Combined Application of Inorganic and Organic Phosphorous with Inoculation of Phosphorus Solubilizing Bacteria Improved Productivity, Grain Quality and Net Economic Returns of Pearl Millet (Pennisetum glaucum [L.] R. Br.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Treatment Details
2.3. Crop Husbandry
2.4. Data Recorded
2.4.1. Soil Nutrient Analysis
2.4.2. Soil Microbial Population
2.4.3. Yield Related Parameters
2.4.4. Grain Nutrient Analysis
2.4.5. Phosphorus Use Efficiency (PUE)
2.5. Statistical and Economic Analysis
3. Results
3.1. Yield and Related Traits
3.2. Grain Quality and Phosphorus Use Efficiency
3.3. Soil-Related Parameters
3.4. Economic Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Abbreviation | Description |
P | Phosphorus |
PSB | Phosphorus solubilizing bacteria |
CS | Calcareous soils |
Fe | Iron |
Al | Aluminum |
AS | Acid soils |
INM | Integrated nutrient management |
DAP | Di-ammonium phosphate |
FM | Farmyard manure |
IP | Inorganic phosphorus |
OP | Organic phosphorus |
Zn | Zinc |
N | Nitrogen |
PUE | Phosphorus use efficiency |
LSD | Least significant difference |
BD | Bulk density |
References
- Zhang, L.Z.; Liu, R.H. Phenolic and carotenoid profiles and anti-proliferative activity of foxtail millet. Food Chem. 2015, 174, 495–501. [Google Scholar] [CrossRef] [PubMed]
- Singh, K.P.; Mishra, A.; Mishra, H.N. Fuzzy analysis of sensory attributes of bread prepared from millet-based composite flours. LWT-Food Sci. Technol. 2012, 48, 276–282. [Google Scholar] [CrossRef]
- Saleh, A.S.M.; Zhang, Q.; Chen, J.; Shen, Q. Millet grains: Nutritional quality, processing, and potential health benefits. Compr. Rev. Food Sci. Food Saf. 2013, 12, 281–295. [Google Scholar] [CrossRef]
- Singh, P.; Raghuvanshi, R.S. Finger millet for food and nutritional security. Afr. J. Food Sci. 2012, 6, 77–84. [Google Scholar]
- O’Kennedy, M.M.; Crampton, B.G.; Ozias-Akins, P. Pearl millet. In Compendium of Transgenic Crop Plants: Transgenic Cereals and Forage Grasses; Blackwell Publishing: Hoboken, NJ, USA, 2009; Volume 1, pp. 177–190. [Google Scholar]
- Reddy, I.N.B.L.; Reddy, D.S.; Narasu, M.L.; Sivaramakrishnan, S. Characterization of disease resistance gene homologues isolated from finger millet (Eleusine coracana L. Gaertn). Mol. Breed. 2011, 27, 315–328. [Google Scholar] [CrossRef] [Green Version]
- Ayub, M.; Nadeem, M.A.; Tanveer, A.; Tahir, M.; Khan, R.M.A. Interactive effect of different nitrogen levels and seeding rates on fodder yield and quality of pearl millet. Pak. J. Agric. Sci. 2007, 44, 592–596. [Google Scholar]
- ICRISAT (International Crops Research Institute for the Semiarid Tropics). Pearl Millet. 2016. Available online: http://exploreit.icrisat.org/page/pearl_millet/680/2742016 (accessed on 20 January 2016).
- Alemayehu, A.; Mohammed, W. Effect of seed sources and rates on the productivity of bread wheat (Triticum aestivum L.) varieties at Kersa, Eastern Ethiopia. J. Biol. Agri. Healthcare 2019, 9. [Google Scholar]
- Minhas, W.A.; Hussain, M.; Mehboob, N.; Nawaz, A.; Ul-Allah, S.; Rizwan, M.S.; Hassan, Z. Synergetic use of biochar and synthetic nitrogen and phosphorus fertilizers to improves maize productivity and nutrient retention in loamy soil. J. Plant Nutr. 2020, 43, 1356–1368. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, W.; Liang, G.; Wang, X.; Sun, J.; He, P. Effects of different organic manures on the biochemical and microbial characteristics of albic paddy soil in a short-term experiment. PLoS ONE 2015, 10, e0124096. [Google Scholar] [CrossRef]
- Bhatta, G.D.; Doppler, W.; Krishna Bahadur, K.C. Potentials of organic agriculture in Nepal. J. Agric. Environ. 2008, 10, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Aftab, M.; Zafar-ul-Hye, M.; Iqbal, Q.; Hussain, M.; Khan, M.M. Effect of organically amended growing substrates on the growth and physiological attributes of citrus plants. Commun. Soil Sci. Plant Anal. 2015, 46, 1863–1880. [Google Scholar] [CrossRef]
- Chen, M.; Cui, Y.; Bai, F.; Wang, J. Effect of two biogas residues’ application on copper and zinc fractionation and release in different soils. J. Environ. Sci. 2013, 25, 1865–1873. [Google Scholar] [CrossRef]
- Yanardag, I.H.; Zornoza, R.; Cano, A.F.; Yanardağ, A.B.; Mermut, A.R. Evaluation of carbon and nitrogen dynamics in different soil types amended with pig slurry, pig manure and its biochar by chemical and thermogravimetric analysis. Biol. Fertil. Soils 2014, 51, 183–196. [Google Scholar] [CrossRef]
- Mehmood, S.; Ahmed, W.; Alatalo, J.M.; Mahmood, M.; Imtiaz, M.; Ditta, A.; Ali, E.F.; Abdelrahman, H.; Slaný, M.; Antoniadis, V.; et al. Herbal plants-and rice straw-derived biochars reduced metal mobilization in fishpond sediments and improved their potential as fertilizers. Sci. Total Environ. 2022, 826, 154043. [Google Scholar] [CrossRef] [PubMed]
- Fageria, N.K.; Zhenli, L.H.; Baligar, V.C. Phosphorus Management in Crop Production; CRC Press: Boca Raton, FL, USA, 2017; p. 374. [Google Scholar]
- Atique-ur-Rehman Qamar, R.; Altaf, M.H.; Alwahibi, M.S.; Al-Yahyai, R.; Hussain, M. Phosphorus and potassium application improves fodder yield and quality of sorghum in Aridisol under diverse climatic conditions. Agriculture 2022, 12, 593. [Google Scholar] [CrossRef]
- Aon, M.; Khalid, M.; Naeem, M.A.; Zafar-ul-Hye, M.; Hussain, S.; Hussain, M.; Aslam, Z. Peanut-waste biochar and buffalo manure decreased nitrogen and phosphorus requirement of maize grown in an alkaline calcareous soil. Int. J. Agric. Biol. 2018, 20, 2661–2668. [Google Scholar]
- Bhattacharya, A. Changing environmental condition and phosphorus-use efficiency in plants. In Changing Climate and Resource Use Efficiency in Plants, 1st ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 241–305. [Google Scholar] [CrossRef]
- Wang, W.; Lai, D.Y.F.; Wang, C.; Pan, T.; Zeng, C. Effects of rice straw incorporation on active soil organic carbon pools in a subtropical paddy field. Soil Tillage Res. 2015, 152, 8–16. [Google Scholar] [CrossRef]
- Drinkwater, L.E.; Snapp, S.S. Nutrients in agroecosystems: Rethinking the management paradigm. Adv. Agron. 2007, 92, 163–186. [Google Scholar]
- Gyewali, B.; Maharjan, B.; Rana, G.; Pandey, R.; Pathak, R.; Poudel, P. Effect of different organic manures on growth, yield, and quality of radish (Raphanus Sativus). SAARC J. Agric. 2021, 18, 101–114. [Google Scholar] [CrossRef]
- Saha, S.; Ved, P.C.; Kundu, S.; Kumar, N.; Mina, B. Soil enzymatic activity as affected by long term application of farm yard manure and mineral fertilizer under a rainfed soybean—Wheat system in N-W Himalaya. Eur. J. Soil Biol. 2008, 44, 309–315. [Google Scholar] [CrossRef]
- Henderson, C.; Piya, S.; Kharel, M. Market-based strategies to upscale organic fertilizer use in Nepal to achieve productivity, resilience, and the SDGs. Food Chain 2016, 6, 51–64. [Google Scholar] [CrossRef]
- Vessey, K.J. Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 2003, 255, 571–586. [Google Scholar] [CrossRef]
- Chen, Y.P.; Rekha, P.D.; Arun, A.B.; Shen, F.T.; Lai, W.A.; Young, C.C. Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl. Soil Ecol. 2006, 34, 33–41. [Google Scholar] [CrossRef]
- Çakmakçı, R.; Dönmez, F.; Aydın, A.; Sahin, F. Growth promotion of plants by plant growth promoting rhizobacteria under greenhouse and two different field soil conditions. Soil Biol. Biochem. 2006, 38, 1482–1487. [Google Scholar] [CrossRef]
- Canbolat, M.Y.; Bilen, S.; Çakmakçı, R.; Sahin, F.; Aydın, A. Effect of plant growth-promoting bacteria and soil compaction on barley seedling growth, nutrient uptake, soil properties and rhizosphere microflora. Biol. Fertil. Soils 2006, 42, 350–357. [Google Scholar] [CrossRef]
- Alzoubi, M.M.; Gaibore, M. The effect of phosphate solubilizing bacteria and organic fertilization on availability of syrian rock phosphate and increase of triple superphosphate efficiency. World J. Agric. Sci. 2012, 8, 473–478. [Google Scholar]
- Panhwar, Q.A.; Othman, R.; Rahman, Z.A.; Meon, S. Contribution of phosphate-solubilizing bacteria in phosphorus bioavailability and growth enhancement of aerobic rice. Span. J. Agric. Res. 2011, 9, 810–820. [Google Scholar] [CrossRef] [Green Version]
- Bakhshandeh, E.; Rahimian, H.; Pirdashti, H.; Nematzadeh, G.A. Evaluation of phosphate-solubilizing bacteria on the growth and grain yield of rice (Oryza sativa L.) cropped in northern Iran. J. Appl. Microbiol. 2015, 119, 1371–1382. [Google Scholar] [CrossRef] [Green Version]
- Del Pilar López-Ortega, M.; Criollo-Campos, P.J.; Gómez-Vargas, R.M.; Camelo-Rusinque, M.; Estrada-Bonilla, G.; Garrido-Rubiano, M.F. Characterization of diazotrophic phosphate solubilizing bacteria as growth promoters of maize plants. Rev. Colomb. Biotecnol. 2013, 15, 115–123. [Google Scholar] [CrossRef]
- Ditta, A.; Imtiaz, M.; Mehmood, S.; Rizwan, M.S.; Mubeen, F.; Aziz, O. Rock phosphate-enriched organic fertilizer with phosphate-solubilizing microorganisms improves nodulation, growth and yield of legumes. Commun. Soil Sci. Plant Anal. 2018, 49, 2715–2725. [Google Scholar] [CrossRef]
- Naveed, M.; Mitter, B.; Yousaf, S.; Pastar, M.; Afzal, M.; Sessitsch, A. The endophyte Enterobacter sp. FD17: A maize growth enhancer selected based on rigorous testing of plant beneficial traits and colonization characteristics. Biol. Fertil. Soils 2014, 50, 249–262. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the degtjareff method for determining soil organic matter, and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- Blake, G.R.; Hartge, P. Bulk density. In Methods of Soil Analysis; The American Society of Agronomy, Inc.: Madison, WI, USA, 1986; Volume 1, pp. 363–376. [Google Scholar]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils; Prentice Hall Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- Subba Rao, N.S. Biofertilizers in Agriculture; Oxford and IBH Publishing Co: New Delhi, India, 1982. [Google Scholar]
- Subba Rao, N.S. Soil Microorganisms and Plant Growth; Oxford and IBH Publishing Co.: New Delhi, India,, 1977. [Google Scholar]
- Vyas, P.; Rahi, P.; Chauhan, A.; Gulati, A. Phosphate solubilization potential and stress tolerance of Eupenicillium parvumfrom tea soil. Mycol. Res. 2007, 111, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Cappuccino, J.G.; Sherman, N. Biochemical activities of microorganisms. In Microbiology: A Laboratory Manual, 1st ed.; The Benjamin/Cummings Publishing Co.: San Francisco, CA, USA, 1992; pp. 105–300. [Google Scholar]
- Krieg, N.R.; Holt, J.G. Bergey’s Manual of Systematic Bacteriology; Williams and Wilkins: Baltimore, UK, 1984. [Google Scholar]
- Parkinson, J.A.; Allen, S.E. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun. Soil Sci. Plant Anal. 1975, 6, 1–11. [Google Scholar] [CrossRef]
- Association of Official Agricultural Chemists; Horwitz, W. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemist: Washington, DC, USA, 1990. [Google Scholar]
- Fageria, N.K. The Use of Nutrients in Crop Plants; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dicky, D.A. Principles and Procedures of Statistics, A Biometrical Approach, 3rd ed.; McGraw Hill, Inc. Book Co.: New York, NY, USA, 1997; pp. 352–358. [Google Scholar]
- Hassan, W.; Bashir, S.; Hanif, S.; Sher, A.; Sattar, A.; Wasaya, A.; Atif, H.; Hussain, M. Phosphorus solubilizing bacteria and growth and productivity of mung bean (Vigna radiata). Pak. J. Bot. 2017, 49, 331–336. [Google Scholar]
- Selvi, K.B.; Paul, J.J.A.; Vijaya, V.; Saraswathi, K. Analyzing the efficacy of phosphate solubilizing microorganisms by enrichment culture techniques. Biochem. Mol. Biol. J. 2017, 3, 1. [Google Scholar]
- Mehrvarz, S.; Chaichi, M.R.; Alikhani, H.A. Effects of phosphate solubilizing microorganisms and phosphorus chemical fertilizer on yield and yield components of barely (Hordeum vulgare L.). Am.-Eurasian J. Agric. Environ. Sci. 2008, 3, 822–828. [Google Scholar]
- Walpola, B.C.; Yoon, M. Prospectus of phosphate solubilizing microorganisms and phosphorus availability in agricultural soils: A review. Afr. J. Microbiol. Res. 2012, 6, 6600–6605. [Google Scholar]
- Kushwah, L.; Sharma, R.K.; Kushwah, S.S.; Singh, G.P. Influence of organic manures and inorganic fertilizers on growth, yield and profitability of radish (Raphanus sativus L.). Ann. Plant Soil Res. 2020, 22, 14–18. [Google Scholar]
- Ekin, Z. Performance of phosphate solubilizing bacteria for improving growth and yield of sunflower (Helianthus annuus L.) in the presence of phosphorus fertilizer. Afr. J. Biotechnol. 2010, 9, 3794–3800. [Google Scholar]
- Gaind, S.; Gaur, A.C. Thermotolerant phosphate solubilizing microorganisms and their interaction with mung bean. Plant Soil 1991, 133, 141–149. [Google Scholar] [CrossRef]
- Cordell, D.; White, S. Tracking phosphorus security: Indicators of phosphorus vulnerability in the global food system. Food Secur. 2015, 7, 337–350. [Google Scholar] [CrossRef]
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Skrumsagermoller, I.; White, P. Function of macronutrients. In Marschner’s Mineral Nutrition of Higher Plants; Marschner, P., Ed.; Academic Press: London, UK, 2012; pp. 135–189. [Google Scholar]
- Gyaneshwar, P.; Kumar, G.N.; Parekh, L.J.; Poole, P.S. Role of soil microorganisms in improving P nutrition of plants. Plant Soil 2002, 245, 83–93. [Google Scholar] [CrossRef]
- Weil, R.R.; Brady, N.C. The Nature and Properties of Soil, 15th ed.; Pearson Education Limited: London, UK, 2017. [Google Scholar]
- Banwart, S.A.; Nikolaidis, N.P.; Zhu, Y.-G.; Peacock, C.L.; Sparks, D.L. Soil functions: Connecting earth’s critical zone. Annu. Rev. Earth Planet. Sci. 2019, 47, 333–359. [Google Scholar] [CrossRef]
- Gemenet, D.C.; Leiser, W.L.; Beggi, F.; Herrmann, L.H.; Vadez, V.; Rattunde, H.F.W.; Weltzien, E.; Hash, C.T.; Buerkert, A.; Haussmann, B.I.G. Overcoming phosphorus deficiency in West African pearl millet and sorghum production systems: Promising options for crop improvement. Front. Plant Sci. 2019, 7, 1389. [Google Scholar] [CrossRef]
Soil Properties | 2020 | 2021 |
---|---|---|
Soil texture | Sandy loam | Sandy loam |
EC | 2.22 dS m−1 | 2.23 dS m−1 |
pH | 8.3 | 8.32 |
Organic matter | 0.49% | 0.53% |
Available phosphorus | 6.40 mg kg−1 | 6.33 mg kg−1 |
Total nitrogen | 0.03% | 0.03% |
Available potassium | 110 mg kg−1 | 105 mg kg−1 |
Phosphorus Sources | Number of Grains Per Ear | |||||
---|---|---|---|---|---|---|
2020 | 2021 | |||||
No-PSB | PSB | Means | No-PSB | PSB | Means | |
No P | 3117 h | 3199 f | 3158 D | 3161 g | 3248 e | 3204 D |
IP (DAP) | 3216 e | 3285 b | 3250 B | 3259 d | 3350 b | 3304 B |
OP (FM) | 3163 g | 3258 d | 3210 C | 3206 f | 3309 c | 3257 C |
50% IP + 50% OP | 3277 c | 3349 a | 3312 A | 3308 c | 3402 a | 3355 A |
Means | 3193 B | 3273 A | 3233 B | 3327 A | ||
LSD at 5% for P = 3.01, PSB = 2.13 and P × PSB = 4.25 | LSD at 5% for P = 4.54, PSB = 3.21 and P × PSB = 6.42 | |||||
1000-grain weight (g) | ||||||
No P | 6.02 f | 6.15 e | 6.09 D | 6.04 e | 6.18 d | 6.11 D |
IP (DAP) | 6.26 c | 6.33 b | 6.30 B | 6.27 c | 6.34 b | 6.31 B |
OP (FM) | 6.16 e | 6.23 d | 6.20 C | 6.18 d | 6.25 c | 6.22 C |
50% IP + 50% OP | 6.33 b | 6.41 a | 6.37 A | 6.35 b | 6.45 a | 6.40 A |
Means | 6.19 B | 6.28 A | 6.21 B | 6.31 A | ||
LSD at 5% for P = 0.02, PSB = 0.01 and P × PSB = 0.02 | LSD at 5% for P = 0.01, PSB = 0.01 and P × PSB = 0.02 |
Phosphorus Sources | Grain Yield (t ha−1) | |||||
---|---|---|---|---|---|---|
2020 | 2021 | |||||
No-PSB | PSB | Means | No-PSB | PSB | Means | |
No P | 2.96 h | 3.11 g | 3.04 D | 2.95 f | 3.18 e | 3.07 D |
IP (DAP) | 3.29 e | 3.49 b | 3.39 B | 3.23 d | 3.46 b | 3.34 B |
OP (FM) | 3.15 f | 3.32 d | 3.24 C | 3.16 e | 3.28 c | 3.22 C |
50% IP + 50% OP | 3.38 c | 3.62 a | 3.50 A | 3.29 c | 3.68 a | 3.49 A |
Means | 3.20 B | 3.38 A | 3.16 B | 3.40 A | ||
LSD at 5% for P = 0.02, PSB = 0.01 and P × PSB = 0.02 | LSD at 5% for P = 0.03, PSB = 0.02 and P × PSB = 0.04 | |||||
Biological yield (t ha−1) | ||||||
No P | 10.51 g | 14.24 d | 12.38 D | 11.13 g | 14.64 d | 12.89 D |
IP (DAP) | 13.36 e | 16.50 b | 14.93 B | 13.83 e | 17.40 b | 15.61 B |
OP (FM) | 11.90 f | 15.21 c | 13.56 C | 12.47 f | 15.37 c | 13.92 C |
50% IP + 50% OP | 14.40 d | 18.33 a | 16.37 A | 14.31 de | 18.74 a | 16.53 A |
Means | 12.54 B | 16.07 A | 12.94 B | 16.54 A | ||
LSD at 5% for P = 0.25, PSB = 0.18 and P × PSB = 0.36 | LSD at 5% for P = 0.42, PSB = 0.29 and P × PSB = 0.59 |
Phosphorus Sources | Harvest Index (%) | |||||
---|---|---|---|---|---|---|
2020 | 2021 | |||||
No-PSB | PSB | Means | No-PSB | PSB | Means | |
No P | 28.21 a | 21.82 e | 25.01 A | 26.54 | 21.76 | 24.15 A |
IP (DAP) | 24.65 c | 21.18 f | 22.92 C | 23.34 | 19.89 | 21.62 C |
OP (FM) | 26.49 b | 21.83 e | 24.16 B | 25.32 | 21.32 | 23.32 B |
50% IP + 50% OP | 23.50 d | 19.73 g | 21.61 D | 23.02 | 19.69 | 21.36 C |
Means | 25.71 A | 21.14 B | 24.56 A | 20.67 B | ||
LSD at 5% for P = 0.39, B = 0.28 and P × B = 0.56 | LSD at 5% for P = 0.72, B = 0.51 and P × B = 1.02 | |||||
Phosphorus in Grain (%) | ||||||
No P | 0.81 | 0.96 | 0.89 C | 0.86 f | 0.94 de | 0.90 D |
IP (DAP) | 0.96 | 1.09 | 1.02 B | 0.96 d | 1.06 b | 1.01 B |
OP (FM) | 0.87 | 0.94 | 0.90 C | 0.93 e | 0.99 c | 0.96 C |
50% IP+ 50% OP | 1.10 | 1.26 | 1.18 A | 1.06 b | 1.17 a | 1.11 A |
Means | 0.93 B | 1.06 A | 0.95 B | 1.04 A | ||
LSD at 5% for P = 0.04, B = 0.03 and P × B = NS | LSD at 5% for P = 0.02, B = 0.01 and P × B = 0.03 |
Phosphorus Sources | PUE | |||||
---|---|---|---|---|---|---|
2020 | 2021 | |||||
No-PSB | PSB | Means | No-PSB | PSB | Means | |
No P | - | - | - | - | - | - |
IP (DAP) | 3.67 d | 4.29 c | 3.98 B | 3.04 c | 3.07 c | 3.06 B |
OP (FM) | 2.11 e | 2.37 e | 2.24 C | 2.26 d | 1.04 e | 1.65 C |
50% IP + 50% OP | 4.67 b | 5.67 a | 5.17 A | 3.78 b | 5.63 a | 4.71 A |
Means | 2.61 B | 3.08 A | 2.27 NS | 2.44 | ||
LSD at 5% for P = 0.22, PSB = 0.16 and P × PSB = 0.31 | LSD at 5% for P = 0.12, PSB = NS and P × PSB = 0.28 | |||||
Protein (g/100 g) | ||||||
No P | 8.23 | 9.12 | 8.68 D | 8.57 f | 9.36 cd | 8.97 C |
IP (DAP) | 8.73 | 9.55 | 9.14 B | 9.22 e | 9.38 bc | 9.30 B |
OP (FM) | 8.41 | 9.35 | 8.88 C | 8.53 f | 9.24 de | 8.89 C |
50% IP + 50% OP | 9.42 | 10.40 | 9.91 A | 9.51 b | 10.19 a | 9.85 A |
Means | 8.70 B | 9.60 A | 8.96 B | 9.55 A | ||
LSD at 5% for P = 0.14, PSB = 0.09 and P × PSB = NS | LSD at 5% for P = 0.09, PSB = 0.07 and P × PSB = 0.13 |
Phosphorus Sources | Iron (mg kg−1) | |||||
---|---|---|---|---|---|---|
2020 | 2021 | |||||
No-PSB | PSB | Means | No-PSB | PSB | Means | |
No P | 38.09 f | 42.86 e | 40.48 D | 38.36 f | 43.21 e | 40.78 D |
IP (DAP) | 46.62 d | 54.18 ab | 50.40 B | 46.86 d | 54.89 ab | 50.88 B |
OP (FM) | 41.08 e | 52.19 bc | 46.63 C | 41.35 e | 52.63 bc | 46.99 C |
50% IP + 50% OP | 50.16 c | 55.88 a | 53.02 A | 50.36 c | 56.29 a | 53.33 A |
Means | 43.99 B | 51.27 A | 44.23 B | 51.75 A | ||
LSD at 5% for P = 1.67, B = 1.18 and P × B = 2.36 | LSD at 5% for P = 1.81, B = 1.28 and P × B = 2.56 | |||||
Zinc (mg kg−1) | ||||||
No P | 22.1 f | 27.3 d | 24.7 D | 24.5 e | 29.3 c | 26.9 D |
IP (DAP) | 28.3 c | 31.2 b | 29.7 B | 30.0 c | 31.5 b | 30.8 B |
OP (FM) | 25.7 e | 28.0 cd | 26.9 C | 27.7 d | 30.0 c | 28.9 C |
50% IP+ 50% OP | 30.9 b | 34.5 a | 32.7 A | 31.5 b | 36.5 a | 34.0 A |
Means | 26.8 B | 30.2 A | 28.5 B | 31.8 A | ||
LSD at 5% for P = 0.58, B = 0.41 and P × B = 0.83 | LSD at 5% for P = 0.69, B = 0.49 and P × B = 0.97 |
Phosphorus Sources | Soil Porosity (%) | |||||
---|---|---|---|---|---|---|
2020 | 2021 | |||||
No-PSB | PSB | Means | No-PSB | PSB | Means | |
No P | 34.33 | 34.36 | 34.35 A | 34.42 | 34.45 | 34.44 A |
IP (DAP) | 34.71 | 35.17 | 34.94 A | 34.79 | 35.26 | 35.03 A |
OP (FM) | 30.47 | 30.29 | 30.38 C | 30.56 | 30.39 | 30.47 C |
50% IP + 50% OP | 32.74 | 32.38 | 32.56 B | 32.83 | 32.47 | 32.65 B |
Means | 33.06 | 33.05 | 33.15 | 33.14 | ||
LSD at 5% for P = 0.68, PSB = 0.48 and P × PSB = NS | LSD at 5% for P = 0.68, PSB = 0.48 and P × PSB = NS | |||||
Bulk density (g cm−3) | ||||||
No P | 1.36 | 1.35 | 1.35 C | 1.43 | 1.42 | 1.42 C |
IP (DAP) | 1.35 | 1.35 | 1.35 C | 1.42 | 1.42 | 1.42 C |
OP (FM) | 1.46 | 1.48 | 1.47 A | 1.53 | 1.55 | 1.54 A |
50% IP + 50% OP | 1.43 | 1.44 | 1.44 B | 1.50 | 1.51 | 1.51 B |
Means | 1.40 | 1.40 | 1.47 | 1.47 | ||
LSD at 5% for P = 0.02, PSB = NS and P × PSB = NS | LSD at 5% for P = 0.02, PSB = NS and P × PSB = NS |
Phosphorus Sources | Soil Organic Carbon (%) | |||||
---|---|---|---|---|---|---|
2020 | 2021 | |||||
No-PSB | PSB | Means | No-PSB | PSB | Means | |
No P | 0.62 ab | 0.67 a | 0.64 A | 0.69 ab | 0.74 a | 0.71 A |
IP (DAP) | 0.39 c | 0.59 ab | 0.49 C | 0.46 c | 0.66 ab | 0.56 C |
OP (FM) | 0.61 ab | 0.61 ab | 0.61 AB | 0.68 ab | 0.68 ab | 0.68 AB |
50% IP + 50% OP | 0.58 ab | 0.54 b | 0.56 B | 0.65 ab | 0.61 b | 0.63 B |
Means | 0.55 B | 0.60 A | 0.62 B | 0.67 A | ||
LSD at 5% for P = 0.07, PSB = 0.05 and P × PSB = 0.09 | LSD at 5% for P = 0.07, PSB = 0.05 and P × PSB = 0.09 | |||||
Soil total nitrogen (%) | ||||||
No P | 0.02 | 0.03 | 0.03 B | 0.03 | 0.03 | 0.03 C |
IP (DAP) | 0.02 | 0.04 | 0.03 B | 0.03 | 0.04 | 0.03 C |
OP (FM) | 0.06 | 0.06 | 0.06 A | 0.05 | 0.06 | 0.06 A |
50% IP + 50% OP | 0.04 | 0.05 | 0.05 A | 0.04 | 0.05 | 0.05 B |
Means | 0.04 | 0.05 | 0.04 | 0.05 | ||
LSD at 5% for P = 0.02, PSB = NS and P × PSB = NS | LSD at 5% for P = 8.05, PSB = NS and P × PSB = NS |
Phosphorus Sources | Total Available Phosphorus (mg kg−1) | |||||
---|---|---|---|---|---|---|
2020 | 2021 | |||||
No-PSB | PSB | Means | No-PSB | PSB | Means | |
No P | 17.74 f | 19.27 e | 18.51 D | 17.22 g | 19.13 f | 18.18 D |
IP (DAP) | 22.38 c | 23.62 b | 23.00 B | 21.56 d | 23.28 b | 22.42 B |
OP (FM) | 20.48 d | 22.77 c | 21.63 C | 19.54 e | 22.85 c | 21.20 C |
50% IP + 50% OP | 23.64 b | 24.85 a | 24.25 A | 22.87 c | 24.66 a | 23.76 A |
Means | 21.06 B | 22.63 A | 20.30 B | 22.48 A | ||
LSD at 5% for P = 0.38, PSB = 0.27 and P × PSB = 0.54 | LSD at 5% for P = 0.16, PSB = 0.11 and P × PSB = 0.23 | |||||
Soil microbial population (103 CFU g−1) | ||||||
No P | 40.33 f | 124.3 d | 82.33 D | 54.67 e | 154.0 c | 104.3 C |
IP (DAP) | 42.00 f | 130.7 c | 86.33 C | 50.00 f | 156.0 c | 103.0 C |
OP (FM) | 52.00 e | 145.3 b | 98.67 B | 62.33 d | 173.0 b | 117.7 B |
50% IP + 50% OP | 51.00 e | 157.0 a | 104.0 A | 63.00 d | 185.0 a | 124.0 A |
Means | 46.33 B | 139.33 A | 57.50 B | 167.0 A | ||
LSD at 5% for P = 1.56, PSB = 1.11 and P × PSB = 2.21 | LSD at 5% for P = 2.61, PSB = 1.84 and P × PSB = 3.69 |
Treatments | 2020 | 2021 | |||||||
---|---|---|---|---|---|---|---|---|---|
Total Cost (USD ha−1) | Gross Income (USD ha−1) | Net Income (USD ha−1) | BCR | Total Cost (USD ha−1) | Gross Income (USD ha−1) | Net Income (USD ha−1) | BCR | ||
No-PSB | No P | 721.6 | 1471.6 | 749.6 | 2.0 | 737.9 | 1786.5 | 1048.6 | 2.4 |
IP (DAP) | 758.6 | 1672.6 | 914.0 | 2.2 | 774.2 | 1997.7 | 1223.5 | 2.6 | |
OP (FM) | 737.9 | 1581.9 | 844.0 | 2.1 | 737.9 | 1925.3 | 1187.4 | 2.6 | |
50% IP + 50% OP | 736.9 | 1733.1 | 996.6 | 2.4 | 784.7 | 2044.4 | 1259.7 | 2.6 | |
PSB | No P | 732.7 | 1613.9 | 881.3 | 2.2 | 748.9 | 1998.2 | 1249.3 | 2.7 |
IP (DAP) | 769.7 | 1825.3 | 1055.7 | 2.4 | 785.9 | 2212.8 | 1427.6 | 2.8 | |
OP (FM) | 748.9 | 1724.4 | 975.5 | 2.3 | 748.9 | 2065.0 | 1316.1 | 2.8 | |
50% IP + 50% OP | 747.6 | 1917.3 | 1169.7 | 2.6 | 795.7 | 2365.1 | 1569.4 | 3.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Majeed, A.; Farooq, M.; Naveed, M.; Hussain, M. Combined Application of Inorganic and Organic Phosphorous with Inoculation of Phosphorus Solubilizing Bacteria Improved Productivity, Grain Quality and Net Economic Returns of Pearl Millet (Pennisetum glaucum [L.] R. Br.). Agronomy 2022, 12, 2412. https://doi.org/10.3390/agronomy12102412
Majeed A, Farooq M, Naveed M, Hussain M. Combined Application of Inorganic and Organic Phosphorous with Inoculation of Phosphorus Solubilizing Bacteria Improved Productivity, Grain Quality and Net Economic Returns of Pearl Millet (Pennisetum glaucum [L.] R. Br.). Agronomy. 2022; 12(10):2412. https://doi.org/10.3390/agronomy12102412
Chicago/Turabian StyleMajeed, Abdul, Muhammad Farooq, Muhammad Naveed, and Mubshar Hussain. 2022. "Combined Application of Inorganic and Organic Phosphorous with Inoculation of Phosphorus Solubilizing Bacteria Improved Productivity, Grain Quality and Net Economic Returns of Pearl Millet (Pennisetum glaucum [L.] R. Br.)" Agronomy 12, no. 10: 2412. https://doi.org/10.3390/agronomy12102412
APA StyleMajeed, A., Farooq, M., Naveed, M., & Hussain, M. (2022). Combined Application of Inorganic and Organic Phosphorous with Inoculation of Phosphorus Solubilizing Bacteria Improved Productivity, Grain Quality and Net Economic Returns of Pearl Millet (Pennisetum glaucum [L.] R. Br.). Agronomy, 12(10), 2412. https://doi.org/10.3390/agronomy12102412