Soil Biochar Application: Assessment of the Effects on Soil Water Properties, Plant Physiological Status, and Yield of Super-Intensive Olive Groves under Controlled Irrigation Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Organic Amendments
2.1.1. Olive Pomace Biochar (OB)
2.1.2. Green Compost (GC)
2.2. Experimental Setup and Orchard Characteristics
2.3. Analyses of Physical and Chemical Properties of Amendments and Soils
2.4. Field Determination of Soil Humidity and Resistance to Penetrability
2.5. Olive Trees Physiological Status
2.6. Olive and Oil Yields per Tree
2.7. Statistical Analysis
3. Results and Discussion
3.1. Physical and Chemical Properties of Soils
3.1.1. Laboratory Analyses
3.1.2. In Situ Analyses
3.2. Effects on Olive Tree Physiological Parameters
3.3. Effects of the Amendment on Plant Yields
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2019. 2019. Available online: https://population.un.org/wpp/ (accessed on 25 April 2022).
- Kumar, A.; Bhattacharya, T.; Mukherjee, S.; Sarkar, B. A perspective on biochar for repairing damages in the soil–plant system caused by climate change-driven extreme weather events. Biochar 2022, 4, 22. [Google Scholar] [CrossRef]
- Ministry of Agriculture. Fisheries and Food. Available online: https://www.mapa.gob.es/es/agricultura/temas/producciones-agricolas/aceite-oliva-y-aceituna-mesa/aceite.aspx (accessed on 12 May 2022).
- Vilar, J.; Cárdenas, R. El Sector Internacional de Elaboración de Aceite de Oliva: Un Estudio Descriptivo de Los Distintos Países Productores. Úbeda (Jaén); GEA Westfalia: Úbeda, Spain, 2012. [Google Scholar]
- Penco-Valenzuela, J.M. Aproximación a Los Costes del Cultivo del Olivo; Desarrollo y Conclusiones del Estudio AEMO; Asociación Española de Municipio del Olivo: Córdoba, Spain, 2020; pp. 1–55. [Google Scholar]
- EUROSTAT. 2012. Available online: https://ec.europa.eu/eurostat (accessed on 11 January 2021).
- Rejano, L. La manzanilla fina sevillana. Grasas Y Aceites 1999, 5, 60–66. [Google Scholar] [CrossRef]
- Leon-Camacho, M.; Viera-Alcaide, I.; Ruiz-Méndez, M. Elimination of polycyclic aromatic hydrocarbons by bleaching of olive pomace oil. Eur. J. Lipid Sci. Technol. 2003, 105, 9–16. [Google Scholar] [CrossRef]
- De la Rosa, J.M.; Paneque, M.; Miller, A.Z.; Knicker, H. Relating physical and chemical properties of four different biochars and their application rate to biomass production of Lolium perenne on a Calcic Cambisol during a pot experiment of 79 days. Sci. Total Environ. 2014, 499, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Lehmann, J.; Joseph, S. Biochar for Environmental Management: Science, Technology and Implementation; Earthscan: London, UK, 2015. [Google Scholar]
- Glaser, B.; Haumaier, L.; Guggenberger, G.; Zech, W. The ‘Terra Preta’ phenomenon: A model for sustainable agriculture in the humid tropics. Naturwissenschaften 2001, 88, 37–41. [Google Scholar] [CrossRef] [PubMed]
- Sohi, S.P.; Krull, E.; Lopez-Capel, E.; Bol, R. A Review of Biochar and Its Use and Function in Soil. Advances in Agronomy. Adv. Agron. 2010, 105, 47–82. [Google Scholar] [CrossRef]
- Zhao, J.; Shen, X.J.; Domene, X.; Alcañiz, J.M.; Liao, X.; Palet, C. Comparison of biochars derived from different types of feedstock and their potential for heavy metal removal in multiple-metal solutions. Sci. Rep. 2019, 9, 9869. [Google Scholar] [CrossRef]
- Jeffrey, S.; Verheijen, F.; van der Velde, M.; Bastos, A.C. A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric. Ecosyst. Environ. 2011, 144, 175–187. [Google Scholar] [CrossRef]
- Ghassemi-Golezani, K.; Farhangi-Abriz, S. Improving plant available water holding capacity of soil by solid and chemically modified biochars. Rhizosphere 2022, 21, 100469. [Google Scholar] [CrossRef]
- Murtaza, G.; Ahmed, Z.; Usman, M.; Tariq, W.; Ullah, Z.; Shareef, M.; Ditta, A. Biochar induced modifications in soil properties and its impacts on crop growth and production. J. Plant. Nutr. 2021, 44, 1677–1691. [Google Scholar] [CrossRef]
- Wijitkosum, S. Applying Rice Husk Biochar to Revitalise Saline Sodic Soil in Khorat Plateau Area—A Case Study for Food Security Purposes. In Biochar Applications in Agriculture and Environment Management; Singh, J., Singh, C., Eds.; Springer: Cham, Switzerland, 2020. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, X.; Jing, Y.; Li, Q.; Zhang, J.; Huang, Q. Effects of biochar amendment on rapeseed and sweet potato yields and water stable aggregate in upland red soil. Catena 2014, 123, 45–51. [Google Scholar] [CrossRef]
- Plaza-Bonilla, D.; Arrúe, J.L.; Cantero-Martínez, C.; Fanlo, R.; Iglesias, A.; Álvaro-Fuentes, J. Carbon management in dryland agricultural systems. A review. Agron. Sustain. Dev. 2015, 35, 1319–1334. [Google Scholar] [CrossRef]
- Edeh, I.; Mašek, O.; Buss, W. A meta-analysis on biochar’s ef-fects on soil water properties—New insights and future research challenges. Sci. Total Environ. 2020, 714, 136857. [Google Scholar] [CrossRef] [PubMed]
- Yooyen, J.; Wijitkosum, S.; Sriburi, T. Increasing yield of soybean by adding biochar. J. Environ. Res. 2015, 9, 1066–1074. [Google Scholar]
- Abd El-Mageed, T.A.; Belal, E.E.; Rady, M.O.A.; Abd El-Mageed, S.A.; Mansour, E.; Awad, M.F.; Semida, W.M. Acidified Biochar as a Soil Amendment to Drought Stressed (Vicia faba L.) Plants: Influences on Growth and Productivity, Nutrient Status, and Water Use Efficiency. Agronomy 2021, 11, 1290. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef]
- Razzaghi, F.; Obour, B.B.; Emmanuel, A. Does biochar improve soil water retention? A systematic review and meta-analysis. Geoderma 2020, 362, 114055. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Cui, L.; Kammann, C.; Wrage-Mönnig, N.; Estavillo, J.M.; Fuertes-Mendizabal, T.; Cayuela, M.L.; Sigua, G.; Novak, J.; Spokas, K.; et al. Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review. Biochar 2020, 2, 421–438. [Google Scholar] [CrossRef]
- Sorrenti, G.; Ventura, M.; Toselli, M. Effect of biochar on nutrient retention and nectarine tree performance: A three-year field trial. J. Plant Nutr. Soil Sci. 2016, 179, 336–346. [Google Scholar] [CrossRef]
- Busscher, W.J.; Novak, J.M.; Evans, D.E.; Watts, D.W.; Niandou, M.A.S.; Ahmedna, M. Influence of pecan biochar on physical properties of a Norfolk loamy sand. Soil Sci. 2010, 175, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Pandit, N.R.; Mulder, J.; Hale, S.E.; Zimmerman, A.R.; Pandit, B.H.; Cornelissen, G. Multi-year double cropping biochar field trials in Nepal: Finding the optimal biochar dose through agronomic trials and cost-benefit analysis. Sci. Total Environ. 2018, 637, 1333–1341. [Google Scholar] [CrossRef] [PubMed]
- Gale, N.V.; Thomas, S.C. Dose-dependence of growth and ecophysiological responses of plants to biochar. Sci. Total Environ. 2019, 658, 1344–1354. [Google Scholar] [CrossRef] [PubMed]
- Haddad, K.; Jeguirim, M.; Jerbi, B.; Chouchene, A.; Dutournié, P.; Thevenin, N.; Ruidavets, L.; Jellali, S.; Limousy, L. Olive mill wastewater: From a pollutant to green fuels, agricultural water source and biofertilizer. ACS Sustain. Chem. Eng. 2017, 5, 8988–8996. [Google Scholar] [CrossRef]
- Azzaz, A.A.; Jeguirim, M.; Kinigopoulou, V.; Doulgeris, C.; Goddard, M.L.; Jellali, S.; Ghimbeu, C. Olive mill wastewater: From a pollutant to green fuels, agricultural and water source and bio-fertilizer—Hydrothermal carbonization. Sci. Total Environ. 2020, 733, 139314. [Google Scholar] [CrossRef]
- Lv, D.; Xu, M.; Liu, X.; Zhan, Z.; Li, Z.; Yao, H. Effect of cellulose, lignin, alkali and alkaline earth metallic species on biomass pyrolysis and gasification. Fuel Process. Technol. 2010, 91, 903–909. [Google Scholar] [CrossRef]
- Campos, P.; De la Rosa, J.M. Assessing the Effects of Biochar on the Immobilization of Trace Elements and Plant Development in a Naturally Contaminated Soil. Sustainability 2020, 12, 6025. [Google Scholar] [CrossRef]
- Hernandez-Santana, V.; Fernández, J.E.; Rodriguez-Dominguez, C.M.; Romero, R.; Diaz-Espejo, A. The dynamics of radial sap flux density reflects changes in stomatal conductance in response to soil and air water deficit. Agric. For. Meteorol. 2016, 218–219, 92–101. [Google Scholar] [CrossRef]
- Obia, A.; Mulder, J.; Martinsen, V.; Cornelissen, G.; Borresen, T. In situ effects of biochar on aggregation, water retention and porosity in light-textured tropical soils. Soil Till. Res. 2016, 155, 35–44. [Google Scholar] [CrossRef]
- Ali, Q.; Iftikhar, W.; Shahid, S.; Hussain, A.I.; Perveen, R.; Iqbal, N.; Hussain, S.M.; Hussain, B.; Waseem, M.; Hussain, K.; et al. Alteration of plant physiology by the application of biochar for remediation of metals. In Handbook of Bioremediation Physiological, Molecular and Biotechnological Interventions; Hasanuzzaman, M., Vara Prasad, M., Eds.; Academic Press: Cambridge, MA, USA, 2021; pp. 245–262. [Google Scholar] [CrossRef]
- Seehausen, M.L.; Gale, N.V.; Dranga, S.; Hudson, V.; Liu, N.; Michener, J.; Thomas, S.C. Is there a positive synergistic effect of biochar and compost soil amendments on plant growth and physiological performance? Agronomy 2017, 7, 13. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Wang, X.; Song, N. Biochar and vermicompost improve the soil properties and the yield and quality of cucumber (Cucumis sativus L.) grown in plastic shed soil continuously cropped for different years. Agric. Ecosyst. Environ. 2021, 315, 107425. [Google Scholar] [CrossRef]
- San-Emeterio, L.M.; López-Núñez, R.; González-Vila, F.J.; González-Pérez, J.A. Evolution of Composting Process in Maize Biomass Revealed by Analytical Pyrolysis (Py-GC/MS) and Pyrolysis Compound Specific Isotope Analysis (Py-CSIA). Appl. Sci. 2021, 11, 6684. [Google Scholar] [CrossRef]
- Miranda Fernandes, R.D.; Cuevas, M.V.; Diaz-Espejo, A.; Hernandez-Santana, V. Effects of water stress on fruit growth and water relations between fruits and leaves in a hedgerow olive orchard. Agric. Water Manag. 2018, 210, 32–40. [Google Scholar] [CrossRef]
- Chalmers, D.J.; Mitchell, P.D.; van Heek, L. Control of peach tree growth and productivity by regulated water supply, tree density and summer pruning. J. Am. Soc. Hortic. Sci. 1981, 106, 307–312. [Google Scholar] [CrossRef]
- Fernández, J.E. Understanding olive adaptation to abiotic stresses as a tool to increase crop performance. Environ. Exp. Bot. 2014, 103, 158–179. [Google Scholar] [CrossRef]
- Fernández, J.E.; Palomo, M.J.; Diaz-Espejo, A.; Girón, I.F. Influence of partial soil wetting on water relation parameters of the olive tree. Agronomie 2003, 23, 545–552. [Google Scholar] [CrossRef]
- Campos, P.; Knicker, H.; López, R.; De la Rosa, J.M. Application of Biochar Produced from Crop Residues on Trace Elements Contaminated Soils: Effects on Soil Properties, Enzymatic Activities and Brassica rapa Growth. Agronomy 2021, 11, 1394. [Google Scholar] [CrossRef]
- Campos, P.; Miller, A.; Knicker, H.; Costa-Pereira, M.; Merino, A.; De la Rosa, J.M. Chemical, physical and morphological properties of biochars produced from agricultural residues: Implications for their use as soil amendment. Waste Manag. 2020, 105, 256–267. [Google Scholar] [CrossRef]
- Genty, B.; Briantais, J.M.; Baker, N.R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta Gen Subj. 1989, 990, 87–92. [Google Scholar] [CrossRef]
- Perez-Martin, A.; Michelazzo, C.; Torres-Ruiz, J.M.; Flexas, J.; Fernandez, J.E.; Sebastiani, L.; Diaz-Espejo, A. Regulation of photosynthesis and stomatal and mesophyll conductance under water stress and recovery in olive trees: Correlation with gene expression of carbonic anhydrase and aquaporins. J. Exp. Bot. 2014, 65, 3143–3156. [Google Scholar] [CrossRef] [Green Version]
- ISO 659-1988(E); Oilseeds—Determination of Oil Content (Reference Method). 2nd ed. International Organization for Standardization: Geneva, Switzerland; AENOR: Madrid, Spain, 1998; pp. 1–9.
- Garrido-Varo, A.; Sanchez, M.T.; De la Haba, M.J.; Torres, I.; Perez-Marin, D. Fast, low-cost and non-destructive physico-chemical analysis of virgin olive oils using near-infrared reflectance spectroscopy. Sensors 2017, 17, 2642. [Google Scholar] [CrossRef]
- Carvalho, M.T.M.; MAdari, B.E.; Bastiaans, L.; van Oort, P.A.J.; Leal, W.G.O.; Heinemann, A.B.; da Silva, M.A.S.; Maia, A.H.N.; Parsons, D.; Meinke, H. Properties of a clay soil from 1.5 to 3.5 years after biochar application and the impact on rice yield. Geoderma 2016, 276, 7–18. [Google Scholar] [CrossRef]
- Baiamonte, G.; Crescimanno, G.; Parrino, F.; De Pasquale, C. Effect of biochar on the physical and structural properties of a sandy soil. Catena 2019, 175, 294–303. [Google Scholar] [CrossRef]
- Bekele, A.; Roy, J.L.; Young, M.A. Use of biochar and oxidized lignite for reconstructing functioning agronomic topsoil: Effects on soil properties in a greenhouse study. Can. J. Soil Sci. 2015, 95, 269–285. [Google Scholar] [CrossRef]
- Blanco-Canqui, H. Does biochar application alleviate soil compaction? Review and data synthesis. Geoderma 2021, 404, 115317. [Google Scholar] [CrossRef]
- Angelopoulos, K.; Dichio, B.; Xiloyannis, C. Inhibition of photosynthesis in olive trees (Olea europaea L.) during water stress and rewatering. J. Exp. Bot. 1996, 47, 1093–1100. [Google Scholar] [CrossRef]
- Misson, L.; Limousin, J.M.; Rodriguez, R.; Letts, M.G. Leaf physiological responses to extreme droughts in Mediterranean Quercus ilex forest. Plant Cell Environ. 2010, 33, 1898–1910. [Google Scholar] [CrossRef]
- Diaz-Espejo, A.; Walcroft, A.S.; Fernandez, J.E.; Hafidi, B.; Palomo, M.J.; Giron, I.F. Modeling photosynthesis in olive leaves under drought conditions. Tree Physiol. 2006, 26, 1445–1456. [Google Scholar] [CrossRef]
- Boughalleb, F.; Hajlaoui, H. Physiological and anatomical changes induced by drought in two olive cultivars (cv Zalmati and Chemlali). Acta Physiol. Plant. 2011, 33, 53–65. [Google Scholar] [CrossRef]
- Fernández, J.E.; Diaz-Espejo, A.; D’Andria, R.; Sebastiani, L.; Tognetti, R. Potential and limitations of improving olive orchard design and management through modelling. Plant Biosyst. 2008, 142, 130–137. [Google Scholar] [CrossRef] [Green Version]
- Eyles, A.; Bound, S.A.; Oliver, G.; Corkrey, R.; Hardie, M.; Green, S.L.; Close, D.C. Impact of biochar amendment on the growth, physiology and fruit of a young commercial apple orchard. Trees 2015, 29, 1817–1826. [Google Scholar] [CrossRef]
- Baker, R.; Rosenqvist, E. Applications of chlorophyll fluorescence can improve crop production strategies: An examination of future possibilities. J. Exp. Bot. 2004, 55, 1607–1621. [Google Scholar] [CrossRef] [PubMed]
- Caruso, G.; Gucci, R.; Urbani, S.; Esposto, S.; Taticchi, A.; Di Maio, I.; Selvaggini, E.; Servili, M. Effect of different irrigation volumes during fruit development on quality of virgin olive oil of cv. Frantoio. Agric. Water Manag. 2014, 134, 94–103. [Google Scholar] [CrossRef]
- Dabbou, S.; Dabbou, S.; Chehab, H.; Taticchi, A.; Servili, M.; Hammami, M. Content of Fatty Acids and Phenolics in Coratina Olive Oil from Tunisia: Influence of Irrigation and Ripening. Chem. Biodivers. 2015, 12, 397–406. [Google Scholar] [CrossRef] [PubMed]
Sample Depth | Day of Year | Month | Treatment | ||||
---|---|---|---|---|---|---|---|
C | OB + GC | GC | OB | ||||
pH (1:5) | 0–5 cm | 118 | April | 7.6 ± 0.5 c, | 9.4 ± 0.1 b | 8.1 ± 0.2 c | 9.7 ± 0.4 a |
159 | June | 7.7 ± 0.1 c | 9.4 ± 0.0 b | 7.4 ± 0.0 d | 9.9 ± 0.0 a | ||
251 | September | 8.2 ± 0.0 c | 9.5 ± 0.0 a | 8.3 ± 0.0 c | 9.3 ± 0.0 b | ||
287 | October | 8.9 ± 0.1 b | 10.1 ± 0.1 a | 8.6 ± 0.0 c | 9.1 ± 0.0 b | ||
418 | February | 9.7 ± 0.7 | 8.5 ± 0.2 | 9.3 ± 0.7 | 9.4 ± 0.6 | ||
5–10 cm | 118 | April | 8.1 ± 0.2 b | 9.1 ± 0.2 a | 8.2 ± 0.2 b | 9.3 ± 0.4 a | |
159 | June | 7.7 ± 0.1 d | 8.1 ± 0.1 c | 8.3 ± 0.1 b | 9.7 ± 0.0 a | ||
287 | October | 9.1 ± 0.1 c | 10.1 ± 0.1 a | 9.4 ± 0.0 b | 9.0 ± 0.0 c | ||
418 | February | 9.4 ± 0.1 a | 9.0 ± 0.4 a | 9.9 ± 0.3 a | 9.3 ± 0.4 a | ||
10–20 cm | 118 | April | 7.9 ± 0.3 b | 9.0 ± 0.1 a | 8.6 ± 0.2 a | 9.0 ± 0.6 a | |
251 | September | 9.1 ± 0.1 a | 9.0 ± 0.2 a | 9.0 ± 0.0 a | 8.8 ± 0.0 a | ||
287 | October | 9.0 ± 0.0 a | 9.2 ± 0.0 a | 9.1 ± 0.0 a | 8.9 ± 0.0 a | ||
418 | February | 9.4 ± 0.0 a | 9.2 ± 0.2 a | 9.6 ± 0.3 a | 9.0 ± 0.1 a | ||
EC [µS cm−1] (1:5) | 0–5 cm | 118 | April | 191 ± 56 c | 743 ± 330 ab | 450 ± 167 b | 754 ± 211 a |
159 | June | 227 ± 81 d | 475 ± 39 c | 1242 ± 22 a | 789 ± 33 b | ||
251 | September | 1343 ± 12 c | 1798 ± 102 b | 2330 ± 42 a | 1185 ± 49 c | ||
287 | October | 904 ± 13 c | 1964 ± 12 a | 1193 ± 6 b | 473 ± 30 d | ||
418 | February | 240 ± 82 a | 130 ± 29 a | 160 ± 38 a | 188 ± 52 a | ||
5–10 cm | 118 | April | 167 ± 32 c | 307 ± 109 ab | 276 ± 112 b | 353 ± 110 a | |
159 | June | 431 ± 21 a | 180 ± 10 b | 309 ± 85 ab | 435 ± 26 a | ||
287 | October | 305 ± 25 b | 478 ± 2 a | 274 ± 7 b | 217 ± 4 c | ||
418 | February | 119 ± 25 a | 109 ± 6 a | 169 ± 52 a | 107 ± 8 a | ||
10–20 cm | 118 | April | 211 ± 69 a | 381 ± 262 a | 219 ± 38 a | 257 ± 76 a | |
251 | September | 379 ± 28 a | 480 ± 89 a | 410 ± 32 a | 506 ± 3 a | ||
287 | October | 226 ± 3 b | 330 ± 13 a | 243 ± 8 b | 189 ± 5 c | ||
418 | February | 144 ± 11 a | 137 ± 11 a | 142 ± 55 a | 104 ± 9 a | ||
Water content (105 °C; %) | 0–5 cm | 118 | April | 17.4 ± 1.6 a | 15.9 ± 2.9 a | 16.5 ± 1.6 a | 19.1 ± 3.7 a |
251 | September | 11.7 ± 0.4 b | 15.2 ± 0.3 a | 12.6 ± 0.5 b | 15.5 ± 0.1 a | ||
287 | October | 13.7 ± 0.3 b | 15.3 ± 2.4 b | 14.7 ± 0.5 b | 26.8 ± 0.6 a | ||
418 | February | 9.7 ± 0.1 ab | 7.4 ± 1.3 b | 5.4 ± 0.2 b | 18.6 ± 6.5 a | ||
5–10 cm | 118 | April | 16.8 ± 1.7 a | 13.5 ± 3.0 a | 15.2 ± 1.9 a | 17.3 ± 3.0 a | |
287 | October | 14.4 ± 0.3 b | 14.1 ± 0.7 b | 13.7 ± 0.3 b | 17.6 ± 0.2 a | ||
418 | February | 11.1 ± 3.2 b | 7.0 ± 0.3 b | 8.6 ± 0.7 b | 18.6 ± 0.6 a | ||
10–20 cm | 118 | April | 15.9 ± 2.2 a | 15.9 ± 2.2 a | 16.1 ± 0.3 a | 17.1 ± 1.9 a | |
251 | September | 15.1 ± 0.1 a | 15.1 ± 0.1 a | 15.8 ± 0.2 a | 15.9 ± 0.1 a | ||
287 | October | 14.9 ± 0.9 a | 14.9 ± 0.9 a | 14.8 ± 0.4 a | 16.9 ± 0.5 a | ||
418 | February | 12.6 ± 2.0 b | 7.0 ± 1.7 c | 12.6 ± 0.4 b | 18.3 ± 0.5 a |
Sample Depth | Season | |||||
---|---|---|---|---|---|---|
Treatment | ||||||
C | OB + GC | GC | OB | |||
Soil moisture (%) | 0–5 cm | Spring | 7.1 ± 6.5 c | 13.6 ± 6.0 b | 13.4 ± 6.7 b | 15.5 ± 5.4 a |
Summer | 11.6 ± 7.8 b | 20.3 ± 0.3 a | 19.9 ± 1.8 a | 20.1 ± 1.7 a | ||
Autumn | 16.7 ± 5.5 a | 19.9 ± 1.2 a | 18.6 ± 3.3 a | 19.0 ± 2.6 a | ||
Winter | 11.2 ± 7.9 c | 12.2 ± 6.9 bc | 17.5 ± 5.3 ab | 18.7 ± 2.6 a | ||
5–10 cm | Spring | 11.5 ± 6.2 b | 17.0 ± 3.3 a | 17.3 ± 2.9 a | 18.0 ± 2.3 a | |
Summer | 17.1 ± 4.8 b | 20.6 ± 0.1 a | 20.6 ± 0.2 a | 20.2 ± 3.0 a | ||
Autumn | 19.5 ± 2.2 a | 20.5. ± 0.2 a | 20.1 ± 1.3 a | 20.5 ± 0.2 a | ||
Winter | 17.3 ± 3.8 a | 16.1 ± 4.0 a | 20.4 ± 0.3 a | 20.4 ± 0.2 a | ||
Resistance to penetrability (kg cm−2) | Spring | 3.8 ± 1.5 a | 2.5 ± 1.5 b | 2.6 ± 1.5 b | 2.0 ± 1.1 c | |
Summer | 4.0 ± 1.9 a | 1.7 ± 1.1 b | 1.8 ± 1.0 b | 1.3 ± 0.8 b | ||
Autumn | 3.5 ± 1.7 a | 1.2 ± 0.3 c | 1.8 ± 0.9 b | 1.5 ± 0.9 b | ||
Winter | 4.7 ± 1.6 a | 2.0 ± 1.0 c | 3.7 ± 1.7 b | 2.6 ± 1.2 c |
Treatment | Olive Fruit Yield (kg per Tree) | Olive Water Content (% w/w) | Total Fat (% w/w) | Oil Free Acidity | Olive Oil Yield (kg per Tree) | Total Fat (% Dry Weight) |
---|---|---|---|---|---|---|
C | 10.1 ± 0.4 a | 61.7 ± 0.3 a | 15.1 ± 0.2 a | 0.31 ± 0.02 | 1.52 | 39.4 |
GC | 10.5 ± 0.3 a | 61.0 ± 0.4 a | 15.8 ± 0.4 a | 0.35 ± 0.03 | 1.66 | 40.5 |
OB + GC | 10.8 ± 0.2 a | 61.7 ± 0.3 a | 15.2 ± 0.2 a | 0.31 ± 0.03 | 1.64 | 39.7 |
OB | 11.9 ± 0.3 b | 63.9 ± 0.5 b | 14.1 ± 0.3 b | 0.29 ± 0.04 | 1.68 | 39.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De la Rosa, J.M.; Campos, P.; Diaz-Espejo, A. Soil Biochar Application: Assessment of the Effects on Soil Water Properties, Plant Physiological Status, and Yield of Super-Intensive Olive Groves under Controlled Irrigation Conditions. Agronomy 2022, 12, 2321. https://doi.org/10.3390/agronomy12102321
De la Rosa JM, Campos P, Diaz-Espejo A. Soil Biochar Application: Assessment of the Effects on Soil Water Properties, Plant Physiological Status, and Yield of Super-Intensive Olive Groves under Controlled Irrigation Conditions. Agronomy. 2022; 12(10):2321. https://doi.org/10.3390/agronomy12102321
Chicago/Turabian StyleDe la Rosa, José María, Paloma Campos, and Antonio Diaz-Espejo. 2022. "Soil Biochar Application: Assessment of the Effects on Soil Water Properties, Plant Physiological Status, and Yield of Super-Intensive Olive Groves under Controlled Irrigation Conditions" Agronomy 12, no. 10: 2321. https://doi.org/10.3390/agronomy12102321
APA StyleDe la Rosa, J. M., Campos, P., & Diaz-Espejo, A. (2022). Soil Biochar Application: Assessment of the Effects on Soil Water Properties, Plant Physiological Status, and Yield of Super-Intensive Olive Groves under Controlled Irrigation Conditions. Agronomy, 12(10), 2321. https://doi.org/10.3390/agronomy12102321