The Interactive Impact of Straw Mulch and Biochar Application Positively Enhanced the Growth Indexes of Maize (Zea mays L.) Crop
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Location and Materials Preparation
2.2. Experimental Details
2.3. Crop Husbandry
2.4. Pre-Experiment Maize Straw Biochar and Soil Analysis
2.5. Plant Growth Parameters
2.5.1. Plant Height and Stem Thickness
2.5.2. Leaf Area Index
2.5.3. Leaves, Stem, Root, and Crop Growth Rate (CGR) of Maize Crop
2.5.4. Rate and Duration of Grain Filling
Grain Filling Rate (mg day−1)
Grain Filling Duration
2.6. Statistical Analysis
3. Results
3.1. Effect on Plant Height (cm) and STEM Diameter (mm)
3.2. Effect on the Number of Leaves of Maize Crop
3.3. Effect on the Leaf Area Index of Maize Crop
3.4. Leaves, Stem, Root Growth Rate and Crop Growth Rate of Maize Crop (mg day−1)
3.5. Grain Filling Rate (mg day−1) and Grain Filling Duration
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects: The 2017 Revision, Methodology of the United Nations Population Estimates and Projections; United Nations: New York, NY, USA, 2017. [Google Scholar]
- Beddington, J.R.; Asaduzzaman, M.; Clark, M.E.; Bremauntz, A.F.; Guillou, M.D.; Jahn, M.M.; Lin, E.; Mamo, T.; Negra, C.; Nobre, C.A.J.A.; et al. The role for scientists in tackling food insecurity and climate change. Agric. Food Secur. 2012, 1, 10. [Google Scholar] [CrossRef] [Green Version]
- Peerzado, M.B.; Magsi, H.; Sheikh, M.J. Land use conflicts and urban sprawl: Conversion of agriculture lands into urbanization in Hyderabad, Pakistan. J. Saudi Soc. Agric. Sci. 2019, 18, 423–428. [Google Scholar] [CrossRef]
- Hussain, M.I.; Farooq, M.; Muscolo, A.; Rehman, A.J.E.S.; Research, P. Crop diversification and saline water irrigation as potential strategies to save freshwater resources and reclamation of marginal soils—A review. Environ. Sci. Pollut. Res. 2020, 27, 28695–28729. [Google Scholar] [CrossRef] [PubMed]
- Green, T.R.; Yu, Q.; Ma, L.; Wang, T.-D. Crop water use efficiency at multiple scales. Agric. Water Manag. 2010, 97, 1099–1101. [Google Scholar] [CrossRef]
- Shrivastava, P.; Kumar, R.J. Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi J. Biol. Sci. 2015, 22, 123–131. [Google Scholar] [CrossRef] [Green Version]
- World Water Assessment Programme (United Nations); UN-Water. Water in a Changing World; Earthscan: London, UK, 2009. [Google Scholar]
- Zhao, H.; Xiong, Y.-C.; Li, F.-M.; Wang, R.-Y.; Qiang, S.-C.; Yao, T.-F.; Mo, F. Plastic film mulch for half growing-season maximized WUE and yield of potato via moisture-temperature improvement in a semi-arid agroecosystem. Agric. Water Manag. 2012, 104, 68–78. [Google Scholar] [CrossRef]
- Lobell, D.B.; Burke, M.B.; Tebaldi, C.; Mastrandrea, M.D.; Falcon, W.P.; Naylor, R.L.J.S. Prioritizing climate change adaptation needs for food security in 2030. Science 2008, 319, 607–610. [Google Scholar] [CrossRef]
- Javed, S.A.; Arif, M.S.; Shahzad, S.M.; Ashraf, M.; Kausar, R.; Farooq, T.H.; Hussain, M.I.; Shakoor, A. Can different salt formulations revert the depressing effect of salinity on maize by modulating plant biochemical attributes and activating stress regulators through improved N Supply? Sustainability 2021, 13, 8022. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, F.; Gao, G.; Zhao, J.; Wang, X.; Zhang, R.J.A. Production and cultivated area variation in cereal, rice, wheat and maize in China (1998–2016). Agronomy 2019, 9, 222. [Google Scholar] [CrossRef] [Green Version]
- Roohi, M.; Arif, M.S.; Guillaume, T.; Yasmeen, T.; Riaz, M.; Shakoor, A.; Farooq, T.H.; Shahzad, S.M.; Bragazza, L. Role of fertilization regime on soil carbon sequestration and crop yield in a maize-cowpea intercropping system on low fertility soils. Geoderma 2022, 428, 116152. [Google Scholar] [CrossRef]
- Busscher, W.J.; Novak, J.M.; Evans, D.E.; Watts, D.W.; Niandou, M.; Ahmedna, M.J.S.S. Influence of pecan biochar on physical properties of a Norfolk loamy sand. Soil Sci. 2010, 175, 10–14. [Google Scholar] [CrossRef] [Green Version]
- Blanco-Canqui, H.J. Biochar and soil physical properties. Soil Sci. Soc. Am. J. 2017, 81, 687–711. [Google Scholar] [CrossRef] [Green Version]
- Domingues, R.R.; Trugilho, P.F.; Silva, C.A.; Melo, I.C.N.D.; Melo, L.C.; Magriotis, Z.M.; Sanchez-Monedero, M.A.J.P.O. Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PLoS ONE 2017, 12, e0176884. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.; Chen, T.; Farooq, M.; Luan, C.; Wu, Q.; Wanning, D.; Xu, S.; Li-Xue, W.J.A.J. The residual impact of straw mulch and biochar amendments on soil physiochemical properties and yield of maize under rainfed system. Agron. J. 2021, 113, 1102–1120. [Google Scholar] [CrossRef]
- Novak, J.; Johnson, M.G.J. Elemental and Spectroscopic Characterization of Low-Temperature (350 °C) Lignocellulosic-and Manure-based Designer Biochars and Their Use as Soil Amendments. In Biochar from Biomass and Waste: Fundamentals and Applications; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Cantrell, K.B.; Hunt, P.G.; Uchimiya, M.; Novak, J.M.; Ro, K.S.J. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 2012, 107, 419–428. [Google Scholar] [CrossRef]
- Ippolito, J.A.; Spokas, K.A.; Novak, J.M.; Lentz, R.D.; Cantrell, K.B. Biochar elemental composition and factors influencing nutrient retention. In Biochar for Environmental Management; Routledge: London, UK, 2015; pp. 139–163. [Google Scholar]
- Lashari, M.S.; Ye, Y.; Ji, H.; Li, L.; Kibue, G.W.; Lu, H.; Zheng, J.; Pan, G.J.J. Biochar–manure compost in conjunction with pyroligneous solution alleviated salt stress and improved leaf bioactivity of maize in a saline soil from central China: A 2-year field experiment. J. Sci. Food Agric. 2015, 95, 1321–1327. [Google Scholar] [CrossRef]
- Nur, M.; Utomo, W.; Handayanto, E.; Nugroho, W.; Islami, T.J.A.I.N. The use of biochar fortified compost on calcareous soil of East Nusa Tenggara, Indonesia: 1. evolution of organic matter and nitrogen on composting of farm yard manure (FYM) and Siam weed (Chromolaena odorata L.) biomass added with biochar as a bulking agent. Adv. Nat. Appl. Sci. 2014, 8, 175–183. [Google Scholar]
- Mekuria, W.; Noble, A.; Sengtaheuanghoung, O.; Hoanh, C.T.; Bossio, D.; Sipaseuth, N.; McCartney, M.; Langan, S.J.A. Organic and clay-based soil amendments increase maize yield, total nutrient uptake, and soil properties in Lao PDR. Agroecol. Sustain. Food Syst. 2014, 38, 936–961. [Google Scholar] [CrossRef]
- Khan, I.; Luan, C.; Qi, W.; Wang, X.; Yu, B.; Rehman, A.; Khan, A.A.; Khan, J.; Li-Xue, W.J.J. The residual impact of straw mulch and biochar amendments on grain quality and amino acid contents of rainfed maize crop. J. Plant Nutr. 2022, 1–13. [Google Scholar] [CrossRef]
- Beadle, C. Plant growth analysis. In Techniques in Bioproductivity and Photosynthesis; Elsevier: Amsterdam, The Netherlands, 1985; pp. 20–25. [Google Scholar]
- Stell, R.; Torrie, J.; Dickey, D. Principles and Procedures of Statistics: A Biometrical Approach; MacGraw-Hill: New York, NY, USA, 1980. [Google Scholar]
- Cybulak, M.; Sokołowska, Z.; Boguta, P.J.A. Impact of biochar on physicochemical properties of Haplic Luvisol soil under different land use: A plot experiment. Agronomy 2019, 9, 531. [Google Scholar] [CrossRef] [Green Version]
- Jamil, M.; Qasim, M.; Umar, M.J.J. Utilization of sewage sludge as organic fertilizer in sustainable agriculture. J. Appl. Sci. 2006, 6, 531–535. [Google Scholar] [CrossRef]
- Latare, A.; Kumar, O.; Singh, S.; Gupta, A.J.E.E. Direct and residual effect of sewage sludge on yield, heavy metals content and soil fertility under rice–wheat system. Ecol. Eng. 2014, 69, 17–24. [Google Scholar] [CrossRef]
- Fagbenro, J.A.; Oshunsanya, S.O.; Oyeleye, B.A.J. Effects of gliricidia biochar and inorganic fertilizer on moringa plant grown in an oxisol. Commun. Soil Sci. Plant Anal. 2015, 46, 619–626. [Google Scholar] [CrossRef]
- Fagbenro, J.; Oshunsanya, S.; Onawumi, O.J.A. Effect of Saw Dust Biochar and NPK 15:15:15 Inorganic Fertilizer on Moringa oleifera Seedlings Grown in an Oxisol. Agrosearch 2013, 13, 57–68. [Google Scholar] [CrossRef]
- Ahmad, M.; Wang, X.; Hilger, T.H.; Luqman, M.; Nazli, F.; Hussain, A.; Zahir, Z.A.; Latif, M.; Saeed, Q.; Malik, H.A.J.A. Evaluating biochar-microbe synergies for improved growth, yield of maize, and post-harvest soil characteristics in a semi-arid climate. Agronomy 2020, 10, 1055. [Google Scholar] [CrossRef]
- Varela Milla, O.; Rivera, E.B.; Huang, W.-J.; Chien, C.; Wang, Y.-M.J. Agronomic properties and characterization of rice husk and wood biochars and their effect on the growth of water spinach in a field test. J. Soil Sci. Plant Nutr. 2013, 13, 251–266. [Google Scholar] [CrossRef] [Green Version]
- Manolikaki, I.; Diamadopoulos, E.J.C. Positive effects of biochar and biochar-compost on maize growth and nutrient availability in two agricultural soils. Commun. Soil Sci. Plant Anal. 2019, 50, 512–526. [Google Scholar] [CrossRef]
- Abukari, A. Effect of Rice Husk Biochar on Maize Productivity in the Guinea Savannah Zone of Ghana. Master’s Thesis, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana, 2014. [Google Scholar]
- Zhao, T.-J.; Sun, S.; Liu, Y.; Liu, J.-M.; Liu, Q.; Yan, Y.-B.; Zhou, H.-M.J. Regulating the drought-responsive element (DRE)-mediated signaling pathway by synergic functions of trans-active and trans-inactive DRE binding factors in Brassica napus. J. Biol. Chem. 2006, 281, 10752–10759. [Google Scholar] [CrossRef] [Green Version]
- Viger, M.; Hancock, R.D.; Miglietta, F.; Taylor, G.J.G.B. More plant growth but less plant defence? First global gene expression data for plants grown in soil amended with biochar. GCB Bioenergy 2015, 7, 658–672. [Google Scholar] [CrossRef]
- Burke, J.; Longer, D.; Oosterhuis, D.; Kawakami, E.; Loka, D.J.S. The effect of source of biochar on cotton seedling growth and development. Summ. Ark. Cotton Res. 2012, 84–88. [Google Scholar]
- Njoku, C.; Uguru, B.; Chibuike, C.J.I. Use of biochar to improve selected soil chemical properties, carbon storage and maize yield in an Ultisol in Abakaliki Ebonyi State, Nigeria. Int. J. Environ. Agric. Res. 2016, 2, 15–22. [Google Scholar]
- Ahmad, M.; Akbar, H.; Jan, M.T.; Khattak, M.J.K.; Bari, A.J.S. Effect of seeding depth, nitrogen placement method and biochar on the growth, yield and its related parameters of sugar beet. Sarhad J. Agric. 2015, 31, 224–231. [Google Scholar] [CrossRef]
- Inal, A.; Gunes, A.; Sahin, O.; Taskin, M.; Kaya, E.J.S.U. Impacts of biochar and processed poultry manure, applied to a calcareous soil, on the growth of bean and maize. Soil Use Manag. 2015, 31, 106–113. [Google Scholar] [CrossRef]
- Zheng, H.; Wang, Z.; Deng, X.; Herbert, S.; Xing, B.J.G. Impacts of adding biochar on nitrogen retention and bioavailability in agricultural soil. Geoderma 2013, 206, 32–39. [Google Scholar] [CrossRef]
- Iqbal, B.; Kong, F.; Ullah, I.; Ali, S.; Li, H.; Wang, J.; Khattak, W.A.; Zhou, Z.J.A. Phosphorus application improves the cotton yield by enhancing reproductive organ biomass and nutrient accumulation in two cotton cultivars with different phosphorus sensitivity. Agronomy 2020, 10, 153. [Google Scholar] [CrossRef] [Green Version]
- Agegnehu, G.; Bass, A.M.; Nelson, P.N.; Bird, M.I.J. Benefits of biochar, compost and biochar–compost for soil quality, maize yield and greenhouse gas emissions in a tropical agricultural soil. Sci. Total Environ. 2016, 543, 295–306. [Google Scholar] [CrossRef]
- Schulz, H.; Dunst, G.; Glaser, B.J.A. Positive effects of composted biochar on plant growth and soil fertility. Agron. Sustain. Dev. 2013, 33, 817–827. [Google Scholar] [CrossRef] [Green Version]
- Brennan, A.; Jiménez, E.M.; Alburquerque, J.A.; Knapp, C.W.; Switzer, C.J.E.P. Effects of biochar and activated carbon amendment on maize growth and the uptake and measured availability of polycyclic aromatic hydrocarbons (PAHs) and potentially toxic elements (PTEs). Environ. Pollut. 2014, 193, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Shakoor, A.; Arif, M.S.; Shahzad, S.M.; Farooq, T.H.; Ashraf, F.; Altaf, M.M.; Ahmed, W.; Tufail, M.A.; Ashraf, M. Does biochar accelerate the mitigation of greenhouse gaseous emissions from agricultural soil?—A global meta-analysis. Environ. Res. 2021, 202, 111789. [Google Scholar] [CrossRef]
- Rehman, A.; Arif, M.S.; Tufail, M.A.; Shahzad, S.M.; Farooq, T.H.; Ahmed, W.; Mehmood, T.; Farooq, M.R.; Javed, Z.; Shakoor, A. Biochar potential to relegate metal toxicity effects is more soil driven than plant system: A global meta-analysis. J. Clean. Production 2021, 316, 128276. [Google Scholar] [CrossRef]
Treatments | Seedling | Jointing | Tasseling | Grain Filling | Maturity | Seedling | Jointing | Tasseling | Grain Filling | Maturity | |
---|---|---|---|---|---|---|---|---|---|---|---|
Main Effects | |||||||||||
Year | 2018 | 2019 | |||||||||
(cm) | |||||||||||
Biochar | B0 | 43.9 C | 97.0 C | 203 C | 206 D | 235 C | 47.4 B | 105 D | 202 D | 214 D | 235 C |
B1 | 47.1 B | 111 B | 215 B | 216 C | 250 B | 48.2 B | 115 C | 218 C | 224 C | 255 B | |
B2 | 49.8 AB | 117 A | 219 B | 227 B | 259 A | 52.5 A | 123 B | 225 B | 231 B | 262 AB | |
B3 | 51.9 A | 108 B | 230 A | 235 A | 251 AB | 53.2 A | 127 A | 234 A | 240 A | 268 A | |
Mulching | NM | 49.9 A | 111 A | 223 A | 229 A | 255 A | 51.4 | 122 | 226 A | 236 A | 260 A |
SM | 46.5 B | 105 B | 212 B | 214 B | 243 B | 49.1 | 113 | 213 B | 219 B | 250 B | |
Interaction | |||||||||||
B0 | NM | 42.1 | 89.0 d | 192 | 199 | 225 e | 47.9 | 102 | 194 | 207 | 230 |
B1 | 45.2 | 113 ab | 212 | 208 | 251 bc | 47.3 | 111 | 214 | 214 | 250 | |
B2 | 48.3 | 116 ab | 215 | 220 | 260 ab | 50.2 | 116 | 218 | 221 | 257 | |
B3 | 50.2 | 104 c | 225 | 229 | 235 de | 51.2 | 122 | 227 | 232 | 262 | |
B0 | SM | 45.7 | 105 c | 213 | 214 | 244 cd | 46.8 | 108 | 210 | 222 | 240 |
B1 | 49.0 | 109 bc | 219 | 225 | 249 bc | 49.0 | 118 | 222 | 233 | 260 | |
B2 | 51.2 | 119 a | 225 | 235 | 258 ab | 54.7 | 130 | 232 | 241 | 268 | |
B3 | 53.5 | 112 b | 236 | 241 | 267 a | 55.2 | 133 | 240 | 247 | 274 |
Treatments | Seedling | Jointing | Tasseling | Grain Filling | Maturity | Seedling | Jointing | Tasseling | Grain Filling | Maturity | |
---|---|---|---|---|---|---|---|---|---|---|---|
Main Effects | |||||||||||
Year | 2018 | 2019 | |||||||||
(mm) | |||||||||||
Biochar | B0 | 9.76 | 22.13 | 24.77 C | 24.09 | 24.55 | 10.60 | 24.34 | 24.92 | 26.60 | 26.33 |
B1 | 10.35 | 23.01 | 25.81 B | 24.91 | 25.36 | 10.79 | 25.00 | 26.20 | 27.05 | 26.88 | |
B2 | 11.17 | 24.33 | 26.48 AB | 25.62 | 25.78 | 11.50 | 25.68 | 27.00 | 27.95 | 25.48 | |
B3 | 11.10 | 22.17 | 26.80 A | 25.10 | 25.54 | 11.25 | 26.00 | 27.09 | 27.23 | 25.36 | |
Mulching | NM | 10.85 | 23.47 A | 26.47 | 25.39 A | 25.67 | 11.15 | 25.37 | 26.77 | 27.48 | 26.32 |
SM | 10.33 | 22.35 B | 25.47 | 24.47 B | 24.95 | 10.92 | 25.14 | 25.84 | 26.94 | 25.70 | |
Interaction | |||||||||||
B0 | NM | 9.72 | 22.63 ab | 23.97 d | 23.85 | 24.18 | 10.57 | 23.97 | 24.18 | 26.48 | 26.27 |
B1 | 9.88 | 22.38 bc | 24.90 cd | 24.06 | 24.70 | 10.80 | 25.00 | 25.90 | 26.67 | 26.92 | |
B2 | 10.83 | 24.27 a | 26.87 ab | 25.41 | 25.65 | 11.12 | 26.12 | 27.13 | 28.67 | 25.18 | |
B3 | 10.90 | 20.13 d | 26.13 abc | 24.56 | 25.27 | 11.20 | 25.48 | 26.13 | 25.93 | 24.42 | |
B0 | SM | 9.80 | 21.63 cd | 25.58 bcd | 24.33 | 24.92 | 10.63 | 24.72 | 25.65 | 26.72 | 26.38 |
B1 | 10.82 | 23.63 ab | 26.72 abc | 25.77 | 26.02 | 10.78 | 25.00 | 26.50 | 27.43 | 26.83 | |
B2 | 11.50 | 24.40 a | 26.10 bcd | 25.82 | 25.91 | 11.88 | 25.25 | 26.87 | 27.23 | 25.77 | |
B3 | 11.30 | 24.21 a | 27.46 a | 25.64 | 25.81 | 11.30 | 26.52 | 28.05 | 28.52 | 26.30 |
Treatments | Seedling | Jointing | Tasseling | Grain Filling | Maturity | Seedling | Jointing | Tasseling | Grain Filling | Maturity | |
---|---|---|---|---|---|---|---|---|---|---|---|
Main Effects | |||||||||||
Year | 2018 | 2019 | |||||||||
Biochar | B0 | 4.77 C | 7.11 C | 8.72 | 9.81 C | 12.7 C | 5.30 | 6.94 B | 8.61 C | 10.7 C | 12.6 B |
B1 | 5.42 B | 7.89 B | 9.72 | 10.0 BC | 13.1 BC | 6.00 | 8.40 A | 9.41 B | 11.2 B | 13.1 AB | |
B2 | 5.77 AB | 7.83 B | 9.61 | 10.5 AB | 13.5 B | 5.90 | 8.74 A | 9.74 B | 11.4 AB | 13.5 A | |
B3 | 5.96 A | 8.50 A | 9.56 | 11.0 A | 14.0 A | 5.95 | 8.68 A | 10.91 A | 11.8 A | 13.8 A | |
Mulching | NM | 5.38 | 7.97 | 8.36 B | 10.0 | 13.0 B | 5.44 | 7.98 | 9.18 B | 10.7 | 12.9 |
SM | 5.57 | 7.69 | 10.4 A | 10.6 | 13.7 A | 6.13 | 8.41 | 10.2 A | 11.9 | 13.5 | |
Interaction | |||||||||||
B0 | NM | 4.88 | 7.11 | 7.77 | 9.33 | 12.0 | 5.11 | 6.33 | 8.44 | 10.3 | 12.4 |
B1 | 5.30 | 8.44 | 8.67 | 9.55 | 12.8 | 5.80 | 8.33 | 8.66 | 10.7 | 13.0 | |
B2 | 5.58 | 8.00 | 8.67 | 10.3 | 13.0 | 5.51 | 8.67 | 8.88 | 10.7 | 13.1 | |
B3 | 5.77 | 8.33 | 8.33 | 10.8 | 14.0 | 5.35 | 8.58 | 10.7 | 11.1 | 13.2 | |
B0 | SM | 4.66 | 7.11 | 9.67 | 10.3 | 13.3 | 5.50 | 7.55 | 8.77 | 11.0 | 12.8 |
B1 | 5.54 | 7.33 | 10.8 | 10.4 | 13.5 | 6.20 | 8.48 | 10.1 | 11.8 | 13.3 | |
B2 | 5.95 | 7.67 | 10.5 | 10.7 | 13.9 | 6.28 | 8.81 | 10.6 | 12.2 | 13.8 | |
B3 | 6.14 | 8.66 | 10.8 | 11.2 | 14.1 | 6.55 | 8.78 | 11.1 | 12.6 | 14.3 |
Treatments | Seedling | Jointing | Tasseling | Grain Filling | Maturity | Seedling | Jointing | Tasseling | Grain Filling | Maturity | |
---|---|---|---|---|---|---|---|---|---|---|---|
Year | 2018 | 2019 | |||||||||
Biochar | B0 | 0.50 C | 1.14 C | 2.43 C | 4.59 C | 3.97 C | 0.51 | 1.20 B | 2.61 D | 4.51 C | 4.09 D |
B1 | 0.54 BC | 1.37 B | 3.04 B | 4.98 B | 4.52 B | 0.59 | 1.72 A | 3.29 C | 5.00 B | 4.48 C | |
B2 | 0.57 AB | 1.70 A | 3.46 B | 5.26 B | 4.71 AB | 0.60 | 1.79 A | 3.84 B | 5.24 B | 4.82 B | |
B3 | 0.61 A | 1.80 A | 3.05 A | 5.81 A | 4.96 A | 0.64 | 1.89 A | 3.07 A | 6.04 A | 5.38 A | |
Mulching | NM | 0.57 | 1.53 A | 3.02 | 4.93 B | 4.39 B | 0.57 | 1.72 | 3.23 | 5.01 | 4.58 |
SM | 0.54 | 1.48 B | 2.97 | 5.38 A | 4.69 A | 0.60 | 1.58 | 3.18 | 5.39 | 4.81 | |
Interaction | |||||||||||
B0 | NM | 0.48 | 0.82 e | 2.33 e | 4.33 | 3.65 d | 0.49 | 1.13 | 2.53 d | 4.43 | 3.90 |
B1 | 0.54 | 1.62 abc | 3.37 ab | 4.88 | 4.49 bc | 0.57 | 1.92 | 3.75 a | 4.91 | 4.49 | |
B2 | 0.62 | 1.79 ab | 3.45 ab | 5.04 | 4.81 b | 0.59 | 1.87 | 3.80 a | 5.00 | 4.77 | |
B3 | 0.64 | 1.89 a | 2.93 cd | 5.48 | 4.60 bc | 0.63 | 1.97 | 2.83 c | 5.69 | 5.15 | |
B0 | SM | 0.51 | 1.46 c | 2.54 de | 4.85 | 4.30 c | 0.53 | 1.27 | 2.69 cd | 4.59 | 4.28 |
B1 | 0.54 | 1.13 d | 2.72 de | 5.07 | 4.55 bc | 0.60 | 1.52 | 2.83 c | 5.09 | 4.47 | |
B2 | 0.53 | 1.60 bc | 3.47 a | 5.49 | 4.61 bc | 0.62 | 1.71 | 3.88 a | 5.48 | 4.87 | |
B3 | 0.58 | 1.71 abc | 3.16 bc | 6.13 | 5.32 a | 0.65 | 1.81 | 3.32 b | 6.38 | 5.61 |
Treatments | Leaves | Stem | Root | CGR | Leaves | Stem | Root | CGR | |
---|---|---|---|---|---|---|---|---|---|
Main Effects | |||||||||
Year | 2018 | 2019 | |||||||
g/m2/day | |||||||||
Biochar | B0 | 5.55 C | 3.86 C | 2.69 C | 9.41 C | 4.43 D | 5.05 D | 4.83 B | 9.48 D |
B1 | 5.86 BC | 4.40 C | 4.25 B | 10.3 C | 5.70 C | 7.36 C | 5.07 B | 13.1 C | |
B2 | 6.36 AB | 5.34 B | 5.82 A | 11.7 B | 6.51 B | 8.3 B | 6.19 A | 14.8 B | |
B3 | 6.76 A | 6.70 A | 6.08 A | 13.5 A | 7.17 A | 10.4 A | 6.40 A | 17.6 A | |
Mulching | NM | 5.66 B | 4.50 B | 4.55 B | 10.2 B | 5.20 B | 7.02 B | 5.23 B | 12.2 B |
SM | 6.60 A | 5.65 A | 4.87 A | 12.3 A | 6.71 A | 8.56 A | 6.02 A | 15.3 A | |
Interaction | |||||||||
B0 | NM | 5.20 | 3.11 | 2.66 | 8.31 | 3.75 | 4.83 e | 4.59 | 8.59 g |
B1 | 5.41 | 3.91 | 4.27 | 9.32 | 5.24 | 6.66 d | 4.41 | 11.9 e | |
B2 | 5.79 | 5.11 | 5.42 | 10.9 | 5.50 | 6.83 d | 5.90 | 12.3 e | |
B3 | 6.25 | 5.89 | 5.85 | 12.1 | 6.29 | 9.75 b | 6.01 | 16.0 c | |
B0 | SM | 5.91 | 4.61 | 2.72 | 10.5 | 5.10 | 5.27 e | 5.07 | 10.4 f |
B1 | 6.30 | 4.90 | 4.22 | 11.2 | 6.17 | 8.07 c | 5.74 | 14.2 d | |
B2 | 6.93 | 5.57 | 6.23 | 12.5 | 7.53 | 9.82 b | 6.48 | 17.3 b | |
B3 | 7.27 | 7.51 | 6.30 | 14.8 | 8.04 | 11.1 a | 6.79 | 19.1 a |
Year | 2018 | 2019 | |||
---|---|---|---|---|---|
Treatments | Graining Filling Rate | Grain Filling Duration | Graining Filling Rate | Grain Filling Duration | |
Biochar | B0 | 2.23 B | 47.4 A | 2.33 C | 47.4 A |
B1 | 2.60 A | 45.6 B | 2.62 B | 45.9 B | |
B2 | 2.79 A | 44.8 B | 2.87 AB | 44.4 C | |
B3 | 2.76 A | 42.7 C | 3.01 A | 43.0 D | |
Mulching | SM | 2.55 | 46.0 A | 2.63 | 45.6 A |
NM | 2.64 | 44.3 B | 2.78 | 44.7 B | |
Interaction | |||||
B0 | NM | 2.17 | 48.5 | 2.23 | 48.0 |
B1 | 2.73 | 46.7 | 2.57 | 46.1 | |
B2 | 2.71 | 45.7 | 2.76 | 45.0 | |
B3 | 2.60 | 43.0 | 2.96 | 43.3 | |
B0 | SM | 2.29 | 46.3 | 2.42 | 46.7 |
B1 | 2.48 | 44.6 | 2.66 | 45.6 | |
B2 | 2.88 | 43.8 | 2.97 | 43.7 | |
B3 | 2.92 | 42.5 | 3.06 | 42.7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, I.; Iqbal, B.; Khan, A.A.; Inamullah; Rehman, A.; Fayyaz, A.; Shakoor, A.; Farooq, T.H.; Wang, L.-x. The Interactive Impact of Straw Mulch and Biochar Application Positively Enhanced the Growth Indexes of Maize (Zea mays L.) Crop. Agronomy 2022, 12, 2584. https://doi.org/10.3390/agronomy12102584
Khan I, Iqbal B, Khan AA, Inamullah, Rehman A, Fayyaz A, Shakoor A, Farooq TH, Wang L-x. The Interactive Impact of Straw Mulch and Biochar Application Positively Enhanced the Growth Indexes of Maize (Zea mays L.) Crop. Agronomy. 2022; 12(10):2584. https://doi.org/10.3390/agronomy12102584
Chicago/Turabian StyleKhan, Ismail, Babar Iqbal, Asif Ali Khan, Inamullah, Abdul Rehman, Amna Fayyaz, Awais Shakoor, Taimoor Hassan Farooq, and Li-xue Wang. 2022. "The Interactive Impact of Straw Mulch and Biochar Application Positively Enhanced the Growth Indexes of Maize (Zea mays L.) Crop" Agronomy 12, no. 10: 2584. https://doi.org/10.3390/agronomy12102584
APA StyleKhan, I., Iqbal, B., Khan, A. A., Inamullah, Rehman, A., Fayyaz, A., Shakoor, A., Farooq, T. H., & Wang, L. -x. (2022). The Interactive Impact of Straw Mulch and Biochar Application Positively Enhanced the Growth Indexes of Maize (Zea mays L.) Crop. Agronomy, 12(10), 2584. https://doi.org/10.3390/agronomy12102584