Characterization of Soil Organic Matter Individual Fractions (Fulvic Acids, Humic Acids, and Humins) by Spectroscopic and Electrochemical Techniques in Agricultural Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. Determination of Soil Basic Physico-Chemical Properties
2.4. Isolation and Determination of Humic Substances
2.5. Structural Characterization of Humic Substances
2.5.1. UV–VIS Analysis
2.5.2. VIS–nearIR Analysis
2.5.3. Electrochemical Analysis
2.6. Statistics
3. Results and Discussion
3.1. Soil Physico-Chemical Properties and HS Fractional Composition
3.2. Structural Characterization of Soil Organic Matter Fractions
3.2.1. UV–VIS Analysis: Determination of Aromaticity and Maturity Degree
3.2.2. VIS–nearIR Analysis: Functional Group Identification
3.2.3. Electrochemical Analysis: Charge and Size Evaluation
3.3. Relations between Soil Physico-Chemical Properties and Determined Characteristics of HS Fractions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schnitzer, M. Humic substances: Chemistry and reactions. In Soil Organic Matter; Schnitzer, M., Khan, S.U., Eds.; Elsevier: Amsterdam, The Netherlands, 1978; pp. 1–64. [Google Scholar]
- Stevenson, F.J. Humus Chemistry. Genesis. Compositions. Reactions; Wiley: New York, NY, USA, 1982. [Google Scholar]
- Tan, K.H. Humic Matter in Soil and the Environment: Principles and Controversies; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2014. [Google Scholar]
- Paul, E.A. The nature and dynamics of soil organic matter: Plant inputs, microbial transformations and organic matter stabilization. Soil Biol. Biochem. 2016, 98, 109–126. [Google Scholar] [CrossRef] [Green Version]
- Olk, D.C.; Bloom, P.R.; Perdue, E.M.; McKnight, D.M.; Chen, Y.; Farenhorst, A.; Senesi, N.; Chin, Y.-P.; Schmitt-Kopplin, P.; Hertkorn, N.; et al. Environmental and agricultural relevance of humic fractions extracted by alkali from soils and natural waters. J. Environ. Qual. 2019, 48, 217–232. [Google Scholar] [CrossRef] [PubMed]
- Schulten, H.-R.; Leinweber, P. New insights into organic-mineral particles: Composition. properties and models of molecular structure. Biol. Fertil. Soils 2000, 30, 399–432. [Google Scholar] [CrossRef]
- Allen-King, R.M.; Grathwohl, P.; Ball, W.P. New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments and rocks. Adv. Water Resour. 2002, 25, 985–1016. [Google Scholar] [CrossRef]
- Schnitzer, M.; Monreal, C.M. Quo vadis soil organic matter research? A biological link to the chemistry of humification. In Advances in Agronomy 113; Sparks, D.L., Ed.; Elsevier Academic Press Inc.: San Diego, CA, USA, 2011; pp. 139–213. [Google Scholar]
- Senesi, N. Humic substances as natural nanoparticles ubiquitous in the environment. In Molecular Environmental Soil Science at the Interfaces in the Earth’s Critical Zone; Xu, J., Huang, P.M., Eds.; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Olk, D.C.; Bloom, P.R.; de Nobili, M.; Chen, Y.; McKnight, D.M.; Wells, M.J.M.; Weber, J. Using humic fractions to understand natural organic matter processes in soil and water: Selected studies and applications. J. Environ. Qual. 2019, 48, 1633–1643. [Google Scholar] [CrossRef] [Green Version]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Lehmann, J.; Hansel, C.M.; Kaiser, C.; Kleber, M.; Maher, K.; Manzoni, S.; Nunan, N.; Reichstein, M.; Schimel, J.P.; Torn, M.S.; et al. Persistence of soil organic carbon caused by functional complexity. Nat. Geosci. 2020, 13, 529–534. [Google Scholar] [CrossRef]
- Schmidt, M.W.I.; Torn, M.S.; Abiven, S.; Dittmar, T.; Guggenberger, G.; Janssens, I.A.; Kleber, M.; Kögel-Knabner, I.; Lehmann, J.; Manning, D.A.C.; et al. Persistence of soil organic matter as an ecosystem property. Nature 2011, 478, 49–56. [Google Scholar] [CrossRef] [Green Version]
- Hayes, M.H.B.; Mylotte, R.; Swift, R.S. Humin: Its composition and importance in soil organic matter. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: Burlington, NJ, USA, 2017; Volume 143, pp. 47–138. [Google Scholar]
- Janzen, H. The future of humic substances research: Preface to a debate. J. Environ. Qual. 2019, 48, 205–206. [Google Scholar] [CrossRef]
- Piccolo, A.; Celano, G.; de Simone, C. Interactions of atrazine with humic substances of different origins and their hydrolysed products. Sci. Total Environ. 1992, 117–118, 403–412. [Google Scholar] [CrossRef]
- Schaumann, G.E. Soil organic matter beyond molecular structure Part I: Macromolecular and supramolecular characteristics. J. Plant Nutr. Soil Sci. 2006, 169, 145–156. [Google Scholar] [CrossRef]
- Schaumann, G. E Soil organic matter beyond molecular structure Part II: Amorphous nature and physical aging. J. Plant Nutr. Soil Sci. 2006, 169, 157–167. [Google Scholar] [CrossRef]
- Pignatello, J.J.; Kwon, S.; Lu, Y. Effect of natural organic substances on the surface and adsorptive properties of environmental black carbon (Char): Attenuation of surface activity by humic and fulvic acids. Environ. Sci. Technol. 2006, 40, 7757–7763. [Google Scholar] [CrossRef] [PubMed]
- Pignatello, J.J. Dynamic interactions of natural organic matter and organic compounds. J. Soils Sediments 2012, 12, 1241–1256. [Google Scholar] [CrossRef]
- Lehmann, J.; Solomon, D.; Kinyangi, J.; Dathe, L.; Wirick, S.; Jacobsen, C. Spatial complexity of soil organic matter forms at nanometre scales. Nat. Geosci. 2008, 1, 238–242. [Google Scholar] [CrossRef]
- Kulikova, N.; Perminova, I. Binding of atrazine to humic substances from soil, peat, and coal related to their structure. Environ. Sci. Technol. 2002, 36, 3720–3724. [Google Scholar] [CrossRef]
- Niederer, C.; Schwarzen, R.; Goss, K. Elucidating differences in the sorption properties of 10 humic and fulvic acids for polar and nonpolar organic chemicals. Environ. Sci. Technol. 2007, 41, 6711–6717. [Google Scholar] [CrossRef]
- Chowdhury, R.; Atwater, J.; Hall, K. Role of soil humic and fulvic acid in the sorption of endosulfan (alpha and beta). Chem. Ecol. 2014, 30, 755–764. [Google Scholar] [CrossRef]
- Farenhorst, A.; Saiyed, I.; Gohm, T.; McQueen, P. The important characteristics of soil organic matter affecting the sorption of 2,4-dichlorophenoxyacetic acid sorption along a catenary sequence. J. Environ. Sci. Health Part B 2010, 45, 204–213. [Google Scholar] [CrossRef]
- Ukalska-Jaruga, A.; Debaene, G.; Smreczak, B. Dissipation and sorption processes of polycyclic aromatic hydrocarbons (PAHs) to organic matter in soils amended by exogenous rich-carbon material. J. Soils Sediments 2019, 20, 836–849. [Google Scholar] [CrossRef] [Green Version]
- Ukalska-Jaruga, A.; Klimkowicz-Pawlas, A.; Smreczak, B. Characterization of organic matter fractions in the top layer of soils under different land uses in Central-Eastern Europe. Soil Use Manag. 2019, 35, 595–606. [Google Scholar] [CrossRef]
- Di Donato, N.; Chen, H.M.; Waggoner, D.; Hatcher, P.G. Potential origin and formation for molecular components of humic acids in soils. Geochim. Cosmochim. Acta 2016, 178, 210–222. [Google Scholar] [CrossRef] [Green Version]
- Tiberg, C.; Sjostedt, C.; Gustafsson, J.P. Metal sorption to Spodosol Bs horizons: Organic matter complexes predominate. Chemosphere 2018, 196, 556–565. [Google Scholar] [CrossRef] [PubMed]
- Bloom, P.; Skyllberg, U. Soil pH and pH buffering. In Handbook of Soil Science, 2nd ed.; Huang, P.M., Li, Y., Sumner, M.E., Eds.; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Boguta, P.; Sokołowska, Z. Zinc binding to fulvic acids: Assessing the impact of pH. Metal concentrations and chemical properties of fulvic acids on the mechanism and stability of formed soluble complexes. Molecules 2020, 25, 1297. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ukalska-Jaruga, A.; Debaene, G.; Smreczak, B. Particle and structure characterization of fulvic acids from agricultural soils. J. Soils Sediments 2018, 18, 2833–2843. [Google Scholar] [CrossRef]
- Song, G.; Novotny, E.H.; Simpson, A.J.; Clapp, C.E.; Hayes, M.H.B. Sequential exhaustive extraction of a Mollisol soil, and characterizations of humic components, including humin, by solid and solution state NMR. Eur. J. Soil Sci. 2008, 59, 505–516. [Google Scholar] [CrossRef]
- Song, G.; Hayes, M.H.B.; Novotny, E.H.; Simpson, A.J. Isolation and fractionation of soil humin using alkaline urea and dimethylsulphoxide plus sulphuric acid. Naturwissenschaften 2011, 98, 7–13. [Google Scholar] [CrossRef]
- Guimaraes, D.; Gonzaga, M.S.; da Silva, T.; da Silva Dias, T.; Matias, M.S. Soil organic matter pools and carbon fractions in soil under different land uses. Soil Till. Res. 2013, 126, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Dou, S.; Zhang, J.J.; Li, K. Effect of organic matter applications on13C-NMR spectra of humic acids of soil. Eur. J. Soil Sci. 2008, 59, 532–539. [Google Scholar] [CrossRef]
- Mierzwa-Hersztek, M.; Gondek, K.; Kopeć, M.; Ukalska-Jaruga, A. Biochar changes in soil based on quantitative and qualitative humus compounds parameters. Soil Sci. Annu. 2018, 9, 234–242. [Google Scholar] [CrossRef] [Green Version]
- Senesi, N.; Miano, T.; Provenzano, M.; Brunetti, G. Characterization, differentiation, and classification of humic substances by fluorescence spectroscopy. Soil Sci. 1991, 152, 4. [Google Scholar] [CrossRef]
- Jiang, J.; Yu, H.; Xi, B.; Meng, F.; Zhou, Y.; Liu, H. UV-visible spectroscopic properties of dissolved fulvic acids extracted from salined fluvo-aquic soils in the Hetao Irrigation District. China Soil Res. 2011, 49, 670–679. [Google Scholar] [CrossRef]
- Enev, V.; Pospisilova, L.; Klucakova, M.; Liptaj, T.; Doskocil, L. Spectral characterization of selected humic substances. Soil Water Res. 2014, 9, 9–17. [Google Scholar] [CrossRef] [Green Version]
- Klucakova, M.; Kalina, M. Composition, particle size. charge. and colloidal stability of pH-fractionated humic acids. J. Soils Sediments 2015, 15, 1900–1908. [Google Scholar] [CrossRef]
- Baglieri, A.; Ioppolo, A.; Nègre, M.; Gennari, M. A method for isolating soil organic matter after the extraction of humic and fulvic acids. Org. Geochem. 2007, 38, 140–150. [Google Scholar] [CrossRef]
- Steinberg, C.E.W. Ecology of Humic Substances in Freshwaters; Springer Science and Business Media: Berlin, Germany, 2003. [Google Scholar]
- Mortimore, J.L.; Marshall, L.-J.R.; Almond, M.J.; Hollins, P.; Matthews, W. Analysis of red and yellow ochre samples from Clearwell Caves and Çatalhöyük by vibrational spectroscopy and other techniques. Spectrochim Acta Part A Mol. Biomol. Spectrosc. 2004, 60, 1179–1188. [Google Scholar] [CrossRef]
- Vaz, S. Analytical techniques. In Analytical Chemistry Applied to Emerging Pollutants; Vaz, S., Jr., Ed.; Springer Science and Business Media: Berlin, Germany, 2018; pp. 37–78. [Google Scholar]
- Swift, R. Organic matter characterization. In Methods of Soil Analysis Part 3—Chemical Methods; Sparks, D.L., Ed.; Soil Science Society of America: Madison, WI, USA; American Society of Agronomy: Madison, WI, USA, 1996; pp. 1011–1069. [Google Scholar]
- Swift, R. Fractionation of soil humic substances. In Humic Substances in Soil, Sediment and Water; Aiken, G., McKnight, D.M., Wershaw, R.L., MacCarthy, P., Eds.; Willey: New York, NY, USA, 1985; pp. 387–408. [Google Scholar]
- Hayes, M.; Swift, R. Genesis, isolation, composition and structures of soil humic substances. In Soil Colloids and Their Associations in Aggregates; De Boodt, M.F., Hayes, M.H.B., Herbillon, A., Eds.; Springer Science and Business Media: New York, NY, USA, 1990; pp. 245–305. [Google Scholar]
- Hu, W.; Mao, J.; Schmidt-Rohr, K.; Xing, B. NMR evidence for crystalline domains in humin substances. In Understanding Humic Substances, Advanced Methods, Properties and Applications; Ghabbour, E.A., Davies, G., Eds.; The Royal Society of Chemistry: Cambridge, UK, 2000; pp. 63–68. [Google Scholar]
- Alvarez-Puebla, R.A.; Garrido, J. Effect of pH on the aggregation of agray humic acid in colloidal and solid states. Chemosphere 2005, 59, 659–667. [Google Scholar] [CrossRef]
- Jovanovic, U.; Markovic, M.; Cupac, S.; Tomic, Z. Soil humic acid aggregation by dynamic light scattering and laser Doppler electrophoresis. J. Plant Nutr. Soil Sci. 2013, 176, 674–679. [Google Scholar] [CrossRef]
- Klucakova, M. Size and charge evaluation of standard humic and fulvic acids as crucial factors to determine their environmental behavior and impact. Front. Chem. 2018, 6, 235. [Google Scholar] [CrossRef]
- Hunter, R. Zeta potential in colloidal science. In Principles and Applications; Ottewill, R.H., Rowell, R.L., Eds.; Academic Press Harcourt: London, UK, 1988. [Google Scholar]
- Angelico, R.; Ceglie, A.; He, J.-Z.; Liu, Y.-R.; Palumbo, G.; Colombo, C. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite. Chemosphere 2014, 99, 239–247. [Google Scholar] [CrossRef]
- Esfahani, M.R.; Stretz, H.; Wells, M.J. Abiotic reversible self-assembly of fulvic and humic acid aggregates in low electrolytic conductivity solutions by dynamic light scattering and zeta potential investigation. Sci. Total Environ. 2015, 537, 81–92. [Google Scholar] [CrossRef] [PubMed]
- Cameron, R.; Thornton, B.; Swift, R.; Posner, A. Molecular weight and shape of humic acid from sedimentation and diffusion measurements on fractionated extracts. J. Soil Sci. 1972, 23, 394–408. [Google Scholar] [CrossRef]
- Tarasevich, Y.I.; Tryfonova, M.Y.; Dolenko, S.A.; Aksenenko, E. Adsorption-based approach to determine the size and mass of humic acids molecules. Adsorpt. Sci. Technol. 2016, 34, 125–133. [Google Scholar] [CrossRef]
- McAdams, B.C.; Aiken, G.R.; McKnight, D.M.; Arnold, W.A.; Chin, Y.P. High pressure size exclusion chromatography (HPSEC) determination of dissolved organic matter molecular weight revisited: Accounting for changes in stationary phases, analytical standards and isolation methods. Environ. Sci. Technol. 2018, 52, 722–730. [Google Scholar] [CrossRef] [PubMed]
- Guggenberger, G. Humification and mineralization in soils. In Microorganisms in Soils: Roles in Genesis and Functions, Soil Biology; Varma, A., Buscot, F., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; Volume 3. [Google Scholar] [CrossRef]
- Zhang, J.; Lv, B.; Xing, M.; Yang, J. Tracking the composition and transformation of humic and fulvic acids during vermicomposting of sewage sludge by elemental analysis and fluorescence excitation-emission matrix. J. Waste Manag. 2015, 39, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Torres-Sallan, G.; Schulte, R.; Lanigan, G.; Byrne, K.; Reidy, B.; Simó, I.; Six, J.; Creamer, R. Clay illuviation provides a long term sink for C sequestration in subsoils. Sci. Rep. 2017, 7, 45635. [Google Scholar] [CrossRef]
Min | Max | Med | Aver | LQ | UQ | CoV | |
---|---|---|---|---|---|---|---|
Clay (%) | 0 | 22 | 1 | 3 | 1 | 4 | 145 |
Silt (%) | 0 | 77 | 32 | 35 | 15 | 48 | 63 |
Sand (%) | 0 | 92 | 62 | 59 | 35 | 80 | 42 |
pH in KCl | 4.8 | 7.5 | 6.9 | 6.6 | 6.0 | 7.3 | 12 |
TOC (g kg−1) | 6.4 | 58.7 | 12.1 | 14.3 | 9.6 | 14.9 | 66.9 |
TC (g kg−1) | 7.4 | 75.4 | 14.1 | 19.3 | 11.2 | 20.4 | 83.8 |
TN (g kg−1) | 0.7 | 6.6 | 1.3 | 1.5 | 1.0 | 1.7 | 68.5 |
TC:TN | 9 | 42 | 11 | 12 | 10 | 12 | 47 |
Min | Max | Med | Aver | LQ | UQ | CoV | |
---|---|---|---|---|---|---|---|
FA (g kg−1) | 0.5 | 1.8 | 0.9 | 1.0 | 0.8 | 1.3 | 34.3 |
HA (g kg−1) | 1.1 | 6.8 | 3.0 | 3.0 | 2.0 | 3.3 | 41.3 |
HN (g kg−1) | 2.8 | 54.5 | 6.4 | 9.7 | 4.9 | 9.3 | 104.5 |
FA (% of TOC) | 2.1 | 13.4 | 7.8 | 8.1 | 6.7 | 9.0 | 31.6 |
HA (% of TOC) | 7.4 | 50.2 | 22.5 | 23.6 | 18.2 | 28.4 | 38.4 |
HN (% of TOC) | 35.6 | 92.7 | 56.1 | 62.6 | 47.5 | 65.3 | 50.1 |
HA/FA | 1.3 | 5.6 | 3.0 | 3.0 | 2.4 | 3.6 | 31.3 |
(HA+FA)/HN | 0.1 | 1.4 | 0.6 | 0.6 | 0.4 | 0.8 | 53.8 |
Min | Max | Med | Aver | LQ | UQ | CoV | ||
---|---|---|---|---|---|---|---|---|
FA | E2/E4 | 10.5 | 64.7 | 38.2 | 38.8 a | 29.1 | 47.1 | 33.0 |
E2/E6 | 10.2 | 58.6 | 38.7 | 42.6 a | 22.9 | 59.6 | 56.0 | |
E4/E6 | 6.2 | 9.7 | 8.0 | 7.9 a | 7.2 | 8.6 | 13.4 | |
HA | E2/E4 | 0.8 | 7.1 | 3.5 | 3.6 b | 2.8 | 4.6 | 39.7 |
E2/E6 | 14.1 | 34.4 | 23.4 | 24.1 b | 19.7 | 29.1 | 24.8 | |
E4/E6 | 2.3 | 4.7 | 3.3 | 3.4 b | 3.1 | 3.6 | 15.5 | |
HN | E2/E4 | 0.98 | 2.01 | 1.04 | 1.31 c | 1.00 | 1.54 | 30.95 |
E2/E6 | 1.06 | 4.20 | 1.62 | 2.01 c | 1.24 | 1.94 | 56.49 | |
E4/E6 | 1.05 | 2.09 | 1.26 | 1.47 c | 1.06 | 1.87 | 29.32 |
Min | Max | Med | Aver | LQ | UQ | CoV | ||
---|---|---|---|---|---|---|---|---|
FA | ZP | −6.4 | +8.7 | −2.3 | −1.3 c | −3.9 | +0.4 | 273.7 |
PSD | 0.22 | 39.54 | 1.07 | 3.96 a | 0.39 | 3.67 | 0.22 | |
PDI | 19 | 35 | 28 | 28 a | 26 | 34 | 22 | |
HA | ZP | −47.8 | −5.3 | −30.4 | −29.0 b | −36.5 | −24.7 | 35.2 |
PSD | 0.70 | 15.89 | 0.16 | 0.74 c | 0.13 | 0.19 | 0.38 | |
PDI | 20 | 34 | 28 | 27 a | 23 | 26 | 11 | |
HN | ZP | +45.5 | +140.2 | +76.8 | +81.5 a | +59.8 | +90.8 | 37.7 |
PSD | 0.66 | 21.05 | 4.90 | 4.15 b | 0.80 | 4.42 | 0.04 | |
PDI | 28 | 32 | 29 | 29 a | 29 | 30 | 3 |
Sand (%) | Silt (%) | Clay (%) | pHKCl | TOC (g kg−1) | TN (g kg−1) | TC (g kg−1) | TC:TN | |
---|---|---|---|---|---|---|---|---|
FA_E2/E4 | −0.01 | 0.04 | −0.24 | −0.08 | −0.43 * | −0.42 * | −0.49 * | −0.57 * |
FA_E2/E6 | 0.11 | 0.12 | −0.04 | 0.00 | −0.64 * | −0.64 * | −0.69 * | −0.35 |
FA_E4/E6 | 0.29 | −0.33 | −0.13 | −0.16 | 0.14 | 0.04 | 0.10 | 0.32 |
HA_E2/E4 | −0.07 | 0.24 | 0.29 | 0.18 | −0.57 * | −0.58 * | −0.56 * | −0.58 * |
HA_E2/E6 | −0.12 | 0.05 | 0.08 | 0.14 | −0.56 * | −0.27 | −0.31 | −0.05 |
HA_E4/E6 | −0.27 | 0.18 | 0.33 | 0.26 | 0.29 | 0.43 * | 0.41 * | 0.08 |
HN_E2/E4 | 0.60 * | −0.10 | 0.31 | 0.36 | −0.20 | −0.20 | 0.10 | 0.60 * |
HN_E2/E6 | 0.60 * | −0.10 | 0.31 | 0.36 | −0.20 | −0.20 | 0.10 | 0.60 * |
HN_E4/E6 | 0.30 | 0.70 * | 0.67 * | 0.21 | −0.10 | −0.10 | −0.30 | −0.20 |
FA_ZP | 0.10 | 0.00 | 0.03 | 0.06 | 0.12 | 0.12 | 0.14 | 0.24 |
FA_PDI | −0.10 | 0.11 | 0.19 | −0.19 | 0.08 | 0.54 * | 0.02 | −0.10 |
FA_PSD | −0.13 | 0.07 | 0.34 | 0.06 | 0.01 | −0.02 | 0.01 | 0.21 |
HA_ZP | −0.24 | 0.28 | 0.24 | 0.36 | −0.26 | −0.21 | −0.26 | −0.27 |
HA_PDI | −0.33 | 0.16 | 0.03 | 0.09 | 0.41 * | 0.51 * | 0.45 * | 0.12 |
HA_PSD | −0.04 | 0.15 | 0.28 | 0.17 | −0.13 | −0.08 | −0.03 | 0.12 |
HN_ZP | −0.60 * | 0.53 * | −0.58 * | −0.09 | −0.31 | −0.09 | −0.20 | −0.77 * |
HN_PDI | −0.09 | −0.09 | 0.03 | 0.11 | 0.14 | 0.56 * | 0.43 * | 0.60 * |
HN_PSD | 0.54 * | −0.71 * | −0.58 * | −0.29 | −0.14 | −0.26 | 0.03 | 0.66 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ukalska-Jaruga, A.; Bejger, R.; Debaene, G.; Smreczak, B. Characterization of Soil Organic Matter Individual Fractions (Fulvic Acids, Humic Acids, and Humins) by Spectroscopic and Electrochemical Techniques in Agricultural Soils. Agronomy 2021, 11, 1067. https://doi.org/10.3390/agronomy11061067
Ukalska-Jaruga A, Bejger R, Debaene G, Smreczak B. Characterization of Soil Organic Matter Individual Fractions (Fulvic Acids, Humic Acids, and Humins) by Spectroscopic and Electrochemical Techniques in Agricultural Soils. Agronomy. 2021; 11(6):1067. https://doi.org/10.3390/agronomy11061067
Chicago/Turabian StyleUkalska-Jaruga, Aleksandra, Romualda Bejger, Guillaume Debaene, and Bożena Smreczak. 2021. "Characterization of Soil Organic Matter Individual Fractions (Fulvic Acids, Humic Acids, and Humins) by Spectroscopic and Electrochemical Techniques in Agricultural Soils" Agronomy 11, no. 6: 1067. https://doi.org/10.3390/agronomy11061067