Benefits and Trade-Offs of Tillage Management in China: A Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database Compilation
2.2. Data Analyses
2.3. Economic and Environmental Estimate
3. Results
3.1. Tillage Impacts on Crop Yields under Different Environments
3.2. Effects on Soil Carbon Sequestration and GHG Emission
3.3. Economic Benefits of Tillage
4. Discussion
4.1. Crop Production
4.2. Climate Change Mitigation
4.3. Economic Benefits
4.4. Limitations and Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Chen, X.; Cui, Z.; Fan, M.; Vitousek, P.; Zhao, M.; Ma, W.; Wang, Z.; Zhang, W.; Yan, X.; Yang, J.; et al. Producing more grain with lower environmental costs. Nature 2014, 514, 486–489. [Google Scholar] [CrossRef]
- Tilman, D.; Balzer, C.; Hill, J.; Befort, B.L. Global food demand and the sustainable intensification of agriculture [Sustainability Science]. Proc. Natl. Acad. Sci. USA 2011, 108, 20260–20264. [Google Scholar] [CrossRef] [Green Version]
- Cameron, K.C.; Di, H.J.; Moir, J.L. Nitrogen losses from the soil/plant system: A review. Ann. Appl. Biol. 2013, 162, 145–173. [Google Scholar] [CrossRef]
- Lal, R. Sequestering carbon and increasing productivity by conservation agriculture. J. Soil Water Conserv. 2015, 70, 55A–62A. [Google Scholar] [CrossRef] [Green Version]
- Pittelkow, C.M.; Liang, X.; Linquist, B.A.; Van Groenigen, K.J.; Lee, J.; Lundy, M.E.; Van Gestel, N.; Six, J.; Venterea, R.T.; Van Kessel, C. Productivity limits and potentials of the principles of conservation agriculture. Nature 2015, 517, 365–368. [Google Scholar] [CrossRef]
- Pittelkow, C.M.; Linquist, B.A.; Lundy, M.E.; Liang, X.; Van Groenigen, K.J.; Lee, J.; Van Gestel, N.; Six, J.; Venterea, R.T.; Van Kessel, C. When does no-till yield more? A global meta-analysis. Field Crop. Res. 2015, 183, 156–168. [Google Scholar] [CrossRef] [Green Version]
- Van den Putte, A.; Govers, G.; Diels, J.; Gillijns, K.; Demuzere, M. Assessing the effect of soil tillage on crop growth: A meta-regression analysis on European crop yields under conservation agriculture. Eur. J. Agron. 2010, 33, 231–241. [Google Scholar] [CrossRef]
- Zhao, X.; Liu, S.-L.; Pu, C.; Zhang, X.-Q.; Xue, J.-F.; Ren, Y.-X.; Zhao, X.-L.; Chen, F.; Lal, R.; Zhang, H.-L. Crop yields under no-till farming in China: A meta-analysis. Eur. J. Agron. 2017, 84, 67–75. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration impacts on global climate change and food security. Science 2004, 304, 1623–1627. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Lu, X. Tillage and crop residue effects on the energy consumption, input–output costs and greenhouse gas emissions of maize crops. Nutr. Cycl. Agroecosyst. 2017, 108, 323–337. [Google Scholar] [CrossRef]
- Ussiri, D.A.N.; Lal, R. Long-term tillage effects on soil carbon storage and carbon dioxide emissions in continuous corn cropping system from an alfisol in Ohio. Soil Tillage Res. 2009, 104, 39–47. [Google Scholar] [CrossRef]
- Zhang, M.-Y.; Wang, F.-J.; Chen, F.; Malemela, M.P.; Zhang, H.-L. Comparison of three tillage systems in the wheat-maize system on carbon sequestration in the North China Plain. J. Clean. Prod. 2013, 54, 101–107. [Google Scholar] [CrossRef]
- Zhang, H.; Yang, S.; Ma, W.; Wang, G.; Shi, G. Historical change in the theory and technique of cultivation in ancient China. Chin. J. Soil Sci. 2006, 37, 994–998. [Google Scholar]
- Cai, H.; Ma, W.; Zhang, X.; Ping, J.; Yan, X.; Liu, J.; Yuan, J.; Wang, L.; Ren, J. Effect of subsoil tillage depth on nutrient accumulation, root distribution, and grain yield in spring maize. Crop J. 2014, 2, 297–307. [Google Scholar] [CrossRef] [Green Version]
- Wasaya, A.; Tahir, M.; Ali, H.; Hussain, M.; Yasir, T.A.; Sher, A.; Ijaz, M.; Sattar, A. Influence of varying tillage systems and nitrogen application on crop allometry, chlorophyll contents, biomass production and net returns of maize (Zea mays L.). Soil Tillage Res. 2017, 170, 18–26. [Google Scholar] [CrossRef]
- He, J.; Shi, Y.; Yu, Z. Subsoiling improves soil physical and microbial properties, and increases yield of winter wheat in the Huang-Huai-Hai Plain of China. Soil Tillage Res. 2019, 187, 182–193. [Google Scholar] [CrossRef]
- Yan, C.; Zhang, Y.; Hu, C.; Dong, W.; Wang, Y.; Li, X.; Qin, S. Greenhouse gas exchange and comprehensive global warming potential under different wheat-maize rotation patterns. Chin. J. Eco-Agric. 2016, 24, 704–715. [Google Scholar] [CrossRef]
- Alvarez, R.; Steinbach, H.S. A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res. 2009, 104, 1–15. [Google Scholar] [CrossRef]
- Denardin, L.G.d.O.; Carmona, F.d.C.; Veloso, M.G.; Martins, A.P.; Freitas, T.F.S.d.; Carlos, F.S.; Marcolin, É.; Camargo, F.A.d.O.; Anghinoni, I. No-tillage increases irrigated rice yield through soil quality improvement along time. Soil Tillage Res. 2019, 186, 64–69. [Google Scholar] [CrossRef]
- Wang, G.L.; Ye, Y.L.; Chen, X.P.; Cui, Z.L. Determining the optimal nitrogen rate for summer maize in China by integrating agronomic, economic, and environmental aspects. Biogeosciences 2014, 11, 2639–2664. [Google Scholar] [CrossRef] [Green Version]
- Gong, H.; Li, J.; Ma, J.; Li, F.; Ouyang, Z.; Gu, C. Effects of tillage practices and microbial agent applications on dry matter accumulation, yield and the soil microbial index of winter wheat in North China. Soil Tillage Res. 2018, 184, 235–242. [Google Scholar] [CrossRef]
- Wang, L.F.; Shangguan, Z.P. Water-use efficiency of dryland wheat in response to mulching and tillage practices on the Loess Plateau. Sci. Rep. 2015, 5, 12225. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Ren, W.; Wang, L.; Hui, D.; Grove, J.H.; Yang, X.; Tao, B.; Goff, B. Greenhouse gas emissions and crop yield in no-tillage systems: A meta-analysis. Agric. Ecosyst. Environ. 2018, 268, 144–153. [Google Scholar] [CrossRef]
- Mei, K.; Wang, Z.; Huang, H.; Zhang, C.; Shang, X.; Dahlgren, R.A.; Zhang, M.; Xia, F. Stimulation of N2O emission by conservation tillage management in agricultural lands: A meta-analysis. Soil Tillage Res. 2018, 182, 86–93. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Liu, S.L.; Pu, C.; Zhang, X.Q.; Xue, J.F.; Zhang, R.; Wang, Y.Q.; Lal, R.; Zhang, H.L.; Chen, F. Methane and nitrous oxide emissions under no-till farming in China: A meta-analysis. Glob. Chang. Biol. 2016, 22, 1372–1384. [Google Scholar] [CrossRef]
- Ren, B.; Li, X.; Dong, S.; Liu, P.; Zhao, B.; Zhang, J. Soil physical properties and maize root growth under different tillage systems in the North China Plain. Crop J. 2018, 6, 669–676. [Google Scholar] [CrossRef]
- Zhou, J.; Shi, X.; Li, Y.; Zhang, X. Effects of different tillage practices on growing environment and yield of dryland maize. Agric. Res. Arid. Areas 2016, 34, 134–139. [Google Scholar] [CrossRef]
- Kohl, L.; Oehl, F.; Heijden, M.G.A. Agricultural practices indirectly influence plant productivity and ecosystem services through effects on soil biota. Ecol. Appl. 2014, 24, 1842–1853. [Google Scholar] [CrossRef] [PubMed]
- Rusinamhodzi, L.; Corbeels, M.; Van Wijk, M.T.; Rufino, M.C.; Nyamangara, J.; Giller, K.E. A meta-analysis of long-term effects of conservation agriculture on maize grain yield under rain-fed conditions. Agron. Sustain. Dev. 2011, 31, 657–673. [Google Scholar] [CrossRef] [Green Version]
- Kibet, L.C.; Blanco-Canqui, H.; Jasa, P. Long-term tillage impacts on soil organic matter components and related properties on a Typic Argiudoll. Soil Tillage Res. 2016, 155, 78–84. [Google Scholar] [CrossRef]
- Li, H.; Mollier, A.; Ziadi, N.; Shi, Y.; Parent, L.; Morel, C. Soybean root traits after 24 years of different soil tillage and mineral phosphorus fertilization management. Soil Tillage Res. 2017, 165, 258–267. [Google Scholar] [CrossRef]
- Drury, C.F.; Reynolds, W.D.; Yang, X.M.; McLaughlin, N.B.; Welacky, T.W.; Calder, W.; Grant, C.A. Nitrogen Source, Application Time, and Tillage Effects on Soil Nitrous Oxide Emissions and Corn Grain Yields. Soil Sci. Soc. Am. J. 2012, 76, 1268–1279. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Rochette, P.; St-Georges, P.; Mckim, U.F.; Chan, C. Tillage effects on N 2 O emission from soils under corn and soybeans in Eastern Canada. Can. J. Soil Sci. 2008, 88, 153–161. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Guo, L.J.; Liu, T.Q.; Li, C.F.; Cao, C.G. Effects of tillage practices and straw returning methods on greenhouse gas emissions and net ecosystem economic budget in rice–wheat cropping systems in central China. Atmos. Environ. 2015, 122, 636–644. [Google Scholar] [CrossRef]
- Hao, Y.; Ye, Y.; Cui, Z.; Chen, X. Managing nitrogen for sustainable wheat production. J. Clean. Prod. 2017, 162, 1308–1316. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAOSTAT) Datebase. Available online: http://www.fao.org/faostat/zh/#data (accessed on 15 January 2021).
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2007: The Physical Science Basis; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Xie, J.; Lingling, L.I.; Zhang, R.; Chai, Q.; Luo, Z.; Cai, L. Effect of Tillage System on Rain-fed Maize Yield and Soil Physical Characteristics for One Film Used Two Years. J. Soil Water Conserv. 2016, 30, 184–189. [Google Scholar] [CrossRef]
- Hu, H.Y.; Li, Z.J.; Ning, T.Y. Effects of subsoiling and urea types on water use efficiency of different maize cultivars. Scientia Agricultura Sinica 2011, 44, 1963–1972. [Google Scholar] [CrossRef]
- Zhang, S.; Ma, J.; Cui, A.; Hao, X.; Guo, C. Effect of Different Tillage Techniques on Yield and Water Utilization in Winter Wheat. Chinese Agricultural Science Bulletin 2006, 22, 110–113. [Google Scholar] [CrossRef]
- Hong-Jie, L.I.; Ning, T.Y.; Shao, G.Q.; Wang, Y.; Tian, S.Z.; Zeng-Jia, L.I.; Xue-Yong, Q.U. Effects of Different Tillage and Nitrogen Rates on Yield of Wheat and Maize Cropping System. Shandong Agric. Sci. 2009, 3, 8–11. [Google Scholar] [CrossRef]
- Li, H.; Lu, W.; Liu, Y.; Zhang, X. Effect of different tillage methods on rice growth and soil ecology. Chin. J. Appl. Ecol. 2001, 12, 553–556. [Google Scholar]
- Fan, J.W. Effect of Management Practices on N2O Emissions and Soil Organic Carbon from the Typical Winter Wheat-Summer Maize Cropland in North China Plain. Master’s Dissertation, Chinese Academy of Agricultural Sciences, Beijing, China, 2016. [Google Scholar]
- Han, B. Studies on the Effects of Conservation Tillage Systems on Soil Health and the Responses of Crops. Ph.D. Dissertation, Shandong Agricultural University Taian, Shandong, China, 2007. [Google Scholar]
- Ying-Ying, X.U.; Wang, J.H.; Liu, Y.T.; Gao, P.; Wang, Y.X.; Yang, H.Y.; Kan-Chao, Y.U.; Xuan-Liang, G.E.; Chi, L.; Fan, J.S. Effects of Different Returning Methods of Straw on Soil Physical Property, Yield of Corn. J. Maize Sci. 2018, 26, 78–84. [Google Scholar] [CrossRef]
- Sun, L. Effects of Long-Term Conservation Tillage on Soil Melioration, Carbon Storage and Greenhouse Gas Mitigation of Wheat Field on Weibei Arid Plateau. Ph.D. Dissertation, Northwest A&F University, Yangling, China, 2018. [Google Scholar]
- Zhang, X.Q. Effects of Tillage Practices on Soil Carbon Sequestration and Crop Growth under a Wheat-Maize Cropping System in the North China Plain. Ph.D. Dissertation, China Agricultural University, Beijing, China, 2017. [Google Scholar]
- Tian, S.Z. Responses of Soil Organic Carbon Pool, Greenhouse Gas Emission and Carbon Footprint to a Long-Term Tillage and Residue Management System. Ph.D. Dissertation, Shandong Agricultural University, Taian, Shandong, China, 2014. [Google Scholar]
- Wang, B.W. The Rules and Regulations of Farmland Carbon Cycle under Conservational Tillage. Ph.D. Dissertation, Shandong Agricultural University: Taian, China, 2013. [Google Scholar]
- Zhu, J. Studies on CO2 Emission and Carbon Footprint of Farmland in Song-Nen Plain. Master’s Dissertation, Northeast Agricultural University, Harbin, China, 2015. [Google Scholar]
- Schneider, F.; Don, A.; Hennings, I.; Schmittmann, O.; Seidel, S.J. The effect of deep tillage on crop yield—What do we really know? Soil Tillage Res. 2017, 174, 193–204. [Google Scholar] [CrossRef]
- Li, B.; Fan, C.H.; Zhang, H.; Chen, Z.Z.; Sun, L.Y.; Xiong, Z.Q. Combined effects of nitrogen fertilization and biochar on the net global warming potential, greenhouse gas intensity and net ecosystem economic budget in intensive vegetable agriculture in southeastern China. Atmos. Environ. 2015, 100, 10–19. [Google Scholar] [CrossRef]
- Anjum, S.A.; Ashraf, E.U.; Tanveer, M.; Qamar, R.; Khan, I. Morphological and Phenological Attributes of Maize Affected by Different Tillage Practices and Varied Sowing Methods. Am. J. Plant Sci. 2014, 05, 1657–1664. [Google Scholar] [CrossRef] [Green Version]
- Wei, H.; Wang, S.; Yang, W.; Sun, H.; Yin, L.; Deng, X. Meta Analysis on Impact of No-Tillage and Subsoiling Tillage on Spring Maize and Winter Wheat Yield and Water Use Efficiency on the Loess Plateau. Sci. Agric. Sin. 2017, 50, 461–473. [Google Scholar] [CrossRef]
- Ma, S.; Yu, Z.; Shi, Y.; Gao, Z.; Luo, L.; Chu, P.; Guo, Z. Soil water use, grain yield and water use efficiency of winter wheat in a long-term study of tillage practices and supplemental irrigation on the North China Plain. Agric. Water Manag. 2015, 150, 9–17. [Google Scholar] [CrossRef]
- Asenso, E.; Hu, L.; Issaka, F.; Tian, K.; Zhang, L.; Zhang, L.; Zeng, J.; Zhu, Y.F.; Li, J. Four tillage method assessments on soil organic carbon, total nitrogen, biological activities, and maize grain yield in Southern China. Food Energy Secur. 2019, 8, e176. [Google Scholar] [CrossRef] [Green Version]
- Hu, N.; Wang, B.; Gu, Z.; Tao, B.; Zhang, Z.; Hu, S.; Zhu, L.; Meng, Y. Effects of different straw returning modes on greenhouse gas emissions and crop yields in a rice–wheat rotation system. Agric. Ecosyst. Environ. 2016, 223, 115–122. [Google Scholar] [CrossRef]
- Zhang, J.; Hang, X.; Lamine, S.M.; Jiang, Y.; Afreh, D.; Qian, H.; Feng, X.; Zheng, C.; Deng, A.; Song, Z.; et al. Interactive effects of straw incorporation and tillage on crop yield and greenhouse gas emissions in double rice cropping system. Agric. Ecosyst. Environ. 2017, 250, 37–43. [Google Scholar] [CrossRef]
- Cui, S.Y.; Xue, J.F.; Chen, F.; Tang, W.G.; Zhang, H.L.; Lal, R. Tillage Effects on Nitrogen Leaching and Nitrous Oxide Emission from Double-Cropped Paddy Fields. Agron. J. 2014, 106, 15–23. [Google Scholar] [CrossRef]
- Feng, J.; Chen, C.; Zhang, Y.; Song, Z.; Deng, A.; Zheng, C.; Zhang, W. Impacts of cropping practices on yield-scaled greenhouse gas emissions from rice fields in China: A meta-analysis. Agric. Ecosyst. Environ. 2013, 164, 220–228. [Google Scholar] [CrossRef]
- Li, C.; Zhang, Z.; Guo, L.; Cai, M.; Cao, C. Emissions of CH4 and CO2 from double rice cropping systems under varying tillage and seeding methods. Atmos. Environ. 2013, 80, 438–444. [Google Scholar] [CrossRef]
- Li, D.; Liu, M.; Cheng, Y.; Wang, D.; Qin, J.; Jiao, J.; Li, H.; Hu, F. Methane emissions from double-rice cropping system under conventional and no tillage in southeast China. Soil Tillage Res. 2011, 113, 77–81. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Rochette, P.; Hopkins, D.W.; Mckim, U.F.; St-Georges, P. Tillage-induced environmental conditions in soil and substrate limitation determine biogenic gas production. Soil Biol. Biochem. 2006, 38, 2614–2628. [Google Scholar] [CrossRef]
- Harada, H.; Kobayashi, H.; Shindo, H. Reduction in greenhouse gas emissions by no-tilling rice cultivation in Hachirogata polder, northern Japan: Life-cycle inventory analysis. Soil Sci. Plant Nutr. 2010, 53, 668–677. [Google Scholar] [CrossRef]
- Yao, Z.; Zheng, X.; Wang, R.; Xie, B.; Butterbach-Bahl, K.; Zhu, J. Nitrous oxide and methane fluxes from a rice–wheat crop rotation under wheat residue incorporation and no-tillage practices. Atmos. Environ. 2013, 79, 641–649. [Google Scholar] [CrossRef]
- Ogle, S.M.; Swan, A.; Paustian, K. No-till management impacts on crop productivity, carbon input and soil carbon sequestration. Agric. Ecosyst. Environ. 2012, 149, 37–49. [Google Scholar] [CrossRef]
- Nawaz, A.; Farooq, M.; Ahmad, R.; Basra, S.M.A.; Lal, R. Seed priming improves stand establishment and productivity of no till wheat grown after direct seeded aerobic and transplanted flooded rice. Eur. J. Agron. 2016, 76, 130–137. [Google Scholar] [CrossRef]
- Zhang, H.L.; Lal, R.; Zhao, X.; Xue, J.F.; Chen, F. Opportunities and Challenges of Soil Carbon Sequestration by Conservation Agriculture in China. Adv. Agron. 2014, 124, 1–36. [Google Scholar]
- Scanlan, C.A.; Davies, S.L. Soil mixing and redistribution by strategic deep tillage in a sandy soil. Soil Tillage Res. 2019, 185, 139–145. [Google Scholar] [CrossRef]
- Cui, W.Q.; Yang, C.H.; Tian, K. Effects of Different Tillage Patterns on Photosynthetic Characteristics and Yield of Wheat and Maize in Oasis Irrigation Area. Mol. Plant Breed. 2021, 31, 20–26. [Google Scholar]
- Liu, W.; Li, W.; Kan, Z.; Zhao, H. The Current Research Status of Conservation Tillage Technology. J. Agric. Mech. Res. 2017, 7, 256–261. [Google Scholar]
Relative Cost by Tillage Methods | |||
---|---|---|---|
DT (CNY ha−1) | NT (CNY ha−1) | References | |
0 | −600 | [38] | |
225 | / | [39] | |
/ | −195 | [40] | |
/ | −450 | [41] | |
/ | −375 | [42] | |
/ | −358 | [43] | |
150 | −600 | [44] | |
375 | −270 | [45] | |
Average | 188 | −407 | |
Relative GHG Emissions by Tillage Methods | |||
DT (kg CO2-eq ha−1) | NT (kg CO2-eq ha−1) | References | |
200 | −176 | [46] | |
288 | −127 | [47] | |
−29 | −104 | [17] | |
18 | / | [48] | |
68 | −53 | [49] | |
8 | / | [50] | |
/ | −171 | [10] | |
Average | 92 | −126 |
Crop | Tillage | GHG (kg ha−1) | GHGemission (kg CO2-eq ha−1) | GHGtillage (kg CO2-eq ha−1) | △GHG (kg CO2-eq ha−1) | ||
---|---|---|---|---|---|---|---|
N2O | CH4 | N2O | CH4 | ||||
Upland crops | DT | 0.46 | −0.09 | 137 | −2 | 92 | 227 |
NT | −0.34 | 0.14 | −102 | 3 | −126 | −225 | |
Rice | DT | 0.04 | 6.19 | 12 | 155 | 92 | 259 |
NT | −0.03 | −8.14 | −9 | −204 | −126 | −338 |
Tillage | Relative Yield (kg ha−1) | Yield Profit (CNY ha−1) | Relative Tillage Costs (CNY ha−1) | Global Warming Costs (CNY ha−1) | Net Profit (CNY ha−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Maize | Wheat | Rice | Maize | Wheat | Rice | Maize | Wheat | Rice | Maize | Wheat | Rice | ||
DT | 574 | 561 | 370 | 1263 | 1346 | 1036 | 188 | 38 | 38 | 44 | 1037 | 1120 | 804 |
NT | −108 | −296 | −685 | −238 | −710 | −1918 | −407 | −38 | −38 | −57 | 207 | −265 | −1454 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Ying, H.; Yin, Y.; Wang, H.; Cui, Z. Benefits and Trade-Offs of Tillage Management in China: A Meta-Analysis. Agronomy 2021, 11, 1495. https://doi.org/10.3390/agronomy11081495
Wang Y, Ying H, Yin Y, Wang H, Cui Z. Benefits and Trade-Offs of Tillage Management in China: A Meta-Analysis. Agronomy. 2021; 11(8):1495. https://doi.org/10.3390/agronomy11081495
Chicago/Turabian StyleWang, Yingcheng, Hao Ying, Yulong Yin, Hongye Wang, and Zhenling Cui. 2021. "Benefits and Trade-Offs of Tillage Management in China: A Meta-Analysis" Agronomy 11, no. 8: 1495. https://doi.org/10.3390/agronomy11081495