Performance of Modern and Traditional Spelt Wheat (Triticum spelta) Varieties in Rain-Fed and Irrigated, Organic and Conventional Production Systems in a Semi-Arid Environment; Results from Exploratory Field Experiments in Crete, Greece
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experimental Design
2.2. Agronomic Protocols and Assessments
2.3. Statistical Analysis
3. Results
3.1. Effect of Harvest Year/Season
3.2. Effect of Supplementary Irrigation
3.3. Effect of Fertilizer Type
3.4. Associations between Agronomic and Climatic Variables and Spelt Wheat Performance
3.5. Effect of Variety
3.6. Associations between Variety, Fertilizer Type, and Water and N Availability, and Spelt Wheat Performance Parameters
4. Discussion
4.1. Effect of Season/Climatic Conditions and Supplementary Irrigation
4.2. Effect of Season/Climatic Conditions and Supplementary Irrigation
4.3. Effect of Variety—Yield/Yield Stability
4.4. Effect of Variety—Bread-Making Quality
4.5. Limitations of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dvorak, J.; Deal, K.R.; Luo, M.-C.; You, F.M.; Von Borstel, K.; Dehghani, H. The Origin of Spelt and Free-Threshing Hexaploid Wheat. J. Hered. 2012, 103, 426–441. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Packa, D.; Załuski, D.; Graban, Ł.; Lajszner, W. An Evaluation of Spelt Crosses for Breeding New Varieties of Spring Spelt. Agronomy 2019, 9, 167. [Google Scholar] [CrossRef] [Green Version]
- Lacko-Bartošová, M.; Korczyk-Szabó, J.; Ražný, R. Triticum spelta-a specialty grain for ecological farming systems. Res. J. Agric. Sci. 2010, 42, 143–147. [Google Scholar]
- Technavio. Global Spelt Market 2018–2022. Available online: www.technavio.com/report/global-spelt-market-analysis-share-2018?utm_source=t7&utm_medium=bw&utm_campaign=businesswire&tnplus (accessed on 28 March 2021).
- Wang, J.; Chatzidimitriou, E.; Wood, L.; Hasanalieva, G.; Markellou, E.; Iversen, P.O.; Seal, C.; Baranski, M.; Vigar, V.; Ernst, L.; et al. Effect of wheat species (Triticum aestivum vs T. spelta), farming system (organic vs conventional) and flour type (wholegrain vs white) on composition of wheat flour—Results of a retail survey in the UK and Germany—2. Antioxidant activity, and phenolic and mineral content. Food Chem. X 2020, 6, 100091. [Google Scholar] [CrossRef]
- Koutroubas, S.D.; Fotiadis, S.; Damalas, C.A. Biomass and nitrogen accumulation and translocation in spelt (Triticum spelta) grown in a Mediterranean area. Field Crop. Res. 2012, 127, 1–8. [Google Scholar] [CrossRef]
- Magistrali, A.; Vavera, R.; Janovska, D.; Rempelos, L.; Cakmak, I.; Leifert, C.; Grausgruber, H.; Butler, G.; Wilkinson, A.; Bilsborrow, P. Evaluating the effect of agronomic management practices on the performance of differing spelt (Triticum spelta) cultivars in contrasting environments. Field Crop. Res. 2020, 255, 107869. [Google Scholar] [CrossRef]
- Fares, C.; Menga, V.; Codianni, P.; Russo, M.; Perrone, D.; Suriano, S.; Savino, M.; Rascio, A. Phenolic acids variability and grain quality of organically and conventionally fertilised old wheats under a warm climate. J. Sci. Food Agric. 2019, 99, 4615–4623. [Google Scholar] [CrossRef]
- Bilsborrow, P.; Cooper, J.; Tétard-Jones, C.; Średnicka-Tober, D.; Barański, M.; Eyre, M.; Schmidt, C.; Shotton, P.; Volakakis, N.; Cakmak, I.; et al. The effect of organic and conventional management on the yield and quality of wheat grown in a long-term field trial. Eur. J. Agron. 2013, 51, 71–80. [Google Scholar] [CrossRef] [Green Version]
- Rempelos, L.; Almuayrifi, A.M.; Baranski, M.; Tetard-Jones, C.; Eyre, M.; Shotton, P.; Cakmak, I.; Ozturk, L.; Cooper, J.M.; Volakakis, N.; et al. Effects of Agronomic Management and Climate on Leaf Phenolic Profiles, Disease Severity, and Grain Yield in Organic and Conventional Wheat Production Systems. J. Agric. Food Chem. 2018, 66, 10369–10379. [Google Scholar] [CrossRef]
- Sayre, K.D. Management of irrigated wheat. In Bread Wheat Improvement and Production; FAO Plant Production and Protection Series; FAO: Rome, Italy, 2002; p. 30. [Google Scholar]
- Guttieri, M.J.; McLean, R.; Stark, J.C.; Souza, E. Managing Irrigation and Nitrogen Fertility of Hard Spring Wheats for Optimum Bread and Noodle Quality. Crop. Sci. 2005, 45, 2049–2059. [Google Scholar] [CrossRef]
- Zhao, C.-X.; He, M.-R.; Wang, Z.-L.; Wang, Y.-F.; Lin, Q. Effects of different water availability at post-anthesis stage on grain nutrition and quality in strong-gluten winter wheat. Comptes Rendus Biol. 2009, 332, 759–764. [Google Scholar] [CrossRef]
- Chatzisymeon, E.; Foteinis, S.; Borthwick, A.G.L. Life cycle assessment of the environmental performance of conventional and organic methods of open field pepper cultivation system. Int. J. Life Cycle Assess. 2017, 22, 896–908. [Google Scholar] [CrossRef] [Green Version]
- Berg, H.; Maneas, G.; Engström, A.S. A Comparison between Organic and Conventional Olive Farming in Messenia, Greece. Horticulture 2018, 4, 15. [Google Scholar] [CrossRef] [Green Version]
- Simonne, A.; Simonne, E.; Eitenmiller, R.; Mills, H.; Cresman, C., III. Could the Dumas method replace the Kjeldahl digestion for nitrogen and crude protein determinations in foods? J. Sci. Food Agric. 1997, 73, 39–45. [Google Scholar] [CrossRef]
- Pinheiro, J.C.; Bates, D.M. Linear mixed-effects models: Basic concepts and examples. In Mixed-Effects Models in S and S-Plus, 1st ed.; Springer: New York, NY, USA, 2000; pp. 3–56. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous Inference in General Parametric Models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [Green Version]
- Braak, C.T.; Šmilauer, P. Canoco Reference Manual and User’s Guide: Software for Ordination, Version 5.0; Microcomputer Power: New York, NY, USA, 2012; p. 496. [Google Scholar]
- Perniola, M.; Lovelli, S.; Arcieri, M.; Amato, M. Sustainability in Cereal Crop Production in Mediterranean Environments. In The Sustainability of Agro-Food and Natural Resource Systems in the Mediterranean Basin; J.B. Metzler: Stuttgart, Germany, 2015; pp. 15–27. [Google Scholar]
- Lunik, E.; Malchow, J. Not All Wheat Is the Same—A Closer Look at Wheat Quality. Agribenchmark—Did You Know? Available online: http://www.agribenchmark.org/agri-benchmark/did-you-know/einzelansicht/artikel//not-all-whea.html (accessed on 1 October 2020).
- Sun, H.-Y.; Liu, C.-M.; Zhang, X.-Y.; Shen, Y.-J.; Zhang, Y.-Q. Effects of irrigation on water balance, yield and WUE of winter wheat in the North China Plain. Agric. Water Manag. 2006, 85, 211–218. [Google Scholar] [CrossRef]
- Asseng, S.; Foster, I.; Turner, N.C. The impact of temperature variability on wheat yields. Glob. Chang. Biol. 2011, 17, 997–1012. [Google Scholar] [CrossRef]
- Wang, J.; Hasanalieva, G.; Wood, L.; Anagnostopoulos, C.; Ampadogiannis, G.; Bempelou, E.; Kiousi, M.; Markellou, E.; Iversen, P.O.; Seal, C.; et al. Effect of wheat species (Triticum aestivum vs T. spelta), farming system (organic vs conventional) and flour type (wholegrain vs white) on composition of wheat flour—Results of a retail survey in the UK and Germany—3. Pesticide residue content. Food Chem. X 2020, 7, 100089. [Google Scholar] [CrossRef]
- Wang, X.; Qadir, M.; Rasul, F.; Yang, G.; Hu, Y. Response of Soil Water and Wheat Yield to Rainfall and Temperature Change on the Loess Plateau, China. Agronomy 2018, 8, 101. [Google Scholar] [CrossRef] [Green Version]
- Sugár, E.; Fodor, N.; Sándor, R.; Bónis, P.; Vida, G.; Árendás, T. Spelt Wheat: An Alternative for Sustainable Plant Production at Low N-Levels. Sustainability 2019, 11, 6726. [Google Scholar] [CrossRef] [Green Version]
- Bot, A.; Benites, J. The Importance of Soil Organic Matter: Key to Drought-Resistant Soil and Sustained Food Production; Food and Agriculture Organization of the United Nations: Rome, Italy, 2005. [Google Scholar]
- Giotis, C.; Theodoropoulou, A.; Cooper, J.; Hodgson, R.; Shotton, P.; Shiel, R.; Eyre, M.; Wilcockson, S.; Markellou, E.; Liopa-Tsakalidis, A.; et al. Effect of variety choice, resistant rootstocks and chitin soil amendments on soil-borne diseases in soil-based, protected tomato production systems. Eur. J. Plant Pathol. 2012, 134, 605–617. [Google Scholar] [CrossRef]
- Yogev, A.; Laor, Y.; Katan, J.; Hadar, Y.; Cohen, R.; Medina, S.; Raviv, M. Does organic farming increase soil suppression against Fusarium wilt of melon? Org. Agric. 2011, 1, 203–216. [Google Scholar] [CrossRef]
- Giotis, C.; Markelou, E.; Theodoropoulou, A.; Toufexi, E.; Hodson, R.; Shotton, P.; Shiel, R.; Cooper, J.; Leifert, C. Effect of soil amendments and biological control agents (BCAs) on soil-borne root diseases caused by Pyrenochaeta lycopersici and Verticillium albo-atrum in organic greenhouse tomato production systems. Eur. J. Plant Pathol. 2008, 123, 387–400. [Google Scholar] [CrossRef]
Plant | ||||
---|---|---|---|---|
Grain Yield | Crude Protein | Stem Lodging | Height (GS62) | |
Factor | t ha−1 DW | % | % | cm |
Season (n = 24) | ||||
2014/2015 | 3.7 ± 0.2 a | 13.4 ± 0.2 | 15 ± 4 | 176 ± 1 a |
2015/2016 | 0.9 ± 0.1 c | 13.5 ± 0.4 | 13 ± 3 | 94 ± 3 c |
2016/2017 | 2.1 ± 0.2 b | 13.9 ± 0.5 | 7 ± 2 | 117 ± 4 b |
Fertilizer Type (n = 24) | ||||
Chicken manure | 2.2 ± 0.3 | 13.2 ± 0.3 b | 10 ± 2 | 127 ± 8 |
Mineral NPK | 2.3 ± 0.4 | 14.6 ± 0.4 a | 14 ± 3 | 132 ± 8 |
Sheep manure | 2.3 ± 0.3 | 13.1 ± 0.3 b | 11 ± 3 | 127 ± 7 |
Irrigation (n = 36) | ||||
With | 2.7 ± 0.2 | 12.9 ± 0.2 | 19 ± 2 | 136 ± 5 |
Without | 1.8 ± 0.2 | 14.4 ± 0.3 | 5 ± 1 | 122 ± 7 |
ANOVAp-values | ||||
Main Effects | ||||
Season (YR) | 0.0001 | 0.0152 | 0.0525 | <0.0001 |
Fertilizer type (FT) | ns | 0.0112 | Ns | ns |
Irrigation (IR) | <0.0001 | 0.0001 | <0.0001 | <0.0001 |
Interactions 1 | ns | ns | Ns | ns |
YR × FT | ns | 0.0047 3 | Ns | 0.0124 3 |
YR × IR | 0.0108 2 | 0.0809 | 0.0024 2 | <0.0001 2 |
FT × IR | ns | ns | Ns | 0.0716 |
YR × FT × IR | ns | ns | Ns | ns |
Factor 1 | Factor 2. Supplementary Irrigation | ||||
---|---|---|---|---|---|
Parameter Assessed | Season | With (n = 12) | Without (n = 12) | ||
Grain Yield (t ha−1 DW) | 2014/2015 | 4.0 ± 0.3 | A a | 3.5 ±0.3 | A a |
2015/2016 | 1.2 ± 0.2 | A c | 0.6 ±0.1 | B c | |
2016/2017 | 3.0 ± 0.2 | A b | 1.3 ±0.2 | B b | |
Stem Lodging (%) | 2014/2015 | 28 ± 4 | A a | 2 ± 1 | B a |
2015/2016 | 19 ± 4 | A b | 8 ± 3 | B a | |
2016/2017 | 9 ± 2 | A c | 4 ± 2 | A a | |
Plant Height GS62 | 2014/2015 | 175 ± 1 | A a | 176 ± 1 | A a |
2015/2016 | 101 ± 3 | A c | 86 ± 4 | B c | |
2016/2017 | 131 ± 5 | A b | 103 ± 3 | B b | |
Tillers (per m2) | 2014/2015 | 438 ± 14 | A a | 431 ± 13 | A a |
2015/2016 | 366 ± 23 | A b | 248 ± 22 | B c | |
2016/2017 | 345 ± 20 | A b | 319 ± 14 | A b | |
SPAD GS50 | 2014/2015 | 41.9 ± 0.3 | A a | 41.7 ± 0.4 | A a |
2015/2016 | 36.0 ± 1.3 | B b | 40.9 ± 1.2 | A a | |
2016/2017 | 42.6 ± 0.9 | A a | 43.0 ± 0.9 | A a | |
SPAD GS62 | 2014/2015 | 40.1 ± 0.4 | A a | 38.7 ± 0.3 | A b |
2015/2016 | ND | ND | |||
2016/2017 | 42.0 ± 1.0 | B a | 45.2 ±1.2 | A a |
Factor 1 | Factor 2. Fertilizer Type | ||||||
---|---|---|---|---|---|---|---|
Parameters | Year | Chicken Manure (n = 8) | Mineral NPK (n = 8) | Sheep Manure (n = 8) | |||
Crude Protein % | 2014/2015 | 13.3 ± 0.3 | A a | 13.2 ± 0.3 | A c | 13.8 ± 0.3 | A a |
2015/2016 | 13.1 ± 0.5 | B a | 14.5 ± 0.7 | A b | 12.8 ± 0.5 | B a | |
2016/2017 | 13.2 ± 0.7 | B a | 16.0 ± 0.6 | A a | 12.7 ± 0.6 | B a | |
Plant Height GS62 Cm | 2014/2015 | 17 ± 1 | A a | 175 ± 1 | A a | 175 ± 1 | A a |
2015/2016 | 90 ± 6 | A c | 94 ± 5 | A c | 97 ± 3 | A c | |
2016/2017 | 115 ± 7 | B b | 127 ± 9 | A b | 109 ± 5 | B b | |
Tillers (per m2) | 2014/2015 | 437 ± 20 | A a | 443 ± 20 | A a | 423 ± 9 | A a |
2015/2016 | 297 ± 44 | AB b | 269 ± 29 | B c | 356 ± 23 | A b | |
2016/2017 | 331 ± 17 | AB b | 378 ± 20 | A b | 287 ± 14 | B c | |
Ears (per m2) | 2014/2015 | 351 ± 15 | A a | 358 ± 19 | A a | 308 ± 17 | A a |
2015/2016 | 175 ± 27 | AB b | 127 ± 14 | B c | 216 ± 12 | A b | |
2016/2017 | 274 ± 25 | A c | 270 ± 29 | A b | 247 ± 20 | A b | |
Grain to Hull Ratio | 2014/2015 | 2.28 ± 0.04 | A a | 2.35 ± 0.11 | A a | 2.43 ± 0.07 | A a |
2015/2016 | 1.43 ± 0.20 | B b | 1.26 ± 0.16 | B c | 1.87 ± 0.13 | A b | |
2016/2017 | 2.12 ± 0.06 | A a | 1.99 ± 0.13 | A b | 2.04 ± 0.04 | A b | |
SPAD GS39 | 2014/2015 | 41.9 ± 0.5 | A a | 42.5 ± 0.5 | A a | 41.5 ± 0.4 | A a |
2015/2016 | ND | ND | ND | ||||
2016/2017 | 37.8 ± 1.4 | B b | 44.3 ± 1.3 | A a | 37.3 ± 1.0 | B b | |
SPAD GS50 | 2014/2015 | 41.7 ± 0.3 | A a | 42.4 ± 0.5 | A b | 41.4 ± 0.4 | A a |
2015/2016 | 38.5 ± 0.9 | AB b | 41.1 ± 1.3 | A b | 35.9 ± 2.3 | B b | |
2016/2017 | 41.7 ± 0.7 | B a | 45.8 ± 0.9 | A a | 40.9 ± 0.6 | B a | |
SPAD GS62 | 2014/2015 | 39.9 ± 0.5 | A b | 38.8 ± 0.3 | A b | 39.5 ± 0.5 | A b |
2015/2016 | ND | ND | ND | ||||
2016/2017 | 41.8 ± 1.4 | B a | 46.9 ± 1.2 | A a | 42.1 ± 1.2 | B a |
Grain | Crude | Stem | Plant Height | |
---|---|---|---|---|
Yield | Protein | Lodging | at GS 62 | |
Factor | t ha−1 DW | % | % | cm |
Season (n = 96) | ||||
2015/2016 | 1.1 ± 0.1 | 12.5 ± 0.2 | 9.2 ± 1.1 | 84 ± 2 |
2016/2017 | 2.7 ± 0.2 | 13.0 ± 0.3 | 4.1 ± 0.6 | 107 ± 2 |
Fertility Type (n = 64) | ||||
Chicken manure | 2.0 ± 0.2 a | 12.0 ± 0.2 b | 4.9 ± 1.0 b | 94 ± 3 |
Mineral NPK | 1.7 ± 0.2 b | 14.2 ± 0.4 a | 10.3 ± 1.4 a | 98 ± 3 |
Sheep manure | 2.0 ± 0.2 a | 12.1 ± 0.2 b | 4.8 ± 0.9 b | 94 ± 2 |
Irrigation (n = 96) | ||||
With | 2.7 ± 0.2 | 11.7 ± 0.2 | 8.6 ± 1.0 | 108 ± 2 |
Without | 1.1 ± 0.1 | 13.9 ± 0.3 | 4.8 ± 0.8 | 84 ± 2 |
Variety (n = 48) | ||||
Filderstolz | 2.0 ± 0.2 b | 11.4 ± 0.3 c | 3.1 ± 0.8 b | 80 ± 3 c |
Oberkulmer | 1.7 ± 0.2 bc | 13.4 ± 0.3 ab | 7.3 ± 1.5 a | 94 ± 3 b |
Rubiota | 1.5 ± 0.2 c | 13.7 ± 0.3 a | 9.9 ± 1.6 a | 105 ± 3 a |
ZOR | 2.4 ± 0.3 a | 12.5 ± 0.6 b | 6.4 ± 0.9 ab | 103 ± 3 a |
ANOVA p-values | ||||
Main Effects | ||||
Season (YR) | 0.001 | ns | 0.0412 | 0.0016 |
Fertility type (FT) | <0.0001 | <0.0001 | 0.0023 | <0.0001 |
Irrigation (IR) | <0.0001 | <0.0001 | 0.0002 | <0.0001 |
Variety (SV) | 0.041 | <0.0001 | 0.0147 | ns |
Interactions 1 | ||||
YR × FT | ns | 0.0578 | Ns | 0.0252 2 |
YR × IR | <0.0001 3 | ns | Ns | ns |
FT × IR | ns | ns | Ns | ns |
YR × SV | <0.0001 4 | ns | 0.0182 4 | ns |
FT × SV | ns | 0.0858 | Ns | ns |
IR × SV | 0.0015 5 | ns | Ns | ns |
YR × FT × IR | 0.0781 | ns | Ns | ns |
Factor 1. | Factor 2. Spelt Variety | ||||||||
---|---|---|---|---|---|---|---|---|---|
Parameters | Season | Filderstolz (n = 24) | Oberkulmer (n = 24) | Rubiota (n = 24) | ZOR (n = 24) | ||||
Grain Yield t ha−1 DW | 2015/2016 | 1.3 ± 0.2 | A b | 1.0 ± 0.1 | A b | 0.9 ± 0.1 | A b | 1.1 ± 0.2 | A b |
2016/2017 | 2.7 ± 0.3 | B a | 2.4 ± 0.3 | BC a | 2.1 ± 0.2 | C a | 3.6 ± 0.3 | A a | |
Stem Lodging % | 2015/2016 | 2.9 ± 1.05 | C a | 11.9 ± 2.5 | AB a | 13.1 ± 2.7 | A a | 8.8 ± 1.4 | B a |
2016/2017 | 3.2 ± 1.31 | A a | 2.6 ± 1.1 | A b | 6.7 ± 1.5 | A b | 4.0 ± 1.1 | A b | |
Harvest Index % | 2015/2016 | 13.3 ± 1.3 | A b | 10.2 ± 1.3 | B b | 10.9 ± 0.9 | B b | 9.0 ± 1.3 | B b |
2016/2017 | 24.1 ± 1.4 | AB a | 20.6 ± 1.6 | C a | 21.8 ± 1.4 | BC a | 25.6 ± 1.3 | A a | |
Ears per m2 | 2015/2016 | 235 ± 13 | A b | 191 ± 17 | B b | 173 ± 13 | BC b | 155 ± 17 | C b |
2016/2017 | 281 ± 17 | B a | 266 ± 19 | B a | 264 ± 14 | B a | 326 ± 15 | A a | |
Grain/Hull Ratio | 2015/2016 | 1.3 ± 0.09 | A b | 1.4 ± 0.11 | A b | 1.5 ± 0.11 | A b | 1.4 ± 0.13 | A b |
2016/2017 | 1.9 ± 0.05 | B a | 1.9 ± 0.06 | B a | 2.1 ± 0.05 | B a | 2.4 ± 0.04 | A a |
Factor 1. | Factor 2. Spelt Variety | ||||
---|---|---|---|---|---|
Parameter | Irrigation | Filderstolz (n = 24) | Oberkulmer (n = 24) | Rubiota (n = 24) | ZOR (n = 24) |
Grain Yield | Irrigation + | 2.9 ± 0.3 B a | 2.6 ± 0.2 B a | 2.1 ± 0.2 C a | 3.4 ± 0.4 A a |
t ha−1 | Irrigation − | 1.1 ± 0.1 A b | 0.9 ± 0.2 A b | 1.0 ± 0.1 A b | 1.3 ± 0.2 A b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Baranski, M.; Korkut, R.; Kalee, H.A.; Wood, L.; Bilsborrow, P.; Janovska, D.; Leifert, A.; Winter, S.; Willson, A.; et al. Performance of Modern and Traditional Spelt Wheat (Triticum spelta) Varieties in Rain-Fed and Irrigated, Organic and Conventional Production Systems in a Semi-Arid Environment; Results from Exploratory Field Experiments in Crete, Greece. Agronomy 2021, 11, 890. https://doi.org/10.3390/agronomy11050890
Wang J, Baranski M, Korkut R, Kalee HA, Wood L, Bilsborrow P, Janovska D, Leifert A, Winter S, Willson A, et al. Performance of Modern and Traditional Spelt Wheat (Triticum spelta) Varieties in Rain-Fed and Irrigated, Organic and Conventional Production Systems in a Semi-Arid Environment; Results from Exploratory Field Experiments in Crete, Greece. Agronomy. 2021; 11(5):890. https://doi.org/10.3390/agronomy11050890
Chicago/Turabian StyleWang, Juan, Marcin Baranski, Recep Korkut, Hassan Ashraa Kalee, Liza Wood, Paul Bilsborrow, Dagmar Janovska, Alice Leifert, Sarah Winter, Adam Willson, and et al. 2021. "Performance of Modern and Traditional Spelt Wheat (Triticum spelta) Varieties in Rain-Fed and Irrigated, Organic and Conventional Production Systems in a Semi-Arid Environment; Results from Exploratory Field Experiments in Crete, Greece" Agronomy 11, no. 5: 890. https://doi.org/10.3390/agronomy11050890
APA StyleWang, J., Baranski, M., Korkut, R., Kalee, H. A., Wood, L., Bilsborrow, P., Janovska, D., Leifert, A., Winter, S., Willson, A., Barkla, B., Leifert, C., Rempelos, L., & Volakakis, N. (2021). Performance of Modern and Traditional Spelt Wheat (Triticum spelta) Varieties in Rain-Fed and Irrigated, Organic and Conventional Production Systems in a Semi-Arid Environment; Results from Exploratory Field Experiments in Crete, Greece. Agronomy, 11(5), 890. https://doi.org/10.3390/agronomy11050890