3.0 | b | 19.9 | ± | 4.2 | b | 229.9 | ± | 65.6 | b | 2.2 | ± | 0.8 | a |
Sorghum | ||||||||||||||||||||||||||||||||
GSD | 271.5 | ± | 52.4 | a | 586.3 | ± | 122.6 | a | 50.5 | ± | 9.9 | a | 11.6 | ± | 1.8 | a | 86.6 | ± | 14.4 | a | 102.8 | ± | 22.0 | a | 942.1 | ± | 119.3 | a | 6.2 | ± | 1.1 | a |
MSM | 252.8 | ± | 43.2 | a | 537.5 | ± | 107.9 | a | 55.7 | ± | 10.5 | a | 12.9 | ± | 1.8 | a | 85.0 | ± | 14.2 | a | 96.4 | ± | 17.9 | a | 880.0 | ± | 120.0 | a | 6.1 | ± | 1.0 | a |
CSW | 89.4 | ± | 12.2 | b | 167.6 | ± | 24.5 | b | 26.7 | ± | 5.4 | b | 7.3 | ± | 1.5 | b | 21.9 | ± | 5.2 | b | 29.3 | ± | 6.5 | b | 349.0 | ± | 70.6 | b | 3.6 | ± | 0.9 | b |
Crop × soil moisture | *** | *** | *** | *** | *** | *** | *** | *** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khanthavong, P.; Yabuta, S.; Asai, H.; Hossain, M.A.; Akagi, I.; Sakagami, J.-I. Root Response to Soil Water Status via Interaction of Crop Genotype and Environment. Agronomy 2021, 11, 708. https://doi.org/10.3390/agronomy11040708
Khanthavong P, Yabuta S, Asai H, Hossain MA, Akagi I, Sakagami J-I. Root Response to Soil Water Status via Interaction of Crop Genotype and Environment. Agronomy. 2021; 11(4):708. https://doi.org/10.3390/agronomy11040708
Chicago/Turabian StyleKhanthavong, Phanthasin, Shin Yabuta, Hidetoshi Asai, Md. Amzad Hossain, Isao Akagi, and Jun-Ichi Sakagami. 2021. "Root Response to Soil Water Status via Interaction of Crop Genotype and Environment" Agronomy 11, no. 4: 708. https://doi.org/10.3390/agronomy11040708
APA StyleKhanthavong, P., Yabuta, S., Asai, H., Hossain, M. A., Akagi, I., & Sakagami, J. -I. (2021). Root Response to Soil Water Status via Interaction of Crop Genotype and Environment. Agronomy, 11(4), 708. https://doi.org/10.3390/agronomy11040708