Effects of the Foliar Application of Potassium Fertilizer on the Grain Protein and Dough Quality of Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Sites
2.2. Experimental Design
2.2.1. Grain Yield Determination
2.2.2. Determination of the Protein Content and Components, Wet Gluten Content, and Dough Rheological Properties
2.2.3. Quantification of HMW-GSs by Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC)
2.3. Data Analysis
3. Results
3.1. Yield and Grain Protein Concentrations
3.2. Changes in Dough Rheological Properties
3.3. Changes in Protein Fractions
3.4. Effect of KFA on the HMW-GS Content in Grain
3.5. Partial Least Squares Path Modelling
4. Discussion
4.1. Changes in the Protein Content and Its Components
4.2. Changes in HMW-GS Contents and Processing Quality Indicators
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
References
- Gil-Humanes, J.; Pistón, F.; Shewry, P.R.; Tosi, P.; Barro, F. Suppression of gliadins results in altered protein body morphology in wheat. J. Exp. Bot. 2011, 62, 4203. [Google Scholar] [CrossRef] [Green Version]
- Godfrey, D.; Hawkesford, M.J.; Powers, S.J.; Millar, S.; Shewry, P.R. Effects of crop nutrition on wheat grain composition and end use quality. J. Agric. Food Chem. 2010, 58, 3012–3021. [Google Scholar] [CrossRef]
- Chope, G.A.; Wan, Y.; Penson, S.P.; Bhandari, D.G.; Powers, S.J.; Shewry, P.R.; Hawkesford, M.J. Effects of Genotype, Season, and Nitrogen Nutrition on Gene Expression and Protein Accumulation in Wheat Grain. J. Agric. Food Chem. 2014, 62, 4399–4407. [Google Scholar] [CrossRef] [PubMed]
- Lakudzala, D.D. Potassium Response in some Malawi Soils. Int. Lett. Chem. Phys. Astron. 2013, 13, 175–181. [Google Scholar] [CrossRef] [Green Version]
- Kutman, U.B.; Yildiz, B.; Ozturk, L.; Cakmak, I. Biofortification of Durum Wheat with Zinc Through Soil and Foliar Applications of Nitrogen. Cereal Chem. 2010, 87, 1–9. [Google Scholar] [CrossRef]
- Wani, J.; Malik, M.; Dar, M.; Akhter, F.; Raina, S. Impact of method of application and concentration of potassium on yield of wheat. J. Environ. Biol./Acad. Environ. Biol. India 2014, 35, 623–626. [Google Scholar]
- Guo, S.; Wu, J.; Dang, T.; Liu, W.; Li, Y.; Wei, W.; Syers, J.K. Impacts of fertilizer practices on environmental risk of nitrate in semiarid farmlands in the Loess Plateau of China. Plant Soil 2010, 330, 1–13. [Google Scholar] [CrossRef]
- Zhao, H.; Si, L. Effects of topdressing with nitrogen fertilizer on wheat yield, and nitrogen uptake and utilization efficiency on the Loess Plateau. Acta Agric. Scand. 2015, 65, 681–687. [Google Scholar] [CrossRef]
- Pettigrew, W.T. Potassium influences on yield and quality production for maize, wheat, soybean and cotton. Physiol. Plant 2008, 133, 670–681. [Google Scholar] [CrossRef]
- Khan, S.A.; Mulvaney, R.L.; Ellsworth, T.R. The potassium paradox: Implications for soil fertility, crop production and human health. Renew. Agric. Food Syst. 2014, 29, 3–27. [Google Scholar] [CrossRef] [Green Version]
- Sardans, J.; Peñuelas, J. Potassium: A neglected nutrient in global change. Glob. Ecol. Biogeogr. 2015, 24, 261–275. [Google Scholar] [CrossRef] [Green Version]
- Brankov, M.; Simić, M.; Dolijanović, Ž.; Rajković, M.; Mandić, V.; Dragičević, V. The Response of Maize Lines to Foliar Fertilizing. Agriculture 2020, 10, 365. [Google Scholar] [CrossRef]
- Kaur, G.; Nelson, K. Effect of Foliar Boron Fertilization of Fine Textured Soils on Corn Yields. Agronomy 2015, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Fageria, N.; Filho, M.; Moreira, A.; Guimarães, C. Foliar Fertilization of Crop Plants. J. Plant Nutr. 2009, 32, 1044–1064. [Google Scholar] [CrossRef]
- Zhang, F.; Niu, J.; Zhang, W.; Chen, X.; Li, C.; Yuan, L.; Xie, J. Potassium nutrition of crops under varied regimes of nitrogen supply. Plant Soil 2010, 335, 21–34. [Google Scholar] [CrossRef]
- Neuhaus, C.; Geilfus, C.-M.; Mühling, K.-H. Increasing root and leaf growth and yield in Mg-deficient faba beans (Vicia faba) by MgSO4 foliar fertilization. J. Plant Nutr. Soil Sci. 2014, 177, 741–747. [Google Scholar] [CrossRef]
- Xue, C.; Rossmann, A.; Schuster, R.; Koehler, P.; Mühling, K.-H. Split Nitrogen Application Improves Wheat Baking Quality by Influencing Protein Composition Rather Than Concentration. Front. Plant Sci. 2016, 7, 738. [Google Scholar] [CrossRef] [Green Version]
- Ramková, Z.; Gregová, E.; Turdík, E. Chemical composition and nutritional quality of wheat grain-Review. Acta Chim. Slovaca 2009, 2, 115–138. [Google Scholar]
- Unbehend, L.; Unbehend, G.; Lindhauer, M.G. Protein composition of some Croatian and German wheat varieties and their influence on the loaf volume. Food/Nahr. 2003, 47, 145–148. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, Y. Effects of nitrogen fertilization on protein components contents and processing quality of different wheat genotypes. Plant Nutr. Fertil. Sci. 2010, 16, 33–40. [Google Scholar]
- Visioli, G.; Bonas, U.; Dal Cortivo, C.; Pasini, G.; Marmiroli, N.; Mosca, G.; Vamerali, T. Variations in yield and gluten proteins in durum wheat varieties under late-season foliar versus soil application of nitrogen fertilizer in a northern Mediterranean environment. J. Sci. Food Agric. 2018, 98, 2360–2369. [Google Scholar] [CrossRef] [Green Version]
- Haeder, H.E.; Beringer, H. Analysis of yield of winter wheat grown at increasing levels of potassium. J. Sci. Food Agric. 2010, 32, 547–551. [Google Scholar] [CrossRef]
- Zhang, H.M.; Liu, H.X.; Wang, L.S.; Wang, H.; Zhou, W.L.; Guo, Y.X.; Wang, L.H. Effect of potassium on the growth at the late stages and grain quality of winter wheat in dryland. J. Triticeae Crop. 2004, 24, 73–75. [Google Scholar]
- Lv, X.; Li, T.; Wen, X.; Liao, Y.; Liu, Y. Effect of potassium foliage application post-anthesis on grain filling of wheat under drought stress. Field Crop. Res. 2017, 206, 95–105. [Google Scholar] [CrossRef]
- Noori, M.; Assaha, D.; Saneoka, H. Effect of salicylic acid and potassium application on yield and grain nutritional quality of wheat under drought stress condition. Cereal Res. Commun. 2018, 46, 1–11. [Google Scholar] [CrossRef]
- Zhao, H.; Guo, B.; Wei, Y.; Zhang, B. Near infrared reflectance spectroscopy for determination of the geographical origin of wheat. Food Chem. 2013, 138, 1902–1907. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.H.; Cheng, F.M.; Cheng, W.D.; Zhang, G.P. Positional variations in phytic acid and protein content within a panicle of japonica rice. J. Cereal Sci. 2005, 41, 297–303. [Google Scholar] [CrossRef]
- Holme, D.J.; Peck, H. Analytical biochemistry, 3rd ed.; Addison Wesley Longman: New York, NY, USA, 1998; pp. 388–393. [Google Scholar]
- Bollag, D.M.; Edelstein, S.J. Protein Methods. Quarterly Review of Biology; Wiley-Liss: New York, NY, USA, 1990; pp. 50–56. [Google Scholar]
- Marchylo, B.A.; Kruger, J.E.; Hatcher, D.W. Quantitative reversed-phase high-performance liquid chromatographic analysis of wheat storage proteins as a potential quality prediction tool. J. Cereal Sci. 1989, 9, S0733–S5210. [Google Scholar] [CrossRef]
- Vanalle, R.M.; Ganga, G.M.D.; Godinho Filho, M.; Lucato, W.C. Green supply chain management: An investigation of pressures, practices, and performance within the Brazilian automotive supply chain. J. Clean. Prod. 2017, 151, 250–259. [Google Scholar] [CrossRef]
- Li, J.; Shen, Z.; Li, C.; Kou, Y.; Wang, Y.; Tu, B.; Zhang, S.; Li, X. Stair-Step Pattern of Soil Bacterial Diversity Mainly Driven by pH and Vegetation Types Along the Elevational Gradients of Gongga Mountain, China. Front. Microbiol. 2018, 9, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Payne, P.I.; Lawrence, G.J. Catalogue of alleles for the complex gene loci, Glu-A1, Glu-B1, and Glu-D1 which code for high-molecular-weight subunits of glutenin in hexaploid wheat. Cereal Res. Commun. 1983, 11, 29–35. [Google Scholar]
- Kausar, A.; Gull, M. Effect of Potassium Sulphate on the Growth and Uptake of Nutrients in Wheat (Triticum aestivum L.) Under Salt Stressed Conditions. J. Agric. Sci. (1916–9752) 2014, 6, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Blevins, D.G.; Hiatt, A.J.; Lowe, R.H.; Leggett, J.E. Influence of K on the Uptake, Translocation, and Reduction of Nitrate by Barley Seedlings. Agron. J. 1978, 70, 393–396. [Google Scholar] [CrossRef]
- Hussain, M.I.; Shah, S.; Hussain, S.; Iqbal, K. Growth, Yield and Quality Response of Three Wheat (Triticum aestivum L.) Varieties to Different Levels of N, P and K. Int. J. Agric. Biol. 2002, 4, 362–364. [Google Scholar]
- Wang, X.D.; Yu, Z.W.; Wang, D. Effects of potassium on carbohydrate content in stem and leaf sheath and starch accumulation in grain of wheat. Plant Nutr. Fertil. 2003, 9, 57–62. [Google Scholar]
- Zou, T.X.; D, Y.B.; Jiang, D.; Jing, Q.; Cao, W.X. Effects of potassium level on nitrogen accumulation and translocation and grain protein formation in wheat. Sci. Agric. Sin. 2006, 39, 686–692. [Google Scholar]
- Cao, W.; Guo, W.; Wang, L. Physiological Ecology and Optimization Technology of Wheat Quality; China Agricultural Press: Beijing, China, 2005; pp. 110–120. [Google Scholar]
- Stone, P.J.; Nicolas, M.E. Varietal Differences in Mature Protein Composition of Wheat Resulted From Different Rates of Polymer Accumulation During Grain Filling. Funct. Plant Biol. 1996, 23, 727–737. [Google Scholar] [CrossRef]
- Giuliani, M.M.; Giuzio, L.; De Caro, A.; Flagella, Z. Relationships between Nitrogen Utilization and Grain Technological Quality in Durum Wheat: I. Nitrogen Translocation and Nitrogen Use Efficiency for Protein. Agron. J. 2011, 103, 1487–1494. [Google Scholar] [CrossRef]
- Shewry, P.R.; Mitchell, R.A.C.; Tosi, P.; Wan, Y.; Underwood, C.; Lovegrove, A.; Freeman, J.; Toole, G.A.; Mills, E.N.C.; Ward, J.L. An integrated study of grain development of wheat (cv. Hereward). J. Cereal Sci. 2012, 56, 21–30. [Google Scholar] [CrossRef]
- Luo, L.C.; Hui, X.L.; Wang, Z.H.; Zhang, X.; Xie, Y.H.; Gao, Z.Q. Multi-site evaluation of plastic film mulch and nitrogen fertilization for wheat grain yield, protein content and its components in semiarid areas of China. Field Crops Res. 2019, 240, 86–94. [Google Scholar] [CrossRef]
- Wu, L.Y.; X., M.L. Effect of optimal fertilization on wheat quality and yield. Soil 2003, 35, 11–15. [Google Scholar]
- Dong, M.W.Q.; Zhou, Q.; Cai, J.; Wang, X.; Dai, T.B.; Jiang, D. Efficient promotion of the nutritional and processing quality of wheat grain by Zn forliar spraying at 5 days after anthesis. J. Plant Nutr. Fertil. 2018, 24, 63–70. [Google Scholar] [CrossRef]
- Gao, X.; Liu, T.; Yu, J.; Li, L.; Feng, Y.; Li, X. Influence of high-molecular-weight glutenin subunit composition at Glu-B1 locus on secondary and micro structures of gluten in wheat (Triticum aestivum L.). Food Chem. 2016, 197, 1184–1190. [Google Scholar] [CrossRef]
- Zhang, P.; He, Z.; Chen, D.; Zhang, Y.; Larroque, O.R.; Xia, X. Contribution of common wheat protein fractions to dough properties and quality of northern-style Chinese steamed bread. J. Cereal Sci. 2007, 46, 1–10. [Google Scholar] [CrossRef]
- Shewry, P.R.; Halford, N.G.; Lafiandra, D. Genetics of wheat gluten proteins. Adv. Genet. 2003, 49, 111–184. [Google Scholar] [CrossRef] [PubMed]
- Pirozi, M.R.; Margiotta, B.; Lafiandra, D.; Macritchie, F. Composition of polymeric proteins and bread-making quality of wheat lines with allelic HMW-GS differing in number of cysteines. J. Cereal Sci. 2008, 48, 117–122. [Google Scholar] [CrossRef]
- Anderson, O.D.; Bekes, F. Incorporation of high-molecular-weight glutenin subunits into doughs using 2 g mixograph and extensigraphs. J. Cereal Sci. 2011, 54, 288–295. [Google Scholar] [CrossRef]
- Ribeiro, M.; Bancel, E.; Faye, A.; Dardevet, M.; Ravel, C.; Gérard, B.; Igrejas, G. Proteogenomic Characterization of Novel x-Type High Molecular Weight Glutenin Subunit 1Ax1.1. Int. J. Mol. Sci. 2013, 14, 5650–5667. [Google Scholar] [CrossRef] [Green Version]
- Gianibelli, M.C.; Larroque, O.R.; MacRitchie, F.; Wrigley, C.W. Biochemical, Genetic, and Molecular Characterization of Wheat Glutenin and Its Component Subunits. Cereal Chem. J. 2001, 78, 635–646. [Google Scholar] [CrossRef]
- Wang, K.; An, X.L.; Pan, L.P.; Dong, K.; Gao, L.Y.; Wang, S.L.; Xie, Z.Z.; Zhang, Z.; Appels, R.; Ma, W. Molecular characterization of HMW-GS 1Dx3(t) and 1Dx4(t) genes from Aegilops tauschii and their potential value for wheat quality improvement. Hereditas 2012, 149, 41–49. [Google Scholar] [CrossRef]
Site | SOM | AP | AK | TN | TP | TK |
---|---|---|---|---|---|---|
(g kg−1) | (mg kg−1) | (mg kg−1) | (g kg−1) | (g kg−1) | (g kg−1) | |
CSF | 12.31 | 7.91 | 167.44 | 0.78 | 0.71 | 15.52 |
DK | 15.99 | 23.63 | 259.48 | 1.26 | 1.11 | 27.44 |
Factor | Yield | Protein | Wet Gluten | Sedimentation Value | Stabilization Time | Development Time | Albumin | Globulin | Gliadin | Glutelin |
---|---|---|---|---|---|---|---|---|---|---|
Year (Y) | 7.67 ** | 22.54 ** | 93.36 ** | 15.68 ** | 45.09 ** | 35.74 ** | 53.93 ** | 84.05 ** | 399.99 ** | 332.53 ** |
Area (A) | 19.52 ** | 89.97 ** | 81.90 ** | 10.18 ** | 7.06 ** | 2.71 | 206.04 ** | 331.01 ** | 1353.66 ** | 113.66 ** |
Stage (S) | 1.31 | 12.93 ** | 7.79 ** | 4.08 * | 42.00 ** | 44.10 ** | 10.99 ** | 2.51 | 70.59 ** | 63.10 ** |
Concentration (C) | 1.77 | 61.85 ** | 13.86 ** | 8.97 ** | 117.44 ** | 154.13 ** | 6.37 ** | 2.74 * | 318.22 ** | 259.99 ** |
Y × A | 12.28 ** | 0.12 | 2.41 | 111.43 ** | 10.28 ** | 10.08 ** | 0.88 | 6.12 * | 16.49 ** | 1.01 |
Y × S | 0.50 | 0.41 | 2.06 | 0.52 | 3.49 * | 0.35 | 12.13 ** | 0.22 | 0.31 | 0.43 |
Y × C | 0.57 | 1.07 | 0.11 | 0.11 | 0.78 | 1.25 | 3.38 * | 1.21 | 1.63 | 1.94 |
A × S | 2.14 | 1.05 | 1.93 | 0.62 | 7.52 ** | 10.39 ** | 12.76 ** | 0.41 | 2.63 | 10.42 ** |
A × C | 0.02 | 0.21 | 4.38 ** | 0.07 | 1.03 | 1.33 | 1.62 | 0.13 | 0.42 | 2.37 |
S × C | 0.28 | 1.51 | 1.30 | 1.02 | 3.34 ** | 7.05 ** | 3.31 ** | 0.31 | 5.50 ** | 7.72 ** |
Y × A × S | 1.15 | 0.34 | 6.16 ** | 0.28 | 3.61 * | 3.89 * | 11.76 ** | 0.16 | 2.12 | 4.35 * |
Y × A × C | 0.62 | 0.52 | 0.67 | 0.22 | 0.75 | 1.41 | 4.83 ** | 0.61 | 3.79 * | 1.85 |
Y × S × C | 0.25 | 0.12 | 1.06 | 0.11 | 0.31 | 1.14 | 1.71 | 1.68 | 0.78 | 1.74 |
A × S × C | 0.49 | 0.13 | 1.10 | 0.29 | 1.42 | 2.23 * | 2.99 * | 0.08 | 2.13 | 1.49 |
Y × A × S × C | 0.32 | 0.11 | 0.74 | 0.75 | 1.51 | 1.52 | 1.56 | 0.68 | 1.91 | 3.06 ** |
Factor | Yield | Protein | Wet Gluten | Sedimentation Value | Stabilization Time | Development Time | Albumin | Globulin | Gliadin | Glutelin |
---|---|---|---|---|---|---|---|---|---|---|
Year (Y) | 13.75 ** | 3.17 | 11.26 ** | 149.44 ** | 295.69 ** | 48.02 ** | 5.59 * | 377.03 ** | 280.69 ** | 496.25 ** |
Area (A) | 1.01 | 42.89 ** | 14.41 ** | 81.25 ** | 0.13 | 233.69 ** | 23.23 ** | 21.75 ** | 338.69 ** | 436.00 ** |
Stage (S) | 1.06 | 8.25 ** | 7.18 ** | 2.61 | 12.27 ** | 45.50 ** | 42.00 ** | 1.11 | 9.69 ** | 24.27 ** |
Concentration (C) | 3.98 * | 25.67 ** | 10.71 ** | 5.72 ** | 4.82 ** | 83.11 ** | 156.63 ** | 4.87 ** | 16.04 ** | 222.41 ** |
Y × A | 11.68 ** | 9.62 ** | 2.79 | 0.45 | 243.07 ** | 143.34 ** | 101.02 ** | 160.54 ** | 56.76 ** | 2.31 |
Y × S | 0.27 | 0.03 | 1.13 | 0.02 | 2.55 | 1.73 | 4.04 * | 1.53 | 2.49 | 1.07 |
Y × C | 0.24 | 0.66 | 1.94 | 0.33 | 3.20 * | 1.91 | 3.00 * | 0.77 | 4.83 ** | 0.07 |
A × S | 1.17 | 0.33 | 0.56 | 0.26 | 0.95 | 1.76 | 7.52 ** | 0.16 | 1.55 | 0.06 |
A × C | 0.90 | 0.02 | 0.77 | 0.18 | 2.01 | 2.16 | 28.94 ** | 0.41 | 8.42 ** | 8.33 ** |
S × C | 0.62 | 1.56 | 1.06 | 0.34 | 2.25 * | 4.88 ** | 7.35 ** | 0.43 | 0.81 | 8.21 ** |
Y × A × S | 0.03 | 0.49 | 1.14 | 0.99 | 2.42 | 3.58 * | 3.51 * | 0.12 | 5.22 ** | 1.76 |
Y × A × C | 0.05 | 0.86 | 0.14 | 0.65 | 6.08 ** | 1.43 | 0.89 | 0.22 | 3.07 * | 1.81 |
Y × S × C | 0.18 | 0.21 | 0.59 | 0.41 | 2.18 | 0.59 | 3.68 ** | 0.05 | 0.51 | 0.88 |
A × S × C | 0.67 | 0.15 | 0.83 | 0.47 | 0.49 | 0.89 | 10.44 ** | 0.26 | 0.83 | 2.19 |
Y × A × S × C | 0.08 | 0.26 | 0.44 | 0.43 | 2.37 * | 3.01 ** | 1.27 | 0.13 | 1.34 | 1.14 |
Factor | HMW-GS (XN20) | HMW-GS (XY22) | ||||
---|---|---|---|---|---|---|
1 | 7 + 8 | 4 + 12 | 1 | 7 + 9 | 2 + 12 | |
Year (Y) | 223.3 ** | 10.92 ** | 35.22 ** | 0.46 | 178.11 ** | 244.32 ** |
Area (A) | 31.50 ** | 29.55 ** | 623.06 ** | 3.32 | 0.13 | 3.29 |
Stage (S) | 87.00 ** | 12.52 ** | 0.49 | 30.8 ** | 15.55 ** | 18.17 ** |
Concentration (C) | 114.52 ** | 48.57 ** | 7.82 ** | 61.15 ** | 12.59 ** | 19.19 ** |
Y × A | 43.91 ** | 6.99 ** | 559.05 ** | 365.44 ** | 374.38 ** | 503.88 ** |
Y × S | 3.24 * | 0.91 | 2.67 | 15.72 ** | 1.57 | 1.18 |
Y × C | 0.16 | 11.35 ** | 0.20 | 8.38 ** | 5.47 ** | 10.16 ** |
A × S | 6.93 ** | 27.20 ** | 0.11 | 0.14 | 1.33 | 0.85 |
A × C | 0.19 | 0.99 | 0.05 | 0.27 | 8.55 ** | 10.22 ** |
S × C | 7.68 ** | 2.46 * | 0.66 | 3.83 ** | 2.79 * | 4.86 ** |
Y × A × S | 4.75 * | 6.90 ** | 3.69 * | 0.14 | 0.56 | 1.30 |
Y × A × C | 0.23 | 0.73 | 1.11 | 0.27 | 7.64 ** | 10.65 ** |
Y × S × C | 0.94 | 0.59 | 0.06 | 3.50 ** | 0.33 | 0.96 |
A × S × C | 0.71 | 4.90 ** | 0.53 | 0.15 | 0.41 | 1.01 |
Y × A × S × C | 1.04 | 1.47 | 0.61 | 0.15 | 0.64 | 0.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, X.; Liu, Y.; Li, N.; Liu, Y.; Zhao, D.; Wei, B.; Wen, X. Effects of the Foliar Application of Potassium Fertilizer on the Grain Protein and Dough Quality of Wheat. Agronomy 2021, 11, 1749. https://doi.org/10.3390/agronomy11091749
Gu X, Liu Y, Li N, Liu Y, Zhao D, Wei B, Wen X. Effects of the Foliar Application of Potassium Fertilizer on the Grain Protein and Dough Quality of Wheat. Agronomy. 2021; 11(9):1749. https://doi.org/10.3390/agronomy11091749
Chicago/Turabian StyleGu, Xiaoyan, Yang Liu, Na Li, Yihong Liu, Deqiang Zhao, Bin Wei, and Xiaoxia Wen. 2021. "Effects of the Foliar Application of Potassium Fertilizer on the Grain Protein and Dough Quality of Wheat" Agronomy 11, no. 9: 1749. https://doi.org/10.3390/agronomy11091749
APA StyleGu, X., Liu, Y., Li, N., Liu, Y., Zhao, D., Wei, B., & Wen, X. (2021). Effects of the Foliar Application of Potassium Fertilizer on the Grain Protein and Dough Quality of Wheat. Agronomy, 11(9), 1749. https://doi.org/10.3390/agronomy11091749