One-Time Acidification of Slurry: What Is the Most Effective Acid and Treatment Strategy?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling and Storage of Slurry
2.2. Different Variants of Acidification
2.3. Statistical Analysis
3. Results
3.1. Amount of Acid
3.2. Organic and Mineral Acids
3.2.1. Zero Treatments
3.2.2. Acidification of All Slurries with Sulfuric and Lactic Acid
3.2.3. Acidification of Dairy Cow Slurry with Various Organic and Mineral Acids
3.3. Storage under Anaerobic Conditions
3.4. Combination of Acid and Glucose
3.5. Separation before Acidification
3.6. Different Target pH Values
4. Discussion
4.1. Amount of Acid
4.2. pH Value during Storage
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Berg, W.; Türk, M.; Hellebrankd, H.J. Effects of acidifying liquid cattle manure with nitric or lactic acid on gaseous emissions. In Proceedings of the Workshop on Agricultural Air Quality, Potomac, MD, USA, 5–8 June 2006; pp. 492–498. [Google Scholar]
- Ti, C.; Xia, L.; Chang, S.X.; Yan, X. Potential for mitigating global agricultural ammonia emission: A meta-analysis. Environ. Pollut. 2019, 245, 141–148. [Google Scholar] [CrossRef]
- IPCC. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. 2019. Available online: https://www.ipcc.ch/site/assets/uploads/2019/08/4.-SPM_Approved_Microsite_FINAL.pdf (accessed on 23 June 2021).
- IPCC. Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, Sustainable Development, and Efforts to Eradicate Poverty. 2018. Available online: https://www.ipcc.ch/site/assets/uploads/sites/2/2019/06/SR15_Full_Report_High_Res.pdf (accessed on 23 June 2021).
- Kupper, T.; Häni, C.; Neftel, A.; Kincaid, C.; Bühler, M.; Amon, B.; Vanderzaag, A. Ammonia and greenhouse gas emissions from slurry storage—A review. Agric. Ecosyst. Envrion. 2020, 300, 106963. [Google Scholar] [CrossRef]
- Amon, B.; Kryvoruchko, V.; Amon, T.; Zechmeister-Boltenstern, S. Methane, nitrous oxide and ammonia emissions during storage and after application of dairy cattle slurry and influence of slurry treatment. Agric. Ecosyst. Envrion. 2006, 112, 153–162. [Google Scholar] [CrossRef]
- Erisman, J.W.; Bleeker, A.; Hensen, A.; Vermeulen, A. Agricultural air quality in Europe and the future perspectives. Atmos. Environ. 2008, 42, 3209–3217. [Google Scholar] [CrossRef] [Green Version]
- Krupa, S. Effects of atmospheric ammonia (NH3) on terrestrial vegetation: A review. Environ. Pollut. 2003, 124, 179–221. [Google Scholar] [CrossRef]
- Arogo, J.; Westerman, P.W.; Heber, A.J.; Robarge, W.P.; Classen, J.J. Ammonia emissions from animal feeding operations. In Animal Agriculture and the Environment, National Center for Manure & Animal Waste Management White Papers; Rice, J.M., Caldwell, D.F., Humenik, F.J., Eds.; ASABE: St. Joseph, MI, USA, 2006; pp. 41–48. [Google Scholar]
- Fangueiro, D.; Hjorth, M.; Gioelli, F. Acidification of animal slurry—A review. J. Environ. Manag. 2015, 149, 46–56. [Google Scholar] [CrossRef]
- Conn, K.L.; Topp, E.; Lazarovits, G. Factors influencing the concentration of volatile fatty acids, ammonia, and other nutrients in stored liquid pig manure. J. Environ. Qual. 2007, 36, 440–447. [Google Scholar] [CrossRef] [Green Version]
- Arogo, J.; Westerman, P.W.; Liang, Z.S. Comparing Ammonium Ion Dissociation Constant in Swine Anaerobic Lagoon Liquid and Deionized Water. Trans. ASAE 2003, 46, 1415–1419. [Google Scholar] [CrossRef]
- Wang, K.; Huang, D.; Ying, H.; Luo, H. Effects of acidification during storage on emissions of methane, ammonia, and hydrogen sulfide from digested pig slurry. Biosyst. Eng. 2014, 122, 23–30. [Google Scholar] [CrossRef]
- Hjorth, M.; Cocolo, G.; Jonassen, K.; Abildgaard, L.; Sommer, S.G. Continuous in-house acidification affecting animal slurry composition. Biosyst. Eng. 2015, 132, 56–60. [Google Scholar] [CrossRef]
- Misselbrook, T.; Hunt, J.; Perazzolo, F.; Provolo, G. Greenhouse gas and ammonia emissions from slurry storage: Impacts of temperature and potential mitigation through covering (pig slurry) or acidification (cattle slurry). J. Environ. Qual. 2016, 45, 1520–1530. [Google Scholar] [CrossRef]
- Berg, W. Emission Abatement through pH value reducing slurry covers. Agric. Eng. 2002, 57, 274–275. [Google Scholar] [CrossRef]
- Stevens, R.J.; Laughlin, R.J.; Frost, J.P. Effect of acidification with sulphuric acid on the volatilization of ammonia from cow and pig slurries. J. Agric. Sci. 1989, 113, 389–395. [Google Scholar] [CrossRef]
- Nyord, T.; Liu, D.; Eriksen, J.; Adamsen, A. Effect of acidification and soil injection of animal slurry on ammonia and odour emissions. In Proceedings of the 15th RAMIRAN Conference, Versailles, France, 3–5 June 2013. [Google Scholar]
- Panetta, D.M.; Powers, W.J.; Lorimor, J.C. Management strategy impacts on ammonia volatilization from swine manure. J. Environ. Qual. 2005, 34, 1119–1130. [Google Scholar] [CrossRef]
- Berg, W.; Pazsiczki, I. Mitigation of methane emissions during manure storage. Int. Congr. Ser. 2006, 1293, 213–216. [Google Scholar] [CrossRef]
- Berg, W.; Brunsch, R.; Pazsiczki, I. Greenhouse gas emissions from covered slurry compared with uncovered during storage. Agric. Ecosyst. Envrion. 2006, 112, 129–134. [Google Scholar] [CrossRef]
- ten Hoeve, M.; Nyord, T.; Peters, G.M.; Hutchings, N.J.; Jensen, L.S.; Bruun, S. A life cycle perspective of slurry acidification strategies under different nitrogen regulations. J. Clean. Prod. 2016, 127, 591–599. [Google Scholar] [CrossRef]
- Loide, V.; Saue, T.; Võsa, T.; Tamm, K. The effect of acidified slurry on crop uptake and leaching of nutrients from a loamy topsoil. Acta Agric. Scand. Sect. B Soil Plant Sci. 2020, 70, 31–38. [Google Scholar] [CrossRef]
- Vestergaard, A.V. Status, Economy and Consideration by Acidification of Slurry. 2017. Available online: http://balticslurry.eu/wp-content/uploads/2017/03/SEGES-review-Slurry-acidification.pdf (accessed on 23 June 2021).
- Eriksen, J.; Sørensen, P.; Elsgaard, L. The fate of sulfate in acidified pig slurry during storage and following application to cropped soil. J. Environ. Qual. 2008, 37, 280–286. [Google Scholar] [CrossRef] [Green Version]
- Regueiro, I.; Coutinho, J.; Fangueiro, D. Alternatives to sulfuric acid for slurry acidification: Impact on slurry composition and ammonia emissions during storage. J. Clean. Prod. 2016, 131, 296–307. [Google Scholar] [CrossRef]
- Eriksen, J.; Andersen, A.J.; Poulsen, H.V.; Adamsen, A.P.S.; Petersen, S.O. Sulfur turnover and emissions during storage of cattle slurry: Effects of acidification and sulfur addition. J. Environ. Qual. 2012, 41, 1633–1641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joubin, M. Animal Slurry Acidification: Effects of Slurry Characteristics, Use of Different Acids, Slurry pH Buffering; RISE Rapport 2018:15; RISE Research Institutes of Sweden: Uppsala, Sweden, 2018; Available online: http://balticslurry.eu/wp-content/uploads/2018/03/RISE-Rapport-15-2018_web.pdf (accessed on 23 June 2021).
- Regueiro, I.; Coutinho, J.; Fangueiro, D. Comparison of different approaches for ammonia emissions minimization by acidification of dairy and pig slurries. In Proceedings of the RAMIRAN 2013: 15th International Conference, Versailles, France, 2013; Bacheley, H., Cambier, P., Cheviron, N., Formisano, S., Houot, S., Lepeuple, A.-S., Revallier, A., Vallez, G., Eds.; Verlag nicht Ermittelbar: Versailles, France, 2013; ISBN 9782738013378. [Google Scholar]
- Bittman, S.; Dedina, M.; Howard, C.M.; Oenema, O.; Sutton, M.A. Options for Ammonia Mitigation: Guidance from the UNECE Task Force on Reactive Nitrogen; Centre for Ecology & Hydrology, on behalf of Task Force on Reactive Nitrogen, of the UNECE Convention on Long Range transboundary Air Pollution: Edinburgh, UK, 2014; ISBN 978-1-906698-46-1. [Google Scholar]
- Dai, X.R.; Blanes-Vidal, V. Emissions of ammonia, carbon dioxide, and hydrogen sulfide from swine wastewater during and after acidification treatment: Effect of pH, mixing and aeration. J. Environ. Manag. 2013, 115, 147–154. [Google Scholar] [CrossRef] [PubMed]
- Sindhöj, E.; Rodhe, L. Examples of Implementing Manure Processing Technology at Farm Level: Knowledge Report; JTI-Swedish Institute of Agricultural and Environmental Engineering: Uppsala, Sweden, 2013; Available online: https://www.ecsab.com/BM_ManureProcessingReport.pdf (accessed on 23 June 2021).
- Locher, F.W. Chemischer Angriff auf Beton. In Technisch-Wissenschaftliche Zementtagung; Verein Deutscher Zementwerke: München, Germany, 1966. [Google Scholar]
- Clemens, J.; Bergmann, S.; Vandré, R. Reduced ammonia emissions from slurry after self-acidification with organic supplements. Environ. Technol. 2002, 23, 429–435. [Google Scholar] [CrossRef] [PubMed]
- Bastami, M.; Jones, D.; Chadwick, D. Mitigating greenhouse gas and ammonia emissions from stored slurry through the addition of brewing sugar and a biological additive. BJECC 2016, 6, 236–249. [Google Scholar] [CrossRef]
- Husted, S.; Jensen, L.S.; Jørgensen, S.S. Reducing ammonia loss from cattle slurry by the use of acidifying additives: The role of the buffer system. J. Sci. Food Agric. 1991, 57, 335–349. [Google Scholar] [CrossRef]
- Sommer, S.G.; Husted, S. A simple model of pH in slurry. J. Agric. Sci. 1995, 124, 447–453. [Google Scholar] [CrossRef]
- Overmeyer, V.; Holtkamp, F.; Clemens, J.; Büscher, W.; Trimborn, M. Dynamics of different buffer systems in slurries based on time and temperature of storage and their visualization by a new mathematical tool. Animals 2020, 10, 724. [Google Scholar] [CrossRef] [Green Version]
- Sørensen, P.; Eriksen, J. Effects of slurry acidification with sulphuric acid combined with aeration on the turnover and plant availability of nitrogen. Agric. Ecosyst. Envrion. 2009, 131, 240–246. [Google Scholar] [CrossRef]
- Sigurdarson, J.J.; Svane, S.; Karring, H. The molecular processes of urea hydrolysis in relation to ammonia emissions from agriculture. Rev. Environ. Sci. Biotechnol. 2018, 17, 241–258. [Google Scholar] [CrossRef] [Green Version]
- Georgacakis, D.; Sievers, D.M.; Iannotti, E.L. Buffer stability in manure digesters. Agric. Wastes 1982, 4, 427–441. [Google Scholar] [CrossRef]
- Christensen, M.L.; Sommer, S.G. Manure characterisation and inorganic chemistry. In Animal Manure: Recycling, Treatment, and Management; Jensen, L.S., Christensen, M.L., Sommer, S.G., Schmidt, T., Eds.; John Wiley & Sons Inc.: Chichester, UK, 2013; pp. 41–65. ISBN 9781118676677. [Google Scholar]
- Fangueiro, D.; Pereira, J.L.; Macedo, S.; Trindade, H.; Vasconcelos, E.; Coutinho, J. Surface application of acidified cattle slurry compared to slurry injection: Impact on NH3, N2O, CO2 and CH4 emissions and crop uptake. Geoderma 2017, 306, 160–166. [Google Scholar] [CrossRef]
- Sommer, S.G.; Husted, S. The chemical buffer system in raw and digested animal slurry. J. Agric. Sci. 1995, 124, 45–53. [Google Scholar] [CrossRef]
- Kai, P.; Pedersen, P.; Jensen, J.E.; Hansen, M.N.; Sommer, S.G. A whole-farm assessment of the efficacy of slurry acidification in reducing ammonia emissions. Eur. J. Agron. 2008, 28, 148–154. [Google Scholar] [CrossRef]
- Petersen, S.O.; Andersen, A.J.; Eriksen, J. Effects of cattle slurry acidification on ammonia and methane evolution during storage. J. Environ. Qual. 2012, 41, 88–94. [Google Scholar] [CrossRef]
- Møller, H.B.; Sommer, S.G.; Ahring, B.K. Separation efficiency and particle size distribution in relation to manure type and storage conditions. Bioresou. Technol. 2002, 85, 189–196. [Google Scholar] [CrossRef]
- Ni, J. Mechanistic Models of Ammonia Release from Liquid Manure: A Review. J. Agric. Eng. Res. 1999, 72, 1–17. [Google Scholar] [CrossRef]
- Hörnig, G.; Berg, W.; Türk, M. Emissionsminderung durch Ansäuern von Gülle. Agric. Eng. 1998, 53, 146–147. [Google Scholar] [CrossRef]
- Clemens, J.; Wulf, S. Reduktion der Ammoniakausgasung aus Kofermentationssubstraten und Gülle während der Lagerung und Ausbringung durch interne Versaurung mit in NRW anfallenden organischen Kohlenstofffraktionen, Forschungsbericht Nr. 121; Lehr-und Forschungsschwerpunkt “Umweltverträgliche und Standortgerechte Landwirtschaft”, Landwirtschaftliche Fakultät der Rheinischen Friedrich Wilhelms-Universität Bonn, Eds.; Lehr-und Forschungsschwerpunkt: Bonn, Germany, 2005. Available online: https://bonndoc.ulb.uni-bonn.de/xmlui/bitstream/handle/20.500.11811/1215/USL_Forschungsbericht_121.pdf?sequence=1&isAllowed=y (accessed on 23 June 2021).
- Fangueiro, D.; Surgy, S.; Coutinho, J.; Vasconcelos, E. Impact of cattle slurry acidification on carbon and nitrogen dynamics during storage and after soil incorporation. J. Plant Nutr. Soil Sci. 2013, 176, 540–550. [Google Scholar] [CrossRef]
- Dinuccio, E.; Berg, W.; Balsari, P. Gaseous emissions from the storage of untreated slurries and the fractions obtained after mechanical separation. Atmos. Environ. 2008, 42, 2448–2459. [Google Scholar] [CrossRef] [Green Version]
- Sommer, S.G.; Hjorth, M.; Leahy, J.J.; Zhu, K.; Christel, W.; Sørensen, C.G.; Sutaryo, S. Pig slurry characteristics, nutrient balance and biogas production as affected by separation and acidification. J. Agric. Sci. 2015, 153, 177–191. [Google Scholar] [CrossRef] [Green Version]
- Cuhls, C.; Mähl, B.; Clemens, J. Gewitra Ingenieurgesellschaft für Wissenstransfer mbH. In Ermittlung der Emissionssituation bei der Verwertung von Bioabfällen; Umweltbundesamt: Dessau-Roßlau, Germany, 2015; Available online: https://www.umweltbundesamt.de/sites/default/files/medien/378/publikationen/texte_39_2015_ermittlung_der_emissionssituation_bei_der_verwertung_von_bioabfaellen.pdf (accessed on 23 June 2021).
- Clemens, J.; Trimborn, M.; Weiland, P.; Amon, B. Mitigation of greenhouse gas emissions by anaerobic digestion of cattle slurry. Agric. Ecosyst. Envrion. 2006, 112, 171–177. [Google Scholar] [CrossRef]
- Evans, L.S.; Lewin, K.F.; Santucci, K.A.; Owen, E.M. Yields of field-grown soybeans exposed to simulated acidic deposition. Environ. Pollut. 1989, 61, 47–57. [Google Scholar] [CrossRef]
- Choi, E.; Moon, J.; Lee, W.; Son, S.; Lee, S.; Cho, I. The response of antioxidant enzyme activity, growth and yield of pepper and watermelon plants to a single application of simulated acid rain. J. Food Agric. Environ. 2010, 8, 1265–1271. [Google Scholar] [CrossRef]
Type of Slurry | ||||||
---|---|---|---|---|---|---|
Treatment | Acid | Concentration | pKa 1 | Dairy Cow | Fattening Pig | Sow |
mol L−1 | ||||||
No Acidification | X | X | X | |||
Organic acid | Lactic acid | 0.5 | 3.86 | X | X | X |
Acetic acid | 0.5 | 4.76 | X | |||
Citric acid | 0.25 | 3.13 4.76 6.4 | X | |||
Mineral acid | Sulfuric acid | 0.25 | −3.00 −6.62 | X | X | X |
Hydrochloric acid | 0.5 | −7.00 | X | |||
Storage under anaerobic conditions | Sulfuric acid | 0.5 | −3.00 −6.62 | X | ||
Lactic acid | 0.25 | 3.86 | X | |||
Addition of glucose | Sulfuric acid | 0.25 | −3.00 −6.62 | X | X | X |
Separation | Sulfuric acid | 0.25 | −3.00 −6.62 | X | X | |
pH value 4.5 | Sulfuric acid | 0.25 | −3.00 −6.62 | X | ||
pH value 3.0 | Sulfuric acid | 0.25 | −3.00 −6.62 | X |
Ingredients | Dairy Cow | Fattening Pig | Sow | |
---|---|---|---|---|
Dry residue | % | 9.5 | 8.3 | 3.5 |
N | kg m−3 | 4.12 | 6.24 | 7.76 |
NH4-N | kg m−3 | 2.05 | 4.08 | 6.83 |
P2O5 | kg m−3 | 1.48 | 3.83 | 2.16 |
K2O | kg m−3 | 5.04 | 3.01 | 4.27 |
Acetic acid | g kg−1 | 6.3 | 9.2 | 0.09 |
Propionic acid | g kg−1 | 1.5 | 2.5 | <0.05 |
Acetic acid equivalent 1 | g kg−1 | 8.1 | 14 | <0.10 |
pH value 2 | 7.1 | 7.04 | 8.2 |
Type of Slurry | |||||||
---|---|---|---|---|---|---|---|
Treatment | Acid | Dairy Cow | Fattening Pig | Sow | |||
mL kg−1 Slurry | mol H+ kg−1 Slurry | mL kg−1 Slurry | mol H+ kg−1 Slurry | mL kg−1 Slurry | mol H+ kg−1 Slurry | ||
No Acidification | - | - | - | - | - | - | |
Organic acid | Lactic acid | 360 ± 20 | 0.09 ± 0.005 a,* | 380 ± 0 | 0.10 ± 0.000 * | 1470 ± 17 | 0.37 ± 0.004 |
Acetic acid | 300 ± 0 | 0.15 ± 0.000 b | |||||
Citric acid | 227 ± 6 | 0.11 ± 0.003 ab | |||||
Mineral acid | Sulfuric acid 1 | 413 ± 90 | 0.21 ± 0.045 c,# | 321 ± 8 | 0.16 ± 0.004 # | 1217 ± 60 | 0.61 ± 0.030 |
Hydrochloric acid | 280 ± 10 | 0.14 ± 0.005 b | |||||
Storage under anaerobic conditions | Lactic acid | 353 ± 12 | 0.09 ± 0.003 a | ||||
Sulfuric acid | 290 ± 10 | 0.15 ± 0.005 b | |||||
Addition of glucose | Sulfuric acid | 307 ± 16 | 0.15 ± 0.008 b,‡ | 311 ± 2 | 0.16 ± 0.001 ‡ | 1169 ± 12 | 0.58 ± 0.006 |
Separation | Sulfuric acid | 233 ± 12 | 0.12 ± 0.006 ab | 170 ± 0 | 0.09 ± 0.000 † | ||
pH value 4.5 | Sulfuric acid | 527 ± 12 | 0.26 ± 0.006 d | ||||
pH value 3.0 | Sulfuric acid | 767 ± 6 | 0.38 ± 0.003 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Overmeyer, V.; Kube, A.; Clemens, J.; Büscher, W.; Trimborn, M. One-Time Acidification of Slurry: What Is the Most Effective Acid and Treatment Strategy? Agronomy 2021, 11, 1319. https://doi.org/10.3390/agronomy11071319
Overmeyer V, Kube A, Clemens J, Büscher W, Trimborn M. One-Time Acidification of Slurry: What Is the Most Effective Acid and Treatment Strategy? Agronomy. 2021; 11(7):1319. https://doi.org/10.3390/agronomy11071319
Chicago/Turabian StyleOvermeyer, Veronika, Anita Kube, Joachim Clemens, Wolfgang Büscher, and Manfred Trimborn. 2021. "One-Time Acidification of Slurry: What Is the Most Effective Acid and Treatment Strategy?" Agronomy 11, no. 7: 1319. https://doi.org/10.3390/agronomy11071319
APA StyleOvermeyer, V., Kube, A., Clemens, J., Büscher, W., & Trimborn, M. (2021). One-Time Acidification of Slurry: What Is the Most Effective Acid and Treatment Strategy? Agronomy, 11(7), 1319. https://doi.org/10.3390/agronomy11071319