Changes in Soil Organic Carbon and Its Labile Fractions after Land Conversion from Paddy Fields to Woodlands or Corn Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Soil Sampling and Analysis
2.3. Statistical Analysis
3. Results
3.1. Soil TOC and TN Levels
3.2. Soil POC Levels
3.3. Soil MBC Levels
3.4. Soil KMnO4–C and CMI Levels
3.5. Multiple Linear Regression between CMI and SOC Fractions
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Xu, J.; Peng, S.; Yang, S.; Wang, W. Ammonia volatilization losses from a rice paddy with different irrigation and nitrogen managements. Agric. Water Manag. 2012, 104, 184–192. [Google Scholar] [CrossRef]
- Yang, D.; Zhang, M. Effects of land-use conversion from paddy field to orchard farm on soil microbial genetic diversity and community structure. Eur. J. Soil Biol. 2014, 64, 30–39. [Google Scholar] [CrossRef]
- Guo, J.M.; Wang, Y.H.; Blaylock, A.D.; Chen, X.P. Mixture of controlled release and normal urea to optimize nitrogen man-agement for high-yielding (>15 Mg ha−1) maize. Field Crops Res. 2017, 204, 23–30. [Google Scholar] [CrossRef]
- Kunlanit, B.; Butnan, S.; Vityakon, P. Land–Use Changes Influencing C Sequestration and Quality in Topsoil and Subsoil. Agronomy 2019, 9, 520. [Google Scholar] [CrossRef] [Green Version]
- Antisari, L.V.; Trenti, W.; De Feudis, M.; Bianchini, G.; Falsone, G. Soil Quality and Organic Matter Pools in a Temperate Climate (Northern Italy) under Different Land Uses. Agronomy 2021, 11, 1815. [Google Scholar] [CrossRef]
- Zou, X.; Ruan, H.; Fu, Y.; Yang, X.; Sha, L. Estimating soil labile organic carbon and potential turnover rates using a sequential fumigation–incubation procedure. Soil Biol. Biochem. 2005, 37, 1923–1928. [Google Scholar] [CrossRef]
- Valani, G.P.; Vezzani, F.M.; Cavalieri-Polizeli, K.M.V. Soil quality: Evaluation of on-farm assessments in relation to analytical index. Soil Tillage Res. 2019, 198, 104565. [Google Scholar] [CrossRef]
- Wang, H.; Guan, D.; Zhang, R.; Chen, Y.; Hu, Y.; Xiao, L. Soil aggregates and organic carbon affected by the land use change from rice paddy to vegetable field. Ecol. Eng. 2014, 70, 206–211. [Google Scholar] [CrossRef]
- Shrestha, B.M.; Bork, E.W.; Chang, S.X.; Carlyle, C.N.; Ma, Z.L.; Döbert, T.F.; Kaliaskar, D.; Boyce, M.S. Adaptive multi-paddock grazing lowers soil greenhouse gas emission potential by altering extracellular enzyme activity. Agronomy 2020, 10, 1781. [Google Scholar] [CrossRef]
- Liu, X.; Chen, D.T.; Yang, T.; Huang, F.R.; Fu, S.; Li, L.H. Changes in soil labile and recalcitrant carbon pools after land-sue change in a semi-arid agro-pastoral ecotone in Central Asia. Ecol. Indiac. 2020, 110, 105925. [Google Scholar] [CrossRef]
- Don, A.; Schumacher, J.; Freibauer, A. Impact of tropical land-use change on soil organic carbon stocks—A meta-analysis. Glob. Chang. Biol. 2011, 17, 1658–1670. [Google Scholar] [CrossRef] [Green Version]
- Li, G.-L.; Pang, X.-M. Effect of land-use conversion on C and N distribution in aggregate fractions of soils in the southern Loess Plateau, China. Land Use Policy 2010, 27, 706–712. [Google Scholar] [CrossRef]
- Mi, W.; Sun, Y.; Gao, Q.; Liu, M.; Wu, L. Changes in humus carbon fractions in paddy soil given different organic amendments and mineral fertilizers. Soil Tillage Res. 2019, 195, 104421. [Google Scholar] [CrossRef]
- Blair, G.J.; Lefroy, R.D.B.; Lisle, L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agriculture systems. Aust. J. Agric. Res. 1995, 46, 1459–1466. [Google Scholar] [CrossRef]
- Abdelrahman, H.M.; Olk, D.C.; Dinnes, D.; Ventrella, D.; Miano, T.; Cocozza, C. Occurrence and abundance of carbohydrates and amino compounds in sequentially extracted labile soil organic matter fractions. J. Soils Sediments 2016, 16, 2375–2384. [Google Scholar] [CrossRef]
- Haynes, R. Labile Organic Matter Fractions as Central Components of the Quality of Agricultural Soils: An Overview. Adv. Agron. 2005, 5, 221–268. [Google Scholar] [CrossRef]
- Wei, X.; Shao, M.; Gale, W.J.; Zhang, X.; Li, L. Dynamics of aggregate-associated organic carbon following conversion of forest to cropland. Soil Biol. Biochem. 2013, 57, 876–883. [Google Scholar] [CrossRef]
- Jia, J.; Cao, Z.; Liu, C.; Zhang, Z.; Lin, L.; Wang, Y.; Haghipour, N.; Wacker, L.; Bao, H.; Dittmar, T.; et al. Climate warming alters subsoil but not topsoil carbon dynamics in alpine grassland. Glob. Chang. Biol. 2019, 25, 4383–4393. [Google Scholar] [CrossRef] [PubMed]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- Walkley, A.E.; Black, C.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Cambardella, C.A.; Elliott, E.T. Particulate Soil Organic-Matter Changes across a Grassland Cultivation Sequence. Soil Sci. Soc. Am. J. 1992, 56, 777–783. [Google Scholar] [CrossRef]
- Qiu, L.; Wei, X.; Ma, T.; Wei, Y.; Horton, R.; Zhang, X.; Cheng, J. Effects of land-use change on soil organic carbon and nitrogen in density fractions and soil δ13C and δ15N in semiarid grasslands. Plant Soil 2015, 390, 419–430. [Google Scholar] [CrossRef]
- Alvarez, R.; Alvarez, C.R.; Lorenzo, G.A. Carbon dioxide fluxes following tillage from a mollisol in the Argentine Rolling Pampa. Eur. J. Soil Biol. 2001, 37, 161–166. [Google Scholar] [CrossRef]
- Raiesi, F.; Kabiri, V. Carbon and nitrogen mineralization kinetics as affected by tillage systems in a calcareous loam soil. Ecol. Eng. 2017, 106, 24–34. [Google Scholar] [CrossRef]
- Hobley, E.; Baldock, J.; Hua, Q.; Wilson, B. Land-use contrasts reveal instability of subsoil organic carbon. Glob. Chang. Biol. 2016, 23, 955–965. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saha, S.K.; Nair, P.K.R.; Nair, V.D.; Kumar, B.M. Carbon storage in relation to soil size-fractions under tropical tree-based land-use systems. Plant Soil 2009, 328, 433–446. [Google Scholar] [CrossRef]
- Niaz, S.; Ijaz, S.S.; Hassan, A.; Sharif, M. Landuse impacts on soil organic carbon fractions in different rainfall areas of a sub-tropical dryland. Arch. Agron. Soil Sci. 2017, 63, 1337–1345. [Google Scholar] [CrossRef]
- Wu, Q.C.; Jiang, X.H.; Lu, Q.W.; Li, J.B.; Chen, J.L. Changes in soil organic carbon and aggregate stability following a chronosequence of Liriodendron chinense plantations. J. For. Res. 2021, 32, 355–362. [Google Scholar] [CrossRef]
- Song, G.; Li, L.; Pan, G.; Zhang, Q. Topsoil organic carbon storage of China and its loss by cultivation. Biodegradation 2005, 74, 47–62. [Google Scholar] [CrossRef]
- Shi, X.-Z.; Yang, R.-W.; Weindorf, D.C.; Wang, H.-J.; Yu, D.-S.; Huang, Y.; Pan, X.-Z.; Sun, W.-X.; Zhang, L.-M. Simulation of organic carbon dynamics at regional scale for paddy soils in China. Clim. Chang. 2009, 102, 579–593. [Google Scholar] [CrossRef]
- Xu, E.; Zhang, H.; Xu, Y. Effect of Large-Scale Cultivated Land Expansion on the Balance of Soil Carbon and Nitrogen in the Tarim Basin. Agronomy 2019, 9, 86. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Ussiri, D.A.N.; Lal, R. Soil Organic Carbon and Nitrogen Fractions under Different Land Uses and Tillage Practices. Commun. Soil Sci. Plant Anal. 2016, 47, 1528–1541. [Google Scholar] [CrossRef]
- Li, F.; Li, Z.; Mao, P.; Li, Y.; Li, Y.; McBride, M.B.; Wu, J.; Zhuang, P. Heavy metal availability, bioaccessibility, and leachability in contaminated soil: Effects of pig manure and earthworms. Environ. Sci. Pollut. Res. 2018, 26, 20030–20039. [Google Scholar] [CrossRef]
- Munch, S.; Papke, N.; Leue, M.; Faust, M.; Schepanski, K.; Siller, P.; Roesler, U.; Nubel, U.; Kabelitz, T.; Amon, T.; et al. Differences in the sediment composition of wind eroded sandy soils before and after fertilization with poultry manure. Soil Tillage Res. 2022, 215, 105205. [Google Scholar] [CrossRef]
- Kalambukattu, J.G.; Singh, R.; Patra, A.K.; Arunkumar, K. Soil carbon pools and carbon management index under different land use systems in the Central Himalayan region. Acta Agric. Scand. Sect. B Plant Soil Sci. 2013, 63, 200–205. [Google Scholar] [CrossRef]
- Vieira, F.; Bayer, C.; Zanatta, J.; Dieckow, J.; Mielniczuk, J.; He, Z. Carbon management index based on physical fractionation of soil organic matter in an Acrisol under long-term no-till cropping systems. Soil Tillage Res. 2007, 96, 195–204. [Google Scholar] [CrossRef]
Soil Depth | CPI | LI | CMI | ||||||
---|---|---|---|---|---|---|---|---|---|
Paddy Field | Woodland | Corn Field | Paddy Field | Woodland | Corn Field | Paddy Field | Woodland | Corn Field | |
0–5 cm | 1.00 b | 1.24 a | 1.21 a | 1.00 a | 1.21 a | 1.15 a | 100 b | 149 a | 137 a |
5–20 cm | 1.00 b | 1.54 a | 1.47 a | 1.00 a | 0.90 a | 0.82 a | 100 b | 137 a | 120 ab |
20–40 cm | 1.00 b | 1.71 a | 1.23 b | 1.00 a | 0.90 a | 1.08 a | 100 b | 154 a | 131 a |
40–60 cm | 1.00 a | 1.32 a | 1.01 a | 1.00 a | 0.88 a | 1.20 a | 100 a | 116 a | 115 a |
60–80 cm | 1.00 a | 0.75 a | 0.86 a | 1.00 a | 1.37 a | 1.25 a | 100 a | 98 a | 93 a |
80–100 cm | 1.00 a | 0.81 a | 0.93 a | 1.00 a | 1.19 a | 1.12 a | 100 a | 86 a | 104 a |
Variable | Parameter | Std. Error | t-Value | p-Value |
---|---|---|---|---|
Constant | 96.85 | 5.06 | 19.15 | 0.00 |
TOC | 3.73 | 1.97 | 1.9 | 0.06 |
POC | −5.09 | 4.25 | −1.2 | 0.24 |
TN | −7.27 | 16.9 | −0.43 | 0.67 |
KMnO4–C | 21.6 | 8.34 | 2.59 | 0.01 |
MBC | −0.25 | 0.08 | −3.26 | 0.002 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, L.; Mi, W.; Sun, Y.; Tao, W.; Zhang, J.; Su, L. Changes in Soil Organic Carbon and Its Labile Fractions after Land Conversion from Paddy Fields to Woodlands or Corn Fields. Agronomy 2022, 12, 29. https://doi.org/10.3390/agronomy12010029
Si L, Mi W, Sun Y, Tao W, Zhang J, Su L. Changes in Soil Organic Carbon and Its Labile Fractions after Land Conversion from Paddy Fields to Woodlands or Corn Fields. Agronomy. 2022; 12(1):29. https://doi.org/10.3390/agronomy12010029
Chicago/Turabian StyleSi, Linlin, Wenhai Mi, Yan Sun, Wanghai Tao, Jihong Zhang, and Lijun Su. 2022. "Changes in Soil Organic Carbon and Its Labile Fractions after Land Conversion from Paddy Fields to Woodlands or Corn Fields" Agronomy 12, no. 1: 29. https://doi.org/10.3390/agronomy12010029
APA StyleSi, L., Mi, W., Sun, Y., Tao, W., Zhang, J., & Su, L. (2022). Changes in Soil Organic Carbon and Its Labile Fractions after Land Conversion from Paddy Fields to Woodlands or Corn Fields. Agronomy, 12(1), 29. https://doi.org/10.3390/agronomy12010029