The Effect of Subsurface Placement of Mineral Fertilizer on Some Soil Properties under Reduced Tillage Soybean Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Field Experiment
2.2. Analyses
2.3. Data Analysis
2.4. Characteristics of Three Growing Seasons Based on Selyaninov’s Hydrothermal Coefficient
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nouri, A.; Lee, J.; Yin, X.; Tyler, D.D.; Jagadamma, S.; Arelli, P. Soil physical properties and soybean yield as influenced by long-term tillage systems and cover cropping in the Midsouth USA. Sustainability 2018, 10, 4696. [Google Scholar] [CrossRef] [Green Version]
- Nouri, A.; Youssef, F.; Basaran, M.; Lee, J.; Saxton, A.M.; Erpul, G. The Effect of Fallow Tillage Management on Aeolian Soil Losses in Semiarid Central Anatolia, Turkey. Agrosyst. Geosci. Environ. 2018, 1, 1–13. [Google Scholar] [CrossRef]
- Fonteyne, S.; Gamiño, M.-A.M.; Tejeda, A.S.; Verhulst, N. Conservation Agriculture Improves Long-term Yield and Soil Quality in Irrigated Maize-oats Rotation. Agronomy 2019, 9, 845. [Google Scholar] [CrossRef] [Green Version]
- Harasim, E.; Antonkiewicz, J.; Kwiatkowski, C.A. The effects of catch crops and tillage systems on selected physical properties and enzymatic activity of loess soil in a spring wheat monoculture. Agronomy 2020, 10, 334. [Google Scholar] [CrossRef] [Green Version]
- Singh, D.; Lenka, S.; Lenka, N.K.; Trivedi, S.K.; Bhattacharjya, S.; Sahoo, S.; Saha, J.K.; Patra, A.K. Effect of Reversal of Conservation Tillage on Soil Nutrient Availability and Crop Nutrient Uptake in Soybean in the Vertisols of Central India. Sustainability 2020, 12, 6608. [Google Scholar] [CrossRef]
- Bienes, R.; Marques, M.J.; Sastre, B.; García-Díaz, A.; Esparza, I.; Antón, O.; Navarrete, L.; Hernánz, J.L.; Sánchez-Girón, V.; Sánchez del Arco, M.J.; et al. Tracking Changes on Soil Structure and Organic Carbon Sequestration after 30 Years of Different Tillage and Management Practices. Agronomy 2021, 11, 291. [Google Scholar] [CrossRef]
- Neugschwandtner, R.W.; Liebhard, P.; Kaul, H.-P.; Wagentristl, H. Soil chemical properties as affected by tillage and crop rotation in a long-term field experiment. Plant. Soil Environ. 2014, 60, 57–62. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, A.; Soroka, M. Effect of crop rotation and tillage system on the weed infestation and yield of spring wheat and on soil properties. Appl. Ecol. Environ. Res. 2018, 16, 3087–3096. [Google Scholar] [CrossRef]
- Lahmar, R. Adoption of conservation agriculture in Europe. Lessons of the KASSA project. Land Use Policy 2010, 27, 4–10. [Google Scholar] [CrossRef]
- Wauters, E.; Bielders, C.; Poesen, J.; Govers, G.; Mathijs, E. Adoption of soil conservation practices in Belgium: An examination of the theory of planned behaviour in the agri-environmental domain. Land Use Policy 2010, 27, 86–94. [Google Scholar] [CrossRef]
- Derpsch, R.; Friedrich, T. Global overview of conservation agriculture adoption. In Proceedings of the 4th World Congress on Conservation Agriculture, New Delhi, India, 4–7 February 2009; pp. 429–438. [Google Scholar]
- Lal, R.; Reicosky, D.C.; Hanson, J.D. Evolution of the plow over 10,000 years and the rationale for no-till farming. Soil Till. Res. 2007, 93, 1–12. [Google Scholar] [CrossRef]
- Holland, J.M. The environmental consequences of adopting conservation tillage in Europe: Reviewing the evidence. Agric. Ecosys. Environ. 2004, 103, 1–25. [Google Scholar] [CrossRef]
- Berner, A.; Hildermann, I.; Fliessbach, A.; Pfiffer, L.; Niggli, U.; Mäder, P. Crop yield and soil fertility response to reduced tillage under organic management. Soil Tillage Res. 2008, 101, 89–96. [Google Scholar] [CrossRef]
- Vogeler, I.; Rogasik, J.; Funder, U.; Schnug, E. Effect of tillage systems and P-fertilization on soil physical and chemical properties, crop yield and nutrient uptake. Soil Tillage Res. 2009, 103, 137–143. [Google Scholar] [CrossRef]
- Kraska, P. Effect of conservation tillage and catch crops on some chemical properties of rendzina soil. Acta Sci. Pol. Agric. 2011, 10, 77–92. [Google Scholar]
- Kraska, P. The content of some micronutrients in rendzina soil cultivated using different tillage systems and catch crops. Polish J. Agron. 2011, 4, 7–11. [Google Scholar] [CrossRef]
- Van den Putte, A.; Govers, G.; Diels, J.; Gillijns, K.; Demuzere, M. Assessing the effect of soil tillage on crop growth: A meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 2010, 33, 231–241. [Google Scholar] [CrossRef]
- Lipiński, W. The content of available phosphorus in soils of Poland. Fertil. Fertil. 2005, 2, 49–54. (In Polish) [Google Scholar]
- Lipiński, W. Agrochemical properties of agriculturally used soils. Inż. Ekol. 2019, 20, 1–12. (In Polish) [Google Scholar] [CrossRef]
- Wróbel, S.; Pabin, J. Effect of tillage system on macronutrient content in soil and maize plants cultivated in monoculture. Rocz. Glebozn. 2008, 59, 226–232. (In Polish) [Google Scholar]
- Mallarino, A.P.; Borges, R. Phosphorus and Potassium Distribution in Soil Following Long-Term Deep-Band Fertilization in Different Tillage Systems. Soil Sci. Soc. Am. J. 2006, 70, 702–707. [Google Scholar] [CrossRef]
- Barbieri, P.A.; Sainz Rozas, H.R.; Covacevich, F.; Echeverría, H.E. Phosphorus placement effects on phosphorous recovery efficiency and grain yield of wheat under no-tillage in the humid pampas of Argentina. Int. J. Agron. 2014, 2014, 507105. [Google Scholar] [CrossRef]
- Hansel, F.D.; Amado, T.J.C.; Ruiz Diaz, D.A.; Rosso, L.H.M.; Nicoloso, F.T.; Schorr, M. Phosphorus Fertilizer Placement and Tillage Affect Soybean Root Growth and Drought Tolerance. Agron. J. 2017, 109, 2936–2944. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.; Bell, R.W.; Salahin, N.; Pathan, S.; Mondol, A.T.; Alam, M.J.; Rashid, M.H.; Paul, P.L.; Hossain, M.I.; Shil, N.C. Banding of fertilizer improves phosphorus acquisition and yield of zero tillage maize by concentrating phosphorus in surface soil. Sustainability 2018, 10, 3234. [Google Scholar] [CrossRef] [Green Version]
- Lakew, A. Influence of N and P fertilizer rates on yield and yield components of bread wheat (Triticum aestivum L.) in Sekota District of Wag-Himira Zone, North Eastern Ethiopia. Arch. Agric. Environ. Sci. 2019, 4, 8–18. [Google Scholar] [CrossRef]
- Randall, G.W.; Vetsch, J.A.; Murrell, T.S. Corn response to phosphorus placement under various tillage practices. Better Crops 2001, 85, 12–15. [Google Scholar]
- Randall, G.W.; Vetsch, J.A. Optimum placement of phosphorus for corn/soybean rotations in a strip-tillage system. J. Soil Water Conserv. 2008, 63, 152A–153A. [Google Scholar] [CrossRef]
- de Andrade Costa, S.E.V.G.; Souza, E.D.; Anghinoni, I.; Flores, J.P.C.; Cao, E.G.; Holzschuh, M.J. Phosphorus and root distribution and corn growth related to longterm tillage systems and fertilizer placement. Rev. Bras. Cienc. Solo 2009, 33, 1237–1247. [Google Scholar] [CrossRef]
- Galvani, R.; Hotta, L.F.K.; Rosolem, C.A. Phosphorus sources and fractions in an oxisol under no-tilled soybean. Sci. Agric. 2008, 65, 415–421. [Google Scholar] [CrossRef] [Green Version]
- López-Fando, C.; Pardo, M.T. Changes in soil chemical characteristics with different tillage practices in a semi-arid environment. Soil Tillage Res. 2009, 104, 278–284. [Google Scholar] [CrossRef]
- Abdi, D.; Cade-Menun, B.J.; Ziadi, N.; Parent, L.-É. Long-Term Impact of Tillage Practices and Phosphorus Fertilization on Soil Phosphorus Forms as Determined by 31P Nuclear Magnetic Resonance Spectroscopy. J. Environ. Qual. 2014, 43, 1431–1441. [Google Scholar] [CrossRef] [PubMed]
- Dorneles, E.P.; Lisboa, B.B.; Abichequer, A.D.; Bissani, C.A.; Meurer, E.J.; Vargas, L.K. Tillage, fertilization systems and chemical attributes of a Paleudult. Sci. Agric. 2015, 72, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Randall, G.W.; Hoeft, R.G. Placement Methods for Improved Efficiency of P and K Fertilizers: A Review. J. Prod. Agric. 1988, 1, 70–79. [Google Scholar] [CrossRef]
- Duiker, S.W.; Beegle, D.B. Soil fertility distributions in long-term no-till, chisel/disk and moldboard plow/disk systems. Soil Tillage Res. 2006, 88, 30–41. [Google Scholar] [CrossRef]
- Nkebiwe, P.M.; Weinmann, M.; Bar-Tal, A.; Muller, T. Fertilizer placement to improve crop nutrient acquisition and yield: A review and meta-analysis. Field Crops Res. 2016, 196, 389–401. [Google Scholar] [CrossRef]
- Borges, R.; Mallarino, A.P. Broadcast and deep-band placement of phosphorus and potassium for soybean managed with ridge tillage. Soil Sci. Soc. Am. J. 2003, 67, 1920–1927. [Google Scholar] [CrossRef]
- Randall, G.W.; Hoeft, R.G. Fertilizer placement methods: New wrinkles on a new face. Crops Soils Magaz. 1986, 38, 17–22. [Google Scholar]
- Stanisławska-Glubiak, E.; Korzeniowska, J. Efficiency of deep-placed fertilization for maize and pea in conventional and no-tillage system. Fragm. Agron. 2010, 27, 160–169. (In Polish) [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; Update 2015; World Soil Resources Reports No. 106; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015. [Google Scholar]
- Polish Society of Soil Science. Particle size distribution and textural classes of soils and mineral materials—Classification of Polish Society of Soil Science 2008. Soil Sci. Ann. 2009, 60, 5–16. [Google Scholar]
- European Commission. Common Catalogue of Varieties of Agricultural Plant Species, 28th ed.; 2009/C 302 A/01; European Commission: Luxembourg, 2009. [Google Scholar]
- Bleiholder, H.; Buhr, L.; Feller, C.; Hack, H.; Hess, M.; Klose, R.; Lancashire, P.D.; Meier, U.; Stauss, R.; Van den Boom, T.; et al. Growth stages of mono- and dicotyledonous plants. In BBCH Monograph; Uwe Meier Julius Kühn-Institut (JKI), Ed.; Open Agrar Repositorium: Berlin, Germany, 2018; ISBN 978-3-95547-071-5. [Google Scholar] [CrossRef]
- Józefowska, A.; Miechówka, A. Comparison of the results of organic carbon determination in soils of the Carpathian Foothills obtained by the Tiurin and dry combustion methods (thermal method). Rocz. Gleb. 2011, 1, 65–69. (In Polish) [Google Scholar]
- ISO 11261. Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method; ISO: Geneva, Switzerland, 2002. [Google Scholar]
- PN-R-04023. Analiza Chemiczno-Rolnicza Gleby. Oznaczanie Zawartości Przyswajalnego Fosforu w Glebach Mineralnych./Chemical and Agricultural Analysis of Soil. Determination of Available Phosphorus Content in Mineral Soils. 1996. Available online: https://www.iso.org/standard/19239.html (accessed on 27 April 2021).
- PN-R-04022:1996/Az1. Analiza Chemiczno-Rolnicza Gleby. Oznaczanie Zawartości Przyswajalnego Potasu w Glebach Mineralnych./Chemical and Agricultural Analysis of Soil. Determination of Available Potassium in Mineral Soils. 2002. [Google Scholar]
- PN-R-04020:1994/Az1. Analiza Chemiczno-Rolnicza Gleby. Oznaczanie Zawartości Przyswajalnego Magnezu./Chemical and Agricultural Analysis of Soil. Determination of Available Magnesium Content. 2004. [Google Scholar]
- ISO 10390. International Standard Organization. Soil Quality—Determination of pH. 2002. Available online: https://www.iso.org/standard/40879.html (accessed on 27 April 2021).
- Stachowski, P. Assessment of meteorological droughts on the postmining areas in the Konin Region. Środkowo-Pomorskie Towarzystwo Naukowe Ochrony Środowiska. Rocz. Ochr. Środowiska 2010, 12, 587–606. [Google Scholar]
- Skowera, B.; Puła, J. Pluviometric extreme conditions in spring season in Poland in the years 1971–2000. Acta Agrophys. 2004, 3, 171–177. [Google Scholar]
- Skowera, B. Changes of hydrothermal conditions in the polish area (1971–2010). Fragm. Agron. 2014, 31, 74–87. [Google Scholar]
- Limousin, G.; Tessier, D. Effect of no-tillage on chemical gradients and topsoil acidification. Soil Till. Res. 2007, 92, 167–174. [Google Scholar] [CrossRef]
- Lilienfein, J.; Wilcke, W.; Vilela, L.; Lima, S.D.; Thomas, R.; Zech, W. Effect of no-tillage and conventional tillage systems on the chemical composition of soil. J. Plant. Nutr. Soil Sci. 2000, 163, 411–419. [Google Scholar] [CrossRef]
- Haruna, S.I.; Nkongolo, N.V. Tillage, cover crop and crop rotation effects on selected soil chemical properties. Sustainability 2019, 11, 2770. [Google Scholar] [CrossRef] [Green Version]
- Ogle, S.M.; Breidt, F.J.; Paustian, K. Agricultural management impacts on soil organic carbon sto-rage under moist and dry climatic conditions of temperate and tropical regions. Biogeochemistry 2005, 72, 87–121. [Google Scholar] [CrossRef]
- Hermle, S.; Anken, T.; Leifeld, J.; Weisskopf, P. The effect of the tillage system on soil organic carbon content under moist, cold-temperate conditions. Soil Till. Res. 2008, 98, 94–105. [Google Scholar] [CrossRef]
- Chatterjee, A.; Lal, R. On farm assessment of tillage impact on soil carbon and associated soil quality parameters. Soil Till. Res. 2009, 104, 270–277. [Google Scholar] [CrossRef]
- Ernst, G.; Emmerling, C. Impact of five different tillage systems on soil organic carbon content and the density, biomass, and community composition of earthworms after a ten year period. Eur. J. Soil Biol. 2009, 45, 247–251. [Google Scholar] [CrossRef]
- Thomas, G.A.; Dalal, R.C.; Standley, J. No-till effect on organic matter, pH, cation exchange capacity and nutrient distribution in a Luvisol in the semi-arid subtropics. Soil Till. Res. 2007, 94, 295–304. [Google Scholar] [CrossRef]
- Shi, X.H.; Yang, X.M.; Drury, C.F.; Reynolds, W.D.; McLaughlin, N.B.; Zhang, X.P. Impact of ridge tillage on soil organic carbon and selected physical properties of a clay loam in southwestern Ontario. Soil. Till. Res. 2012, 120, 1–7. [Google Scholar] [CrossRef]
- Hausherr Lüder, R.-M.; Qin, R.; Richner, W.; Stamp, P.; Streit, B.; Noulas, C. Effect of tillage systems on spatial variation in soil chemical properties and winter wheat (Triticum aestivum L.) performance in small fields. Agronomy 2019, 9, 182. [Google Scholar] [CrossRef] [Green Version]
- Martin-Rueda, I.; Munoz-Guerra, L.M.; Yunta, F.; Esteban, E.; Tenorio, J.L.; Lucena, J.J. Tillage and crop rotation effects on barley yield and soil nutrients on a Calciortidic Haploxeralf. Soil Till. Res. 2007, 92, 1–9. [Google Scholar] [CrossRef]
- Alvarez, R. A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage. Soil Use Manag. 2005, 21, 38–52. [Google Scholar] [CrossRef]
- Kraska, P.; Palys, E.; Jedruszczak, M. Conservation tillage system and chemical properties of sandy soil under crops in crop rotation. In Proceedings of the 17th Triennial Conference Sustainability–its Impact on Soil Management and Environment, Kiel, Germany, 28 August–3 September 2006; pp. 566–570. [Google Scholar]
- Van den Putte, A.; Govers, G.; Diels, J.; Langhans, C.; Clymans, W.; Vanuytrecht, E.; Merckx, R.; Raes, D. Soil functioning and conservation tillage in the Belgian Loam Belt. Soil Till. Res. 2012, 122, 1–11. [Google Scholar] [CrossRef]
- Włodek, S.; Hryńczuk, B.; Pabin, J.; Biskupski, A. The contents of carbon and nutrients in the soil after many years’ use of different cultivation systems. Zesz. Prob. Post. Nauk Rol. 2003, 493, 727–732. (In Polish) [Google Scholar]
- Biskupski, A.; Sienkiewicz-Cholewa, U.; Włodek, S.; Pabin, J. Differentiation in the contents of carbon and nutrients in experiment with many years simplifications in cultivation. Rocz. Gleb. 2009, 60, 5–11. (In Polish) [Google Scholar]
- Shen, Y.; McLaughlin, N.; Zhang, X.; Xu, M.; Liang, A. Effect of tillage and crop residue on soil temperature following planting for a Black soil in Northeast China. Sci. Rep. 2018, 8, 4500. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, M.K.; Labanya, R.; Joshi, H.C. Influence of long-term chemical fertilizers and organic manures on soil fertility—A review. Univ. J. Agric. Res. 2019, 5, 177–188. [Google Scholar] [CrossRef]
- Skowrońska, M. Nutrient balance under differentiated maize fertilization and sowing. Przem. Chem. 2018, 95, 1595–1598. (In Polish) [Google Scholar] [CrossRef]
Initial Soil Properties | Value | |
---|---|---|
Soil pH | 0–30 cm soil depth | 5.01 |
30–60 cm soil depth | 5.94 | |
60–90 cm soil depth | 6.61 | |
Available P content (mg∙kg−1) | 0–30 cm soil depth | 18.84 |
30–60 cm soil depth | 10.68 | |
60–90 cm soil depth | 16.69 | |
Available K content (mg∙kg−1) | 0–30 cm soil depth | 78.92 |
30–60 cm soil depth | 43.77 | |
60–90 cm soil depth | 44.51 | |
Available Mg content (mg∙kg−1) | 0–30 cm soil depth | 64.07 |
30–60 cm soil depth | 69.33 | |
60–90 cm soil depth | 65.46 | |
SOC (g∙kg−1) | 0–30 cm soil depth | 7.9 |
Particle size distribution | Sand (%) | 23.6 |
Silt (%) | 70.6 | |
Clay (%) | 5.8 |
Plant Protection Product | Dose | Application Date | |
---|---|---|---|
Seed dressing | T75 DS/WS [thiuram (a compound from the dithiocarbamate group)—750 g∙kg−1] | 2g∙kg−1 seeds | Before sowing |
Nitragina | 300 g∙ha−1 | Before sowing | |
Herbicide | Roundup 360 SL [glyphosate (a compound from the amino phosphonic acid group) as potassium salt—360 g∙L−1]. | 1.5 L∙ha−1 | Before emergence |
Corum 502.4 SL [bentazon (a compound from the diazine group)—480 g∙L−1; imazamox (a compound from the imidazolinone group)—22.4 g∙L−1] | 1.25 L∙ha−1 | BBCH 12–25 | |
Adjuvant | Dash HC [methyl oleate—348.75 g∙L−1; fatty alcohol (alkoxylated phosphoric acid ester)– 209.25 g∙L−1] | 1.0 L∙ha−1. | BBCH 12–25 |
Months | Years | ||
---|---|---|---|
2015 | 2016 | 2017 | |
March | k = 2.73 very humid | k = 4.49 extremely humid | k = 1.79 rather humid |
April | k = 1.47 optimal | k = 2.40 humid | k = 2.66 very humid |
Maj | k = 4.75 extremely humid | k = 1.23 rather dry | k = 1.67 rather humid |
June | k = 0.30 extremely dry | k = 1.23 rather dry | k = 0.50 very dry |
July | k = 0.70 very dry | k = 2.20 humid | k = 1.66 rather humid |
August | k = 0.10 extremely dry | k = 0.94 dry | k = 0.65 very dry |
September | k = 1.90 rather humid | k = 0.24 extremely dry | k = 2.50 very humid |
October | k = 2.14 humid | k = 5.89 extremely humid | k = 3.97 extremely humid |
November | k = 2.35 humid | k = 7.30 extremely humid | k = 3.11 extremely humid |
Feature | Y | MFA | FD | SL | Y × MFA | Y × FD | Y × SL | MFA × FD | MFA × SL | FD × SL |
---|---|---|---|---|---|---|---|---|---|---|
SOC | ** | ns | ns | – | ns | ns | – | ns | – | – |
pH | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
P | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
K | ** | ** | ** | ** | ** | ** | ** | ** | ** | ** |
Mg | ** | ** | ** | ** | ** | ** | ** | ns | ** | ** |
Method of Fertilizer Application (MFA) | Fertilizer Dose (FD) | Years (Y) | ||
---|---|---|---|---|
2015 | 2016 | 2017 | ||
S | F85 | 11.3 | 12.9 | 18.7 |
F170 | 10.8 | 13.2 | 18.5 | |
Mean | 11.1 | 13.1 | 18.6 | |
Sub-S | F85 | 12.7 | 14.0 | 19.5 |
F170 | 11.7 | 13.2 | 22.0 | |
Mean | 12.2 | 13.6 | 20.7 | |
Mean | F85 | 12.0 | 13.5 | 19.1 |
F170 | 11.3 | 13.2 | 20.3 | |
Mean | 11.6 | 13.3 | 19.7 | |
LSD 0.05 | Years 4.25 |
Specification | pH (KCl) | P (mg∙kg−1) | K (mg∙kg−1) | Mg (mg∙kg−1) | |
---|---|---|---|---|---|
Years (Y) | 2015 | 5.74 | 13.53 | 53.73 | 68.43 |
2016 | 6.23 | 15.01 | 54.17 | 71.09 | |
2017 | 5.89 | 16.80 | 55.02 | 69.05 | |
LSD 0.05 | 0.006 | 0.293 | 0.673 | 0.842 | |
Soil layer (SL) | 0–30 cm | 5.32 | 19.26 | 72.53 | 69.80 |
30–60 cm | 6.00 | 11.29 | 46.42 | 71.66 | |
60–90 cm | 6.55 | 14.79 | 43.98 | 67.11 | |
LSD 0.05 | 0.006 | 0.293 | 0.673 | 0.842 | |
Method of fertilizer application (MFA) | S | 6.17 | 14.59 | 57.45 | 68.43 |
Sub-S | 5.74 | 15.64 | 51.16 | 70.62 | |
LSD 0.05 | 0.004 | 0.199 | 0.457 | 0.572 | |
Fertilizer dose (FD) | F85 | 5.94 | 13.04 | 53.95 | 69.98 |
F170 | 5.97 | 17.18 | 54.67 | 69.07 | |
LSD 0.05 | 0.004 | 0.199 | 0.457 | 0.572 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kraska, P.; Andruszczak, S.; Gierasimiuk, P.; Rusecki, H. The Effect of Subsurface Placement of Mineral Fertilizer on Some Soil Properties under Reduced Tillage Soybean Cultivation. Agronomy 2021, 11, 859. https://doi.org/10.3390/agronomy11050859
Kraska P, Andruszczak S, Gierasimiuk P, Rusecki H. The Effect of Subsurface Placement of Mineral Fertilizer on Some Soil Properties under Reduced Tillage Soybean Cultivation. Agronomy. 2021; 11(5):859. https://doi.org/10.3390/agronomy11050859
Chicago/Turabian StyleKraska, Piotr, Sylwia Andruszczak, Paweł Gierasimiuk, and Hubert Rusecki. 2021. "The Effect of Subsurface Placement of Mineral Fertilizer on Some Soil Properties under Reduced Tillage Soybean Cultivation" Agronomy 11, no. 5: 859. https://doi.org/10.3390/agronomy11050859
APA StyleKraska, P., Andruszczak, S., Gierasimiuk, P., & Rusecki, H. (2021). The Effect of Subsurface Placement of Mineral Fertilizer on Some Soil Properties under Reduced Tillage Soybean Cultivation. Agronomy, 11(5), 859. https://doi.org/10.3390/agronomy11050859