Antioxidant Enzyme Activities Correlated with Growth Parameters of Wheat Sprayed with Silver and Gold Nanoparticle Suspensions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Silver Nanoparticles
2.2. Synthesis of Gold Nanoparticles
2.3. Seed Germination
2.4. Transplanting of Seedlings
2.5. Experimental Design and Statistical Analysis
3. Results
3.1. Characterization of Nanoparticles
3.2. Growth of Wheat Seedlings in Response to Silver and Gold Nanoparticles
3.3. Antioxidant Enzyme Activity as Influenced by Silver and Gold Nanoparticles
4. Discussions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raza, A.; Razzaq, A.; Mehmood, S.S.; Zou, X.; Zhang, X.; Lv, Y.; Xu, J. Impact of climate change on crops adaptation and strategies to tackle its outcome: A review. Plants 2019, 8, 34. [Google Scholar] [CrossRef] [Green Version]
- Castillo-Henríquez, L.; Alfaro-Aguilar, K.; Ugalde-Álvarez, J.; Vega-Fernández, L.; Montes de Oca-Vásquez, G.; Vega-Baudrit, J.R. Green synthesis of gold and silver nanoparticles from plant extracts and their possible applications as antimicrobial agents in the agricultural area. Nanomaterials 2020, 10, 1763. [Google Scholar] [CrossRef] [PubMed]
- Mbow, C.; Rosenzweig, C.; Barioni, L.G.; Benton, T.G.; Herrero, M.; Krishnapillai, M.; Liwenga, E.; Pradhan, P.; Rivera-Ferre, M.G.; Sapkota, T.; et al. Food security. In Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; Shukla, P.R., Skea, J., CalvoBuendia, E., Masson-Delmotte, V., Portner, H.O., Roberts, D.C., Zhai, P., Slade, R., Connors, S., van Diemen, R., et al., Eds.; Intergovernmental Panel on Climate Change: Geneva, Switzerland, 2019; in press. [Google Scholar]
- Wheeler, S. Factors Influencing Agricultural Professionals’ Attitudes toward Organic Agriculture and Biotechnology. Ph.D. Thesis, University of South Australia, Adelaide, Australia, 2005. [Google Scholar]
- Government of Pakistan (GOP). Economic Survey of Pakistan, Finance Division Economic Advisory Wing, Islamabad; Chapter 2—Agriculture; Government of Pakistan (GOP): Islamabad, Pakistan, 2020.
- Daniel, M.C.; Austruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef] [PubMed]
- Rico, C.M.; Majumdar, S.; Duarte-Gardea, M.; Peralta-Videa, J.R.; Gardea-Torresdey, J.L. Interaction of nanoparticles with edible plants and their possible implications in the food chain. J. Agric. Food Chem. 2011, 59, 3485–3498. [Google Scholar] [CrossRef] [Green Version]
- Razzaq, A.; Ammara, R.; Jhanzab, H.M.; Mahmood, T.; Hafeez, A.; Hussain, S. A novel nanomaterial to enhance growth and yield of wheat. J. Nanosci. Technol. 2016, 2, 55–58. [Google Scholar]
- Shang, Y.; Hasan, M.K.; Ahammed, G.L.; Li, M.; Yin, H.; Zhou, J. Applications of nanotechnology in plant growth and crop protection: A review. Molecules 2019, 13, 2558. [Google Scholar] [CrossRef] [Green Version]
- Mittal, D.; Kaur, G.; Singh, P.; Yadav, K.; Ali, S.A. Nanoparticle-based sustainable agriculture and food science: Recent advances and future outlook. Front. Nanotechnol. 2020, 2, 579954. [Google Scholar] [CrossRef]
- Rastogi, A.; Zivcak, M.; Sytar, O.; Kalaji, H.M.; He, X.; Mbarki, S.; Brestic, M. Impact of metal and metal oxide nanoparticles on plant: A critical review. Front. Chem. 2017, 5, 78. [Google Scholar] [CrossRef] [Green Version]
- Miranda-Villagómez, E.; Trejo-Téllez, L.I.; Gómez-Merino, F.C.; Sandoval-Villa, M.; Sánchez-García, P.; Aguilar-Méndez, M.Á. Nanophosphorus fertilizer stimulates growth and photosynthetic activity and improves P status in Rice. J. Nanomater. 2019, 2019. [Google Scholar] [CrossRef] [Green Version]
- Seleiman, M.F.; Almutairi, K.F.; Alotaibi, M.; Shami, A.; Alhammad, B.A.; Battaglia, M.L. Nano-fertilization as an emerging fertilization technique: Why can modern agriculture benefit from its use? Plants 2021, 10, 2. [Google Scholar] [CrossRef]
- Jadczak, P.; Kulpa, D.; Drozd, R.; Przewodowski, W.; Przewodowska, A. Effect of AuNPs and AgNPs on the antioxidant system and antioxidant activity of lavender (Lavandula angustifolia Mill.) from in vitro cultures. Molecules 2020, 25, 5511. [Google Scholar] [CrossRef]
- Satti, S.H.; Raja, N.I.; Javed, B.; Akram, A.; Mashwani, Z.U.R.; Ahmad, M.S.; Ikram, M. Titanium dioxide nanoparticles elicited agro-morphological and physicochemical modifications in wheat plants to control Bipolaris sorokiniana. PLoS ONE 2021, 16, e0246880. [Google Scholar] [CrossRef]
- Zare, Z.; Pishkar, L.; Iranbakhsh, A.; Talei, D. Physiological and molecular effects of silver nanoparticles exposure on purslane (Portulaca oleracea L.). Russ. J. Plant Physiol. 2020, 67, 521–528. [Google Scholar] [CrossRef]
- Kulkarni, S.K. Nanotechnology: Principles and Practices; Capital Pub. Co.: New Delhi, India, 2007. [Google Scholar]
- Zhao, P.; Li, N.; Astruc, D. State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 2013, 257, 638–665. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Pandey, S.K.; Singh, H. A simple, cost-effective method for leaf area estimation. J. Bot. 2011, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Arnon, D.I. Copper, enzyme in isolated chloroplasts polyphenoloxidase in Beta vulgaris. Plant Physiol. 1949, 24, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Nakano, Y.; Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 1981, 22, 867–880. [Google Scholar]
- Aebi, H. Catalase in vitro. Methods Enzymol. 1984, 105, 121–127. [Google Scholar]
- Lin, C.C.; Kao, C.H. NaCl induced changes in ionically bounds peroxidase activity in roots of rice seedlings. Plant Soil 1999, 216, 147–153. [Google Scholar] [CrossRef]
- Steel, R.G.D.; Torrie, J.H.; Dickey, D.A. Principles and Procedures of Statistics: A Biometrical Approach, 3rd ed.; McGraw Hill Book Co. Inc.: New York, NY, USA, 1997; pp. 400–428. [Google Scholar]
- Jhanzab, H.M.; Razzaq, A.; Jilani, G.; Rehman, A.; Hafeez, A.; Yasmeen, F. Silver nano-particles enhance the growth, yield and nutrient use efficiency of wheat. Int. J. Agron. Agric. Res. 2015, 7, 15–22. [Google Scholar]
- Zhang, Q.; Li, N.; Goebl, J.; Lu, Z.; Yin, Y. A systematic study of the synthesis of silver nanoplates: Is citrate a “magic” reagent? J. Am. Chem. Soc. 2011, 133, 18931–18939. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.F.; Liu, Z.G.; Shen, W.; Gurunathan, S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int. J. Mol. Sci. 2016, 17, 1534. [Google Scholar] [CrossRef] [PubMed]
- Calabrese, E.; Baldwin, L. Defining hormesis. Hum. Exp. Toxicol. 2002, 21, 91–97. [Google Scholar] [CrossRef] [PubMed]
- Navarro, E.; Baun, A.; Behra, R.; Hartman, N.B.; Filser, J.; Miao, A.J.; Quigg, A.; Santschi, P.H.; Sigg, L. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants and fungi. Ecotoxicology 2008, 17, 372–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Strader, L.C.; Beisner, E.R.; Bartel, B. Silver ions increase auxin efflux independently of effects on ethylene response. Plant Cell 2009, 21, 3585–3590. [Google Scholar] [CrossRef] [Green Version]
- Xiumei, L.; Fudao, Z.; Shuqing, Z.; Xusheng, H.; Rufang, W.; Zhaobin, F.; Yujun, W. Response of peanut to nano-calcium carbonate. Plant Nutr. Fert. Sci. 2005, 11, 3–9. [Google Scholar]
- Alshehddi, L.A.A.; Bokhari, N. Influence of gold and silver nanoparticles on the germination and growth of Mimusops laurifolia seeds in the South-Western regions in Saudi Arabia. Saudi J. Biol. Sci. 2020, 27, 574–580. [Google Scholar] [CrossRef]
- Zheng, L.; Hong, F.; Lu, S.; Liu, C. Effect of nano-TiO2 on strength of naturally growth aged seeds of spinach. Biol. Trace Elem. Res. 2005, 104, 83–91. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Wang, Q.; Li, M.; Dang, F.; Zhou, D.M. Nonselective uptake of silver and gold nanoparticles by wheat. Nanotoxicology 2019, 13, 1073–1086. [Google Scholar] [CrossRef]
- Sharma, P.; Bhatt, M.D.; Zaidi, M.G.H.; Saradhi, P.P.; Khanna, P.K.; Arora, S. Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Appl. Biochem. Biotechnol. 2012, 167, 2225–2233. [Google Scholar] [CrossRef] [PubMed]
- Ndeh, N.T.; Maensiri, S.; Maensiri, D. The effect of green synthesized gold nanoparticles on rice germination and roots. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 035008. [Google Scholar] [CrossRef] [Green Version]
- Qian, H.; Peng, H.X.; Han, X.; Ren, J.; Sun, L.; Fu, Z. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J. Environ. Sci. 2013, 25, 1947–1956. [Google Scholar] [CrossRef]
- Krishnaraj, C.; Jagan, E.G.; Ramachandran, R.; Abirami, S.M.; Mohan, N.; Kalaichelvan, P.T. Effect of biologically synthesized silver nanoparticles on Bacopa monnieri (Linn.) Wettst. plant growth metabolism. Process. Biochem. 2012, 47, 651–658. [Google Scholar] [CrossRef]
- Jiang, H.S.; Li, M.; Chang, F.Y.; Li, W.; Yin, L.Y. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ. Toxicol. Chem. 2012, 31, 1880–1886. [Google Scholar] [CrossRef]
- Racuciu, M.; Creanga, D. TMA-OH coated magnetic nanoparticles internalized in vegetal tissue. Rom. J. Phys. 2007, 52, 395–402. [Google Scholar]
- Salama, H. Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). Int. Res. J. Biotech. 2012, 3, 190–197. [Google Scholar]
- Mehrian, S.K.; Heidari, R.; Rahmani, F. Effect of chemical synthesis silver nanoparticles on germination indices and seedlings growth in seven varieties of Lycopersicon esculentum mill (tomato) plants. J. Clust. Sci. 2016, 27, 327–340. [Google Scholar] [CrossRef]
- Barbasz, A.; Kreczmer, B.; Oćwieja, M. Effects of exposure of callus cells of two wheat varieties to silver nanoparticles and silver salt (AgNO3). Acta Physiol. Plant. 2016, 38, 76. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, M.; Raja, N.I.; Mashwani, Z.U.R.; Hussain, M.; Ejaz, M.; Yasmeen, F. Effect of silver nanoparticles on growth of wheat under heat stress. Iran. J. Sci. Technol. Trans. Sci. 2019, 43, 387–395. [Google Scholar] [CrossRef]
- Dietz, K.J.; Herth, S. Plant nanotoxicology. Trends Plant Sci. 2011, 16, 582–589. [Google Scholar] [CrossRef] [PubMed]
- Paramo, L.A.; Feregrino-Pérez, A.A.; Guevara, R.; Mendoza, S.; Esquivel, K. Nanoparticles in agroindustry: Applications, toxicity, challenges, and trends. Nanomaterials 2020, 10, 1654. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Tripathi, A.; Shweta; Singh, S.; Singh, Y.; Vishwakarma, K.; Yadav, G.; Sharma, S.; Singh, V.K.; Mishra, R.K.; et al. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review. Front. Microbiol. 2017, 8, 7. [Google Scholar] [CrossRef]
- Wang, X.; Fan, J.; Xing, Y.; Xu, G.; Wang, H.; Deng, J.; Wang, Y.; Zhang, F.; Li, P.; Li, Z. The effects of mulch and nitrogen fertilizer on the soil environment of crop plants. Adv. Agron. 2019, 153, 121–173. [Google Scholar]
- Wang, X.; Wang, G.; Guo, T.; Xing, Y.; Mo, F.; Wang, H.; Fan, J.; Zhang, F. Effects of plastic mulch and nitrogen fertilizer on the soil microbial community, enzymatic activity and yield performance in a dryland maize cropping system. Eur. J. Soil Sci. 2021, 72, 400–412. [Google Scholar] [CrossRef]
- Nair, R.; Varghese, S.H.; Nair, B.G.; Maekawa, T.; Yoshida, Y.; Kumar, D.S. Nanoparticulate material delivery to plants. Plant Sci. 2010, 179, 154–163. [Google Scholar] [CrossRef]
- Fiaz, S.; Ahmar, S.; Saeed, S.; Riaz, A.; Mora-Poblete, F.; Jung, K.-H. Evolution and Application of Genome Editing Techniques for Achieving Food and Nutritional Security. Int. J. Mol. Sci. 2021, 22, 5585. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.U.; Wang, X.; Mehmood, T.; Latıf, S.; Khan, S.U.; Fiaz, S.; Qayyum, A. Comparison of Organic and Inorganic Mulching for Weed Suppression in Wheat under Rain-Fed Conditions of Haripur, Pakistan. Agronomy 2021, 11, 1131. [Google Scholar] [CrossRef]
- Sher, A.; Wang, X.; Sattar, A.; Ijaz, M.; Ul-Allah, S.; Nasrullah, M.; Bibi, Y.; Manaf, A.; Fiaz, S.; Qayyum, A. Exogenous Application of Thiourea for Improving the Productivity and Nutritional Quality of Bread Wheat (Triticum aestivum L.). Agronomy 2021, 11, 1432. [Google Scholar] [CrossRef]
Treatments | Fresh Weight of Leaf (g) | Dry Weight of Leaf (g) | Leaf Area (cm2) |
---|---|---|---|
Control | 1.700 ± 0.01 e | 0.397 ± 0.009 e | 8.250 ± 0.15 d |
10 mg/L Ag NPs | 2.927 ± 0.02 c | 0.623 ± 0.005 c | 10.613 ± 0.13 bc |
20 mg/L Ag NPs | 4.717 ± 0.05 a | 0.890 ± 0.001 a | 12.690 ± 0.10 a |
30 mg/L Ag NPs | 3.620 ± 0.04 b | 0.710 ± 0.004 b | 11.307 ± 0.11 b |
10 mg/L Au NPs | 2.027 ± 0.02 d | 0.543 ± 0.006 d | 10.047 ± 0.13 c |
20 mg/L Au NPs | 1.233 ± 0.01 f | 0.147 ± 0.009 f | 6.707 ± 0.17 e |
30 mg/L Au NPs | 0.877 ± 0.01 g | 0.097 ± 0.009 f | 5.300 ± 0.19 f |
LSD Value (p ≤ 0.05) | 0.285 | 0.065 | 1.000 |
Treatments | Chlorophyll ‘a’ (µg g−1 Fresh Weight) | Chlorophyll ‘b’ (µg g−1 Fresh Weight) | Total Chlorophyll (µg g−1 Fresh Weight) |
---|---|---|---|
Control | 27.560 ± 0.48 e | 26.450 ± 0.50 cd | 54.010 ± 0.66 e |
10 mg/L Ag NPs | 30.297 ± 0.41 c | 30.280 ± 0.55 b | 60.577 ± 0.43 c |
20 mg/L Ag NPs | 33.272 ± 0.45 a | 33.977 ± 0.41 a | 67.249 ± 0.61 a |
30 mg/L Ag NPs | 32.123 ± 0.50 b | 31.583 ± 0.46 b | 63.706 ± 0.55 b |
10 mg/L Au NPs | 29.137 ± 0.41 d | 28.043 ± 0.49 c | 57.180 ± 0.59 d |
20 mg/L Au NPs | 26.053 ± 0.44 f | 24.610 ± 0.53 d | 50.663 ± 0.60 f |
30 mg/L Au NPs | 24.917 ± 0.49 g | 20.293 ± 0.43 e | 45.210 ± 0.47 g |
LSD Value (p ≤ 0.05) | 0.907 | 1.863 | 3.051 |
Treatments | Ascorbate Peroxidase * | Catalase ** | Guaiacol Peroxidase *** |
---|---|---|---|
Control | 192.00 ± 1.69 e | 290.00 ± 1.47 d | 518.33 ± 2.01 d |
10 mg/L Ag NPs | 219.67 ± 1.58 c | 575.00 ± 1.77 c | 600.00 ± 1.88 c |
20 mg/L Ag NPs | 352.33 ± 1.60 a | 936.00 ± 1.64 a | 745.67 ± 2.31 a |
30 mg/L Ag NPs | 244.67 ± 1.67 b | 597.67 ± 1.51 b | 671.67 ± 1.91 b |
10 mg/L Au NPs | 199.67 ± 1.56 de | 565.67 ± 1.80 c | 485.67 ± 1.78 e |
20 mg/L Au NPs | 239.33 ± 1.64 b | 165.67 ± 1.61 f | 354.67 ± 1.95 f |
30 mg/L Au NPs | 208.33 ± 1.51 cd | 259.00 ± 0.47 e | 293.33 ± 1.99 g |
LSD Value (p ≤ 0.05) | 15.137 | 14.652 | 10.673 |
Ascorbate Peroxidase | Catalase | Guaiacol Peroxidase | |
---|---|---|---|
Fresh weight of leaf | 0.752 * | 0.913 ** | 0.974 ** |
Dry weight of leaf | 0.609 * | 0.945 ** | 0.975 ** |
Leaf Area | 0.593 * | 0.924 ** | 0.963 ** |
Chlorophyll a | 0.657 * | 0.927 ** | 0.976 ** |
Chlorophyll b | 0.635 * | 0.879 ** | 0.973 ** |
Chlorophyll total | 0.749 * | 0.932 ** | 0.973 ** |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manaf, A.; Wang, X.; Tariq, F.; Jhanzab, H.M.; Bibi, Y.; Sher, A.; Razzaq, A.; Fiaz, S.; Tanveer, S.K.; Qayyum, A. Antioxidant Enzyme Activities Correlated with Growth Parameters of Wheat Sprayed with Silver and Gold Nanoparticle Suspensions. Agronomy 2021, 11, 1494. https://doi.org/10.3390/agronomy11081494
Manaf A, Wang X, Tariq F, Jhanzab HM, Bibi Y, Sher A, Razzaq A, Fiaz S, Tanveer SK, Qayyum A. Antioxidant Enzyme Activities Correlated with Growth Parameters of Wheat Sprayed with Silver and Gold Nanoparticle Suspensions. Agronomy. 2021; 11(8):1494. https://doi.org/10.3390/agronomy11081494
Chicago/Turabian StyleManaf, Abdul, Xiukang Wang, Fatima Tariq, Hafiz Muhammad Jhanzab, Yamin Bibi, Ahmad Sher, Abdul Razzaq, Sajid Fiaz, Sikander Khan Tanveer, and Abdul Qayyum. 2021. "Antioxidant Enzyme Activities Correlated with Growth Parameters of Wheat Sprayed with Silver and Gold Nanoparticle Suspensions" Agronomy 11, no. 8: 1494. https://doi.org/10.3390/agronomy11081494
APA StyleManaf, A., Wang, X., Tariq, F., Jhanzab, H. M., Bibi, Y., Sher, A., Razzaq, A., Fiaz, S., Tanveer, S. K., & Qayyum, A. (2021). Antioxidant Enzyme Activities Correlated with Growth Parameters of Wheat Sprayed with Silver and Gold Nanoparticle Suspensions. Agronomy, 11(8), 1494. https://doi.org/10.3390/agronomy11081494