Sacha Inchi (Plukenetia volubilis L.) Is an Underutilized Crop with a Great Potential
Abstract
:1. Introduction to Plukenetia volubilis
1.1. Morphology, Phylogeny and Distribution
1.2. Traditional Uses
2. Nutritional Composition
2.1. Oil Composition
2.2. Seed Proteins
2.3. Antioxidants and Other Seed Compounds
3. Cultivation and Ecology
4. Sustainable Management Practices
5. Limitations and Breeding Opportunities
6. Future Potential
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gillespie, L.J. A Synopsis of Neotropical Plukenetia (Euphorbiaceae) Including Two New Species. Syst. Bot. 1993, 18, 575–592. [Google Scholar] [CrossRef]
- Gillespie, L.J.; Armbruster, W.S. A Contribution to the Guianan Flora: Dalechampia, Haematostemon, Omphalea, Pera, Plukenetia, and Tragia (Euphorbiaceae) with Notes on Subfamily Acolyphoideae. Smithson. Contrib. Bot. 1997, 86, 1–48. [Google Scholar] [CrossRef]
- Cardinal-McTeague, W.M.; Gillespie, L.J. A Revised Sectional Classification of Plukenetia L. (Euphorbiaceae, Acalyphoideae) with Four New Species from South America. Syst. Bot. 2020, 45, 507–536. [Google Scholar] [CrossRef]
- Bernal, H.Y.; Correa, Q.J.E. Plukenetia volubilis. In Especies Vegetales Promisorias de los Países del Convenio Andrés Bello; Bernal, H.Y., Correa, Q.J.E., Eds.; Secretaría Ejecutiva del Convenio Andrés Bello: Bogotá, Colombia, 1992; Volume 7, pp. 577–596. [Google Scholar]
- Brack Egg, A. Diccionario Enciclopedico de Plantas Utiles del Peru; PNUD: Cuzco, Perú, 1999; 400p. [Google Scholar]
- Flores, D. Uso Histórico: Sacha Inchi Plukenetia volúbilis L. Proyecto Perubiodiverso, Peru, 27 p. 2010. Available online: https://repositorio.promperu.gob.pe/bitstream/handle/123456789/1371/Uso_historico_sacha_inchi_2010_keyword_principal.pdf?sequence=1&isAllowed=y (accessed on 18 January 2021).
- Flores, D.; Lock, O. Revalorizando el uso milenario del sacha inchi (Plukenetia volubilis L.) para la nutrición, la salud y la cosmética. Rev. Fitoter 2013, 13, 23–30. [Google Scholar]
- Del Castillo, A.M.R.; Gonzalez-Aspajo, G.; Sánchez-Márquez, M.F.; Kodahl, N. Ethnobotanical Knowledge in the Peruvian Amazon of the Neglected and Underutilized Crop Sacha Inchi (Plukenetia volubilis L.). Econ. Bot. 2019, 73, 281–287. [Google Scholar] [CrossRef]
- Hamaker, B.R.; Valles, C.; Gilman, R.; Hardmeier, R.M.; Clark, D.; Garcia, H.H.; Gonzales, A.E.; Kohlstad, I.; Castro, M.; Valdivia, R.; et al. Amino Acid and Fatty Acid Profiles of the Inca Peanut (Plukenetia volubilis). Cereal Chem. 1992, 69, 461–463. [Google Scholar]
- Guillén, M.D.; Ruiz, A.; Cabo, N.; Chirinos, R.; Pascual, G. Characterization of Sacha Inchi (Plukenetia volubilis L.) Oil by FTIR Spectroscopy and 1H NMR. Comparison with Linseed Oil. JAOCS 2003, 80, 755–762. [Google Scholar] [CrossRef]
- Follegatti-Romero, L.A.; Piantino, C.A.; Grimaldi, R.; Fernando, A.C. Supercritical CO2 extraction of omega-3 rich oil from Sacha inchi (Plukenetia volubilis L.) seeds. J. Supercrit. Fluids 2009, 49, 323–329. [Google Scholar] [CrossRef]
- Fanali, C.; Dugo, L.; Cacciola, F.; Beccaria, M.; Grasso, S.; Dachà, M.; Dugo, P.; Mondello, L. Chemical Characterization of Sacha Inchi (Plukenetia volubilis L.) Oil. J. Agric. Food Chem. 2011, 59, 13043–13049. [Google Scholar] [CrossRef]
- Gutiérrez, L.-P.; Rosada, L.-M.; Jiménez, A. Chemical composition of Sacha Inchi (Plukenetia volubilis L.) seeds and characteristics of their lipid fraction. Grasas Aceites 2011, 62, 76–83. [Google Scholar] [CrossRef] [Green Version]
- Chirinos, R.; Zuloeta, G.; Pedreschi, R.; Mignolet, E.; Larondelle, Y.; Campos, D. Sacha inchi (Plukenetia volubilis): A seed source of polyunsaturated fatty acids, tocopherols, phytosterols, phenolic compounds and antioxidant capacity. Food Chem. 2013, 141, 1732–1739. [Google Scholar] [CrossRef]
- Souza, A.H.P.; Gohara, A.K.; Rodrigues, A.C.; Souza, N.E.; Visentainer, J.V.; Matsushita, M. Sacha inchi as potential source of essential fatty acids and tocopherols: Multivariate study of nut and shell. Acta Sci. Technol. 2013, 35, 757–763. [Google Scholar] [CrossRef] [Green Version]
- Ruiz, C.; Diaz, C.; Anaya, J.; Rojas, R. Análisis proximal, antinutrientes, perfil de ácidos grasos y de aminoácidos de semillas y tortas de 2 especies de sacha inchi (Plukenetia volubilis y Plukenetia huayllabambana). Rev. Soc. Quím. Perú 2013, 79, 29–36. [Google Scholar]
- Takeyama, E.; Fukushima, M. Physicochemical Properties of Plukenetia volubilis L. Seeds and Oxidative Stability of Cold-pressed Oil (Green Nut Oil). Food Sci. Technol. Res. 2013, 19, 875–882. [Google Scholar] [CrossRef] [Green Version]
- Cisneros, F.H.; Paredes, D.; Arana, A.; Cisneros-Zevallos, L. Chemical Composition, Oxidative Stability and Antioxidant Capacity of Oil Extracted from Roasted Seeds of Sacha-Inchi (Plukenetia volubilis L.). J. Agric. Food Chem. 2014, 62, 5191–5197. [Google Scholar] [CrossRef] [PubMed]
- Zanqui, A.B.; Silva, C.M.; Morais, D.R.; Santos, J.M.; Ribeiro, S.A.O.; Eberlin, M.N.; Cardozo-Filho, L.; Visentainer, J.V.; Gomes, S.T.M.; Matsushita, M. Sacha inchi (Plukenetia volubilis L.) oil composition varies with changes in temperature and pressure in subcritical extraction with n-propane. Ind. Crop. Prod. 2016, 87, 64–70. [Google Scholar] [CrossRef]
- Triana-Maldonado, D.M.; Torijano-Gutiérrez, S.A.; Giraldo-Estrada, C. Supercritical CO2 extraction of oil and omega-3 concentrate from Sacha inchi (Plukenetia volubilis L.) from Antioquia, Colombia. Grasas Aceites 2017, 68, 172. [Google Scholar] [CrossRef] [Green Version]
- Maurer, N.E.; Hatta-Sakoda, B.; Pascual-Chagman, G.; Rodriguez-Saona, L.E. Characterization and authentication of a novel vegetable source of omega-3 fatty acids, sacha inchi (Plukenetia volubilis L.) oil. Food Chem. 2012, 134, 1173–1180. [Google Scholar] [CrossRef]
- Ciftci, O.N.; Przybylski, R.; Rudzinska, M. Lipid components of flax, perilla, and chia seeds. Eur. J. Lipid Sci. Technol. 2012, 114, 794–800. [Google Scholar] [CrossRef]
- USDA. Rapeseed Oil. US Department of Agriculture FoodDataCentral. 2020. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/789038/nutrients (accessed on 25 October 2020).
- USDA. Olive Oil. US Department of Agriculture FoodDataCentral. 2020. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/789040/nutrients (accessed on 25 October 2020).
- Burr, G.O.; Burr, M.M. On the nature and role of the fatty acids essential in nutrition. J. Biol. Chem. 1930, 82, 345–367. [Google Scholar] [CrossRef]
- Sinclair, A.J.; Attar-Bashi, N.M.; Li, D. What Is the Role of α-Linolenic Acid for Mammals? Lipids 2002, 37, 1113–1123. [Google Scholar] [CrossRef]
- Novak, E.M.; Dyer, R.A.; Innis, S.M. High dietary ω-6 fatty acids contribute to reduced docosahexaenoic acid in the developing brain and inhibit secondary neurite growth. Brain Res. 2008, 1237, 136–145. [Google Scholar] [CrossRef]
- Wang, R.; Kern, J.T.; Goodfriend, T.L.; Ball, D.L.; Luesch, H. Activation of the antioxidant response by specific oxidized metabolites of linoleic acid. Prostaglandins Leukot. Essent. Fat. Acids 2009, 81, 53–59. [Google Scholar] [CrossRef] [Green Version]
- Ramsden, C.E.; Ringel, A.; Feldstein, A.E.; Taha, A.Y.; MacIntosh, B.A.; Hibbeln, J.R.; Majchrzak-Hong, S.F.; Faurot, K.R.; Rapoport, S.I.; Cheon, Y.; et al. Lowering dietary linoleic acid reduces bioactive oxidized linoleic acid metabolites in humans. Prostaglandins Leukot. Essent. Fat. Acids 2012, 87, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Glick, N.R.; Fischer, M.H. The Role of Essential Fatty Acids in Human Health. Evid. Based Complementary Altern. Med. 2013, 18, 268–289. [Google Scholar] [CrossRef]
- Lauritzen, L.; Hansen, H.S.; Jørgensen, M.H.; Michaelsen, K.F. The essentiality of long chain n-3 fatty acids in relation to development and function of the brain and retina. Prog. Lipid Res. 2001, 40, 1–94. [Google Scholar] [CrossRef]
- Pacher, P.; Mukhopadhyay, P.; Mohanraj, R.; Godlewski, G.; Bátkai, S.; Kunos, G. Modulation of the Endocannabinoid System in Cardiovascular Disease—Therapeutic Potential and Limitations. Hypertension 2008, 52, 601–607. [Google Scholar] [CrossRef] [Green Version]
- Caterina, R. n-3 Fatty Acids in Cardiovascular Disease. N. Engl. J. Med. 2011, 364, 2439–2450. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Wu, J.H.Y. Omega-3 Fatty Acids and Cardiovascular Disease—Effects on Risk Factors, Molecular Pathways, and Clinical Events. J. Am. Coll. Cardiol. 2011, 58, 2047–2067. [Google Scholar] [CrossRef] [Green Version]
- Calder, P.C. Mechanisms of Action of (n-3) Fatty Acids. Supplement: Heart Healthy Omega-3s for Food—Stearidonic Acid (SDA) as a Sustainable Choice. J. Nutr. 2012. [Google Scholar] [CrossRef] [Green Version]
- Jump, D.B.; Depner, C.M.; Tripathy, S. Omega-3 fatty acid supplementation and cardiovascular disease. J. Lipid Res. 2012, 53, 2525–2545. [Google Scholar] [CrossRef] [Green Version]
- Freeman, M.P.; Hibbeln, J.R.; Wisner, K.L.; Davis, J.M.; Mischoulon, D.; Peet, M.; Keck, P.E.; Marangell, L.B.; Richardson, A.J.; Lake, J.; et al. Omega-3 Fatty Acids: Evidence Basis for Treatment and Future Research in Psychiatry. J. Clin. Psychiatry 2006, 67, 1954–1967. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.-Y.; Su, K.-P. A meta-analytic review of double-blind, placebo-controlled trials of antidepressant efficacy of omega-3 fatty acids. J. Clin. Psychiatry 2007, 68, 1056–1061. [Google Scholar] [CrossRef] [PubMed]
- Ross, B.M.; Seguin, J.; Sieswerda, L.E. Omega-3 fatty acids as treatments for mental illness: Which disorder and which fatty acid? Lipids Health Dis. 2007, 6. [Google Scholar] [CrossRef] [Green Version]
- Hallahan, B.; Ryan, T.; Hibbeln, J.R.; Murray, I.T.; Glynn, S.; Ramsden, C.E.; SanGiovanni, J.P.; Davis, J.M. Efficacy of omega-3 highly unsaturated fatty acids in the treatment of depression. Br. J. Psychiatry 2016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarris, J.; Murphy, J.; Mischoulon, D.; Papakostas, G.I.; Fava, M.; Berk, M.; Ng, C.H. Adjunctive nutraceuticals for depression: A systematic review and meta-analyses. Am. J. Psychiatry 2016, 173, 575–587. [Google Scholar] [CrossRef] [Green Version]
- Lewis, M.D.; Bailes, J. Neuroprotection for the Warrior: Dietary Supplementation with Omega-3 Fatty Acids. Mil. Med. 2011, 176, 1120–1127. [Google Scholar] [CrossRef]
- Wu, A.; Ying, Z.; Gomez-Pinilla, F. The Salutary Effects of DHA Dietary Supplementation on Cognition, Neuroplasticity, and Membrane Homeostasis after Brain Trauma. J. Neurotrauma 2011, 28, 2113–2122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Drover, J.; Birch, E.E.; Hoffman, D.R.; Castañeda, Y.S.; Morale, S.E. Three Randomized Controlled Trials of Early Long-Chain Polyunsaturated Fatty Acid Supplementation on Means-End Problem Solving in 9-Month-Olds. Child Dev. 2009, 80, 1376–1384. [Google Scholar] [CrossRef] [Green Version]
- Birch, E.E.; Carlson, S.E.; Hoffman, D.R.; Fitzgerald-Gustafson, K.M.; Fu, V.L.; Drover, J.R.; Castañeda, Y.S.; Minns, L.; Wheaton, D.K.H.; Mundy, D.; et al. The DIAMOND (DHA Intake and measurement of neural development) Study: A double-masked, randomized controlled clinical trial of the maturation of infant visual acuity as a function of the dietary level of docosahexaenoic acid. Am. J. Clin. Nutr. 2010, 91, 848–859. [Google Scholar] [CrossRef] [Green Version]
- Drover, J.R.; Hoffman, D.R.; Castañeda, Y.S.; Morale, S.E.; Garfield, S.; Wheaton, D.H.; Birch, E.E. Cognitive function in 18-month-old term infants of the DIAMOND study: A randomized, controlled clinical trial with multiple dietary levels of docosahexaenoic acid. Early Hum. Dev. 2010, 87, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Lassek, W.D.; Gaulin, S.J.C. Sex differences in the relationship of dietary fatty acids to cognitive measures in American children. Front. Neurosci. 2011, 3, 1–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garaulet, M.; Pérez-Llamas, F.; Pérez-Ayala, M.; Martínez, P.; Medina, F.S.; Tebar, F.J.; Zamora, S. Site-specific differences in the fatty acid composition of abdominal adipose tissue in an obese population from a Mediterranean area: Relation with dietary fatty acids, plasma lipid profile, serum insulin, and central obesity. Am. J. Clin. Nutr. 2001, 74, 585–591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sathe, S.K.; Kshirsagar, H.H.; Sharma, G.M. Solubilization, Fractionation, and Electrophoretic Characterization of Inca Peanut (Plukenetia volubilis L.) Proteins. Plant. Foods Hum. Nutr. 2012, 67, 247–255. [Google Scholar] [CrossRef]
- Torres Sanchez, E.G.; Hernandez-Ledesma, B.; Gutierrez, L.-F. Sacha Inchi Oil Press-cake: Physicochemical Characteristics, Food-related Applications and Biological Activity. Food Rev. Int. 2021. [Google Scholar] [CrossRef]
- Jáuregui, A.M.; Escudero, F.R.; Ortiz-Ureta, C.A.; Castañeda, B.C.; Mendoza, E.B.; Farfán, J.Y.; Asencios, D.C. Evaluación del contenido de fitoesteroles, compuestos fenólicos y métodos químicos para determiner la actividad antioxidante en semilla de sacha inchi (Plukenetia volubilis L.). Rev. Soc. Quím. Perú 2010, 76, 234–241. [Google Scholar]
- Saavedra, E.F.C.; Viera, S.F.C.; Alfaro, C.E.R. Estudio fitoquímico de Plukenetia volubilis L. y su efecto antioxidante en la lipoperoxidación inducida por Fe3+ /ascorbato en hígado de Rattus rattus var. albinus. UCV Sci. 2010, 2, 11–21. [Google Scholar]
- Nascimento, A.K.L.; Melo-Silveira, R.F.; Dantas-Santos, N.; Fernandes, J.M.; Zucolotto, S.M.; Rocha, H.A.O.; Scortecci, K.C. Antioxidant and Antiproliferative Activities of Leaf Extracts from Plukenetia volubilis Linneo (Euphorbiaceae). Evid. Based Complementary Altern. Med. 2013. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Xu, Y.K.; Zhang, P.; Na, Z.; Tang, T.; Shi, Y.X. Chemical composition and oxidative evolution of Sacha Inchi (Plukentia volubilis L.) oil from Xishuangbanna (China). Grasas Aceites 2014, 65. [Google Scholar] [CrossRef] [Green Version]
- Franco-Quino, C.; Muñoz-Espinoza, D.; Gómez-Herreros, C.; Chau-Miranda, G.; Cueva-Piña, L.; Guardia-Ortiz, E.; Saavedra-Yucra, S.; Arroyo-Acevedo, J.; Herrera-Calderón, O. Caracteristicas fitoquímicas y capacidad antioxidante in vitro de Aloe vera, Plukenetia volubilis, Caiophora carduifolia, Cecropia membranácea. An. Fac. Med. 2016, 77, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Sterbova, L.; Cepkova, P.H.; Viehmannova, I.; Cachique, D.H. Effect of thermal processing on phenolic content, tocopherols and antioxidant activity of sacha inchi kernels. J. Food Process. Preserv. 2016, 41. [Google Scholar] [CrossRef]
- Bendini, A.; Cerretani, L.; Carrasco-Pancorbo, A.; Gómez-Caravaca, A.M.; Segura-Carretero, A.; Fernández-Gutiérrez, A.; Lercker, G. Phenolic Molecules in Virgin Olive Oils: A Survey of Their Sensory Properties, Health Effects, Antioxidant Activity and Analytical Methods. An Overview of the Last Decade. Molecules 2007, 12, 1679–1719. [Google Scholar] [CrossRef] [PubMed]
- Palozza, P.; Krinsky, N.I. Antioxidant effects of carotenoids in Vivo and in Vitro: An overview. Meth. Enzymol. 1992, 213, 403–420. [Google Scholar]
- Shahidi, F.; Shukla, V.K.S. Nontriacylglycerol constituents of fats, oils. Inform 1996, 7, 1227–1232. [Google Scholar]
- Arévalo, G.G. El Cultivo del Sacha Inchi (Plukenetia volubilis L.) en la Amazonía; Programa Nacional de Investigación en Recursos Genéticos y Biotecnología (PRONARGEB): Tarapoto, Perú, 1995. [Google Scholar]
- Lei, Y.-B.; Zheng, Y.-L.; Dai, K.-J.; Duan, B.-L.; Cai, Z.-Q. Different responses of photosystem I and photosystem II in three tropical oilseed crops exposed to chilling stress and subsequent recovery. Trees 2014, 28, 923–933. [Google Scholar] [CrossRef]
- Cai, Z.Q.; Jiao, D.Y.; Tang, S.X.; Dao, X.S.; Lei, Y.B.; Cai, C.T. Leaf Photosynthesis, Growth, and Seed Chemicals of Sacha Inchi Plants Cultivated Along an Altitude Gradient. Crop Sci. 2012, 52, 1859–1867. [Google Scholar] [CrossRef] [Green Version]
- Jiao, D.Y.; Xiang, M.H.; Li, W.G.; Cai, Z.-Q. Dry-season irrigation and fertilisation affect the growth, reproduction, and seed traits of Plukenetia volubilis L. plants in a tropical region. J. Hortic. Sci. 2012, 87, 311–316. [Google Scholar] [CrossRef]
- Gong, H.D.; Geng, Y.J.; Yang, C.; Jiao, D.Y.; Chen, L.; Cai, Z.-Q. Yield and resource use efficiency of Plukenetia volubilis plants at two distinct growth stages as affected by irrigation and fertilization. Sci. Rep. 2018, 8, 80. [Google Scholar] [CrossRef] [Green Version]
- Cachique, D.H. Biología Floral y Reproductiva de Plukenetia volubilis L. (Euphorbiaceae)—(Sacha Inchi); Universidad Nacional de San Martín: Tarapoto, Perú, 2006. [Google Scholar]
- Manco, E.I.C. Cultivo de Sacha Inchi; Instituto Nacional de Investigación y Extensión Agraria: Tarapoto, Perú, 2006. [Google Scholar]
- Valente, M.S.F.; Lopes, M.T.G.; Chaves, F.C.M.; Pantoja, M.C.; Sousa, F.M.G.; Chagas, E.A. Molecular genetic diversity and mating system in sacha inchi progenies. Pesq. Agropec. Trop. 2017, 47, 480–487. [Google Scholar] [CrossRef] [Green Version]
- Cachique, D.; Rodriguez, Á.; Ruiz-Solsol, H.; Vallejos, G.; Solis, R. Propagacion vegetativa del sacha inchi (Plukenetia volubilis L.) mediante enraizamiento de estacas juveniles en cámaras de subirrigación en la Amazonia Peruana. Folia Amazón. 2011, 20, 95–100. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, P.H.V.; Bordignon, S.R.; Ambrosano, G.M.B. Desempenho horticultural de plantas propagadas in vitro de Sacha inchi. Ciênc. Rural 2014, 44, 1050–1053. [Google Scholar] [CrossRef] [Green Version]
- Cachique, D.H.; Solsol, H.R.; Sanchez, M.A.G.; López, L.A.A.; Kodahl, N. Vegetative propagation of the underutilized oilseed crop sacha inchi (Plukenetia volubilis L.). Genet. Resour. Crop Evol. 2018, 65, 2027–2036. [Google Scholar] [CrossRef]
- Loaiza, M.E.E. Manejo Agroecologico del Cultivo de Sacha Inchi (Plukenetia volubilis L.); Universidad Agraria del Ecuador: Guayaquil, Ecuador, 2013. [Google Scholar]
- Funabashi, M. Synecological farming: Theoretical foundation on biodiversity responses of plant communities. Plant Biotechnol. J. 2016, 33, 213–234. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tian, Y.H.; Lei, Y.B.; Zheng, Y.L.; Cai, Z.-Q. Synergistic effect of colonization with arbuscular mycorrhizal fungi improves growth and drought tolerance of Plukenetia volubilis seedlings. Acta Physiol. Plant. 2013, 35, 687–696. [Google Scholar] [CrossRef]
- Caro, L.A.P.; Zumaqué, L.E.O.; Violeth, J.L.B. Efecto de la micorrización y el lombriabono sobre el crecimiento y desarrollo del Sacha inchi Plukenetia volubilis L. Temas Agrar. 2017, 23, 18–28. [Google Scholar] [CrossRef]
- Proyecto Perúbiodiverso. Manual de Producción de Sacha Inchi para el Biocomercio y la Agroforestería Sostenible; Proyecto Perúbiodiverso—PBD: Lima, Perú, 2009. [Google Scholar]
- European Food Safety Authority. Technical Report on the Notification of Roasted Seeds from Plukenetia volubilis L. as a Traditional Food from a Third Country Pursuant to Article 14 of Regulation (EU) 2015/2283; European Food Safety Authority: Parma, Italy, 2020. [Google Scholar] [CrossRef]
- Srichamnong, W.; Ting, P.; Pitchakarn, P.; Nuchuchua, O.; Temviriyanukul, P. Safety assessment of Plukenetia volubilis (Inca peanut) seeds, leaves, and their products. Food Sci. Nutr. 2018, 6, 962–969. [Google Scholar] [CrossRef]
- Vašek, J.; Cepková, P.H.; Viehmannova, I.; Ocelák, M.; Cachique, D.H.; Vejl, P. Dealing with AFLP genotyping errors to reveal genetic structure in Plukenetia volubilis (Euphorbiaceae) in the Peruvian Amazon. PLoS ONE 2017, 12, e0184259. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobsen, S.-E.; Sørensen, M.; Pedersen, S.M.; Weiner, J. Using our agrobiodiversity: Plant-based solutions to feed the world. Agron. Sustain. Dev. 2015, 35, 1217–1235. [Google Scholar] [CrossRef] [Green Version]
- Funabashi, M. Human augmentation of ecosystems: Objectives for food production and science by 2045. NPJ Sci. Food 2018, 2, 16. [Google Scholar] [CrossRef] [Green Version]
- Kodahl, N. Sacha inchi (Plukenetia volubilis L.)—From lost crop of the Incas to part of the solution to global challenges? Planta 2020, 251, 80. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kodahl, N.; Sørensen, M. Sacha Inchi (Plukenetia volubilis L.) Is an Underutilized Crop with a Great Potential. Agronomy 2021, 11, 1066. https://doi.org/10.3390/agronomy11061066
Kodahl N, Sørensen M. Sacha Inchi (Plukenetia volubilis L.) Is an Underutilized Crop with a Great Potential. Agronomy. 2021; 11(6):1066. https://doi.org/10.3390/agronomy11061066
Chicago/Turabian StyleKodahl, Nete, and Marten Sørensen. 2021. "Sacha Inchi (Plukenetia volubilis L.) Is an Underutilized Crop with a Great Potential" Agronomy 11, no. 6: 1066. https://doi.org/10.3390/agronomy11061066
APA StyleKodahl, N., & Sørensen, M. (2021). Sacha Inchi (Plukenetia volubilis L.) Is an Underutilized Crop with a Great Potential. Agronomy, 11(6), 1066. https://doi.org/10.3390/agronomy11061066