Increasing Yield and Economic Value of Upland Rice Using Inorganic Fertilizer and Poultry Manure in Dryland
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Description of Varieties
2.3. Experimental Treatments and Design
2.4. Cultivation Practices
2.5. Observed Parameter
2.5.1. Soil Sampling and Analysis
2.5.2. Economic Efficiency Assessment
2.6. Data Analysis
3. Results
3.1. Karst Soils Characteristics
3.2. Growth and Productivity
3.3. Cluster Analysis
3.4. Yield Profitability (Economic Analysis)
4. Discussion
4.1. Karst Dryland Characteristicts
4.2. Growth and Productivity
4.3. Cluster Analysis
4.4. Yield Profitability (Economic Analysis)
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kusuma, L. Agricultural Development Performance 2005. pp. 229–280. Available online: https://adoc.pub/kinerja-pembangunan-pertanian-2005.html (accessed on 13 October 2022).
- Hindersah, R.; Kurniati, N.; Sukarsa, D.E.; Rustam, R.; Kuswaryan, S. Sustainable food crop production in karst area of Parigi, Pangandaran, West Java: Preliminary study. J. Perspekt. Pembiayaan Pembang. Drh. 2020, 8, 41–54. [Google Scholar] [CrossRef]
- Research Center for Soil and Agroclimate. Survey and Mapping of Land Resources for Agricultural Development, Land Rehabilitation, and Soil Conservation in the Special Region of Yogyakarta, Scale 1:50.000; Land Resources Research Project: Bogor, Indonesia, 1994. [Google Scholar]
- Setiawan, T.; Isnaini, S.; Asghaf, N.M.; Effendi, I. Karst Groundwater Reimbursement System in Wonosari—Baron Hydrogeological Subsystem, Gunungkidul Regency, Special Region of Yogyakarta, Based on 18 O and 2 H Isotope Analysis. J. Lingkung. Bencana Geol. 2018, 9, 143–155. [Google Scholar]
- Azurianti, A.; Wulansari, R.; Athallah, F.N.F.; Prijono, S. The Relation Study of Soil Nutrient to Productivity of Productive Tea Plants in Pagar Alam Tea Plantation, South Sumatra. J. Tanah Sumberd. Lahan 2022, 9, 153–161. [Google Scholar] [CrossRef]
- Jin, Y.T.; Li, X.F.; Cai, Y.; Hu, H.X.; Liu, Y.F.; Fu, S.W.; Zhang, B.R. Effects of Straw Returning with Chemical Fertilizer on Soil Enzyme Activities and Microbial Community Structure in Rice-Rape Rotation. Huanjing Kexue/Environ. Sci. 2021, 42, 3985–3996. [Google Scholar] [CrossRef]
- Mestawut Adane, M.; Misganaw, A.; Alamnie, G. Effect of Combined Organic and Inorganic Fertilizer on Yield and Yield Components of Food Barley (Hordeum vulgare L.). Food Sci. Qual. Manag. 2020, 95, 1–8. [Google Scholar] [CrossRef]
- Dada, O.A.; Togun, A.O.; Adediran, J.A.; Nwilene, F.E. Growth, Nutrient Uptake Efficiency and Yield of Upland Rice as Influenced by Two Compost Types in Tropical Rainforest-Derived Savannah Transition Zone. Agric. Sci. 2014, 5, 383–393. [Google Scholar] [CrossRef] [Green Version]
- Arianti, F.D.; Pertiwi, M.D.; Triastono, J.; Purwaningsih, H.; Minarsih, S.; Kristamtini; Hindarwati, Y.; Jauhari, S.; Sahara, D.; Nurwahyuni, E. Study of Organic Fertilizers and Rice Varieties on Rice Production and Methane Emissions in Nutrient-Poor Irrigated Rice Fields. Sustainability 2022, 14, 5919. [Google Scholar] [CrossRef]
- Shankar, T.; Sairam, M.; Maitra, S. Influence of integrated nutrient management on growth and yield attributes of summer rice (Oryza sativa L.). Crop Res. 2020, 55, 1–5. [Google Scholar] [CrossRef]
- Orluchukwu, J.A.; Emem, A.; Omovbude, S. Effect of Agro-organic Wastes and NPK Fertilizer on Upland Rice Performance in Port Harcourt, Rivers State, Nigeria. Greener J. Agric. Sci. 2019, 9, 102–109. [Google Scholar] [CrossRef]
- Saidu, A.; Abayomi, Y.A. Interactive effects of organic and inorganic fertilizers on the performance of Upland Rice (Oryza sativa L.) Cultivars. Int. J. Agric. Sci. 2015, 5, 399–406. [Google Scholar]
- Sohel, M.H.; Sarker, A.; Razzak, A.; Hashem, A. Integrated use of organic and inorganic fertilizers on the growth and yield of Boro rice (cv. BRRI dhan 29). J. Biosci. Agric. Res. 2016, 10, 857–865. [Google Scholar] [CrossRef]
- Rizal, M.; Murtryarny, E.; Hamdan, S. Adaptation Test of Several New Superior Varieties (VUB) of Paddy (Oryza sativa L.) Gogo to Red Yellow Podsolic Land (YPL). J. Karya Ilm. Multidisplin 2022, 2, 91–98. [Google Scholar]
- Alavan, A.; Hayati, R.; Hayati, E. Effect of fertilization on growth of upfield rice varieties (Oryza sativa L.). J. Floratek 2015, 10, 61–68. [Google Scholar]
- Gusmiatun, G.; Marlina, N. Role in Reducing Organic Fertilizers Inorganic Fertilizer on Rice Culture Upland. Agrikan J. Agribisnis Perikan. 2019, 11, 91. [Google Scholar] [CrossRef]
- Zhang, Q. Strategies for developing green super rice. Proc. Natl. Acad. Sci. USA 2007, 104, 16402–16409. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Ali, J.; Zhang, C.; Li, Z.; Zhang, Q. Genomic breeding of green super rice varieties and their deployment in asia and africa. Theor. Appl. Genet. 2020, 133, 1427–1442. [Google Scholar] [CrossRef] [Green Version]
- Sastro, Y.; Suprihanto; Hairmansis, A.; Hasmi, I.; Satoto; Rumanti, I.A.; Susanti, Z.; Kusbiantoro, B.; Handoko, D.; Rahmini; et al. Description of the New Superior Varieties of Rice; Indonesian Agency for Agricultural Research and Development, Indonesian Ministry of Agriculture: Jakarta, Indonesia, 2021; p. 132. [Google Scholar]
- Wihardjaka, A.; Harsanti, E.S.; Ardiwinata, A.N. Effect of fertilizer management on potassium dynamics and yield of rainfed lowland rice in Indonesia. Chil. J. Agric. Res. 2022, 82, 33–43. [Google Scholar] [CrossRef]
- Apriyani, S.; Wahyuni, S.; Harsanti, E.S.; Zu’amah, H.; Kartikawati, R.; Sutriadi, M.T. Effect of inorganic fertilizer and farmyard manure to available P, growth and rice yield in rainfed lowland Central Java. IOP Conf. Ser. Earth Environ. Sci. 2021, 648, 012190. [Google Scholar] [CrossRef]
- Srihartanto, E.; Widodo, S. The Potency of the Rice Crop Index Development through Adjustment of Agroclimate and Water Management Situated in Rainfed Field Gunungkidul. Agromet 2020, 34, 75–88. [Google Scholar] [CrossRef]
- Adji, T.; Haryono, E. Geomorfologi Dan Hidrologi Karst. 2004. Available online: https://www.researchgate.net/publication/290608050_GEOMORFOLOGI_DAN_HIDROLOGI_KARST (accessed on 7 November 2022).
- Bajracharya, M.; Sapkota, M. Profitability and productivity of potato (Solanum tuberosum) in Baglung District, Nepal. Agric. Food Secur. 2017, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Kharumnuid, P.; Sarkar, S.; Singh, P.; Priya, S.; Tomar, B.S.; Singh, D.K.; Pandey, N.K. An assessment of contract farming system for potato seed production in Punjab—A case study. Indian J. Hortic. 2017, 74, 453–457. [Google Scholar] [CrossRef]
- Dube, A.K.; Ozkan, B.; Ayele, A.; Diriba, I.; Aliye, A. Technical efficiency and profitability of potato production by smallholder farmers: The case of Dinsho District, Bale Zone of Ethiopia. J. Dev. Agric. Econ. 2018, 10, 225–235. [Google Scholar] [CrossRef] [Green Version]
- Bonabana, W.J.; Mugonola, B.; Ajibo, S.; Kirinya, J.; Kato, E.; Kalibwani, R.; Kasenge, V.; Nyamwaro, S.; Tumwesigye, S.; Chiuri, W. Agricultural profitability and technical efficiency: The case of pineapple and potato in SW Uganda. Afr. J. Agric. Resour. Econ. 2017, 8, 145–159. [Google Scholar]
- Muhammad, C.N.; Hariyati, Y. Prestigious Perception of Potato Farming: An Overview of the Economy, Socio-Culture, and Its Existence. Agric. Soc. Econ. J. 2021, 21, 25–32. [Google Scholar] [CrossRef]
- Bajkani, J.K. Economic Analysis “Cost of Production of Major Vegetables” in Balochistan, Pakistan. IOSR J. Agric. Vet. Sci. 2013, 6, 12–19. [Google Scholar] [CrossRef]
- Abera, S.; Assaye, A. Profitability analysis of rain fed upland rice production under smallholder farmers in Libokemkem District, North Western Ethiopia. Int. J. Agric. Econ. 2021, 6, 111–115. [Google Scholar] [CrossRef]
- Johan, P.D.; Ahmed, O.H.; Omar, L.; Hasbullah, N.A. Phosphorus Transformation in Soils Following Co-Applicationof Charcoal and Wood Ash. Agronomy 2021, 11, 2010. [Google Scholar] [CrossRef]
- Sultana, M.; Islam, R.M.; Jahiruddin, M.; Rahman, M.M.; Abedin, A.M.; Mahmud, A.A. Nitrogen, phosphorus and sulphur mineralization in soil treated with amended municipal solid waste compost under aerobic and anaerobic conditions. Int. J. Recycl. Org. Waste Agric. 2021, 10, 245–256. [Google Scholar] [CrossRef]
- Thepsilvisut, O.; Chutimanukul, P.; Sae-Tan, S.; Ehara, H. Effect of chicken manure and chemical fertilizer on the yield and qualities of white mugwort at dissimilar harvesting times. PLoS ONE 2022, 17, e0266190. [Google Scholar] [CrossRef] [PubMed]
- de Sousa Lima, J.R.; da Conceição Cavalcanti De Goes, M.; Hammecker, C.; Antonino, A.C.D.; de Medeiros, É.V.; de Sá Barretto Sampaio, E.V.; de Barros Silva Leite, M.C.; da Silva, V.P.; de Souza, E.S.; Souza, R. Effects of PM and Biochar on Acrisol Soil Properties and Yield of Common Bean. A Short-Term Field Experiment. Agriculture 2021, 11, 290. [Google Scholar] [CrossRef]
- Schmidt, F.; Knoblauch, R. Extended use of PM as a nutrient source for flood-irrigated rice crop. Pesqui. Agropecuária Bras. 2020, 55, e00708. [Google Scholar] [CrossRef] [Green Version]
- Moe, K.; Htwe, A.Z.; Dien, D.C.; Kajihara, Y.; Yamakawa, T. Effects of organic fertilizer applied using the estimated mineralizable nitrogen method on nitrogen uptake, growth characteristics, yield, and yield components of Genkitsukushi rice (Oryza sativa L.). J. Plant Nutr. 2020, 43, 1400–1417. [Google Scholar] [CrossRef]
- Soe, K.H.; Ngwe, K.; Soe, Y.M.; Win, K.K.; Oo, A.N. Effect of different raw materials with PM on composting for rubber nursery production. OALib 2022, 9, 1–15. [Google Scholar] [CrossRef]
- Asfaw, M.D. Effects of animal manures on growth and yield of maize (Zea mays L.). J. Plant Sci. Phytopathol. 2022, 6, 33–39. [Google Scholar] [CrossRef]
- Islam, M.R.; Talukder, M.M.H.; Hoque, M.A.; Uddin, S.; Hoque, T.S.; Rea, R.S.; Alorabi, M.; Gaber, A.; Kasim, S. Lime and Manure Amendment Improve Soil Fertility, Productivity and Nutrient Uptake of Rice-Mustard-Rice Cropping Pattern in an Acidic Terrace Soil. Agriculture 2021, 11, 1070. [Google Scholar] [CrossRef]
- Koninger, J.; Lugato, E.; Panagos, P.; Kochupillai, M.; Orgiazzi, A.; Briones, M.J.J. Manure management and soil biodiversity: Towards more sustainable food systems in the EU. Agric. Syst. 2021, 194, 103251. [Google Scholar] [CrossRef]
- Tiwari, D.N.; Tripathi, S.R.; Tripathi, M.P.; Khatri, N.; Bastola, B.R. Genetic Variability and Correlation Coefficients of Major Traits in Early Maturing Rice under Rainfed Lowland Environments of Nepal. Adv. Agric. 2019, 2019, 5975901. [Google Scholar] [CrossRef] [Green Version]
- Puli, M.R.; Prasad, P.R.K.; Babu, P.R.; Jayalakshmi, M.; Burla, S.R. Effect of organic and inorganic sources of nutrients on rice crop. Oryza 2016, 53, 151–159. [Google Scholar]
- Bargaz, A.; Lyamlouli, K.; Chtouki, M.; Zeroual, Y.; Dhiba, D. Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System. Front. Microbiol. 2018, 9, 1606. [Google Scholar] [CrossRef] [Green Version]
- Siavoshi, M.; Laware, S.L.; Laware, L.S. Effect of Organic Fertilizer on Growth and Yield Components in Rice (Oryza sativa L.). J. Agric. Sci. 2011, 3, 217–224. [Google Scholar] [CrossRef] [Green Version]
- Yadav, S.K.; Babu, S.; Yadav, G.S.; Singh, R.; Yadav, M.K. Role of Organic Sources of Nutrients in Rice (Oryza sativa) Based on High Value Cropping Sequence. In Organic Farming—A Promising Way of Food Production; IntechOpen: London, UK, 2016; Chapter 7; pp. 131–147. [Google Scholar] [CrossRef] [Green Version]
- Kakar, K.; Xuan, T.D.; Noori, Z.; Aryan, S.; Gulab, G. Effects of organic and inorganic fertilizer application on growth, yield, and grain quality of rice. Agriculture 2020, 10, 544. [Google Scholar] [CrossRef]
- Iqbal, A.; He, L.; Ali, I.; Ullah, S.; Khan, A.; Khan, A.; Akhtar, K.; Wei, S.; Zhao, Q.; Zhang, J.; et al. Manure combined with chemical fertilizer increases rice productivity by improving soil health, post-anthesis biomass yield, and nitrogen metabolism. PLoS ONE 2020, 15, e0238934. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Lu, J.; Ren, T.; Hussain, S.; Guo, C.; Wang, S.; Cong, R.; Li, X. Effects of nitrogen and tiller type on grain yield and physiological responses in rice. AoB Plants 2017, 9, plx012. [Google Scholar] [CrossRef] [PubMed]
- Moe, K.; Mg, K.W.; Yamakawa, T. Combined Effect of Organic Manures and Inorganic Fertilizers on the Growth and Yield of Hybrid Rice (Palethwe-1). Combined Effect of Organic Manures and Inorganic Fertilizers on the Growth and Yield of Hybrid Rice (Palethwe-1). Am. J. Plant Sci. 2017, 8, 1022–1042. [Google Scholar] [CrossRef] [Green Version]
- Jamil, A.; Mejaya, M.J.; Praptana, R.H.; Subekti, N.A.; Aqil, M.; Musadda, A.; Putri, F. Description of Superior Varieties of Food Crops; Indonesian Center for Food Crop Research and Development: Bogor, Indonesia, 2016; p. 143. [Google Scholar]
- Redda, A.; Hailegebriel, K.; Yirgalem, T.; Redae, W.; Welegerima, G.; Husien, S. Effects of N and P Fertilizer Application Rates on Yield and Economic Performance of Upland Rice in Tselemti District of N.W Tigray, Ethiopia. J. Rice Res. 2018, 6, 1000191. [Google Scholar] [CrossRef]
- Herve, D.S.; Annih, M.G.; Kenyi, M.D.; Christopher, S. Effect of different doses of NPK fertilizer on the growth and yield of rice in Ndop, North West of Cameroon. Afr. J. Agric. Res. 2017, 12, 1244–1252. [Google Scholar] [CrossRef] [Green Version]
- Okelola, O.E.; Ariyo, O.C.; Mbah, S.O.; Anozie, R.O.; Olowoyo, B.F. Profitability of Upland Rice (Oryza sativa) in Yakurr Local Government Area of Cross River State. Int. J. Appl. Res. Technol. 2015, 4, 48–54. [Google Scholar]
- Chidiebere-Mark, N.; Ohajianya, D.; Obasi, P.; Onyeagocha, S. Profitability of rice production in different production systems in Ebonyi State, Nigeria. Open Agric. 2019, 4, 237–246. [Google Scholar] [CrossRef]
- Rosmiza, M.Z.; Amriah, B.; Rosniza, A.C.R. Impact of Rice Straw Development Towards Agricultural Environment and Farmers’ Socio-Economy in MADA Region, Kedah. Int. Conf. Hist. Soc. Dev. 2012, 54, 245–249. [Google Scholar] [CrossRef]
- Magahud, J.C.; Dalumpines, S.L.P.; Sanchez, P.B.; Collado, W.B. Extent and determining factors of fertilizer applications and rice straw management in major irrigated rice areas of the Philippines. Philipp. Sci. Lett. 2020, 13, 61–69. [Google Scholar]
- Balingbing, C.; Hung, N.V.; Roxas, A.P.; Aquino, D.; Barbacias, M.G.; Gummert, M. An assessment on the technical and economic feasibility of mechanized rice straw collection in the Philippines. Sustainability 2020, 12, 7150. [Google Scholar] [CrossRef]
- Wei, Q.; Lv, Y.; Xu, J.; Yawei, L. Effects of straw returning on rice growth and yield under water-saving irrigation. Chil. J. Agric. Res. 2018, 79, 66–74. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, J.; Shah, K.K.; Timsina, K.P. Effects of different fertilizers on growth and productivity of rice (Oryza sativa L.): A review. Int. J. Glob. Sci. Res. 2020, 7, 1291–1301. [Google Scholar] [CrossRef]
Fertilizer Dosage | Varieties |
---|---|
F1 (72 N kg ha−1 + 26 P2O5 kg ha−1 + 25 K2O kg ha−1 + 3 t ha−1 organic) | V1 (Inpago 8) |
F2 (92 N kg ha−1 + 36 P2O5 kg ha−1 + 30 K2O kg ha−1 + 2 t ha−1 organic) | V2 (Inpago 10) |
F3 (112 N kg ha−1 + 46 P2O5 kg ha−1 + 35 K2O kg ha−1 + 1 t ha−1 organic) | V3 (Inpago 12) |
V4 (Inpari 42 Agritan GSR) |
Parameter | Unit | Result | Criteria |
---|---|---|---|
Texture | |||
- Clay | % | 83 | Clay |
- Sand | % | 6 | |
- Dust | % | 11 | |
- pH H2O (1: 25) | - | 5.7 | Moderate Acid |
pH KCl (1: 2.5) | - | 4.9 | Moderate Acid |
C-organic | % | 1.17 | Low |
N Kjeldahl | % | 0.13 | Very Low |
C/N | % | 9 | Low |
P2O5 HCl 25 | mg 100 g−1 | 47 | High |
P2O5 Olsen | mg 100 g−1 | 25 | Medium |
K2O | % | 19 | Low |
Cation Exchange Capacity (CEC) | cmol kg−1 | 16 | Low |
Ca | cmol kg−1 | 54 | High |
Mg | cmol kg−1 | 12.5 | High |
K | cmol kg−1 | 1.8 | Medium |
Na | cmol kg−1 | 0.4 | Medium |
Base saturation | % | 92 | Very High |
Treatments Code | Soil pH | C-Organic (%) | N-Total (%) | P2O5 (mg 100 g−1) | K2O (mg 100 g−1) |
---|---|---|---|---|---|
F1V1 | 6.36 bc | 1.29 ab | 0.23 bc | 28.5 a | 39.2 ab |
F1V2 | 6.55 b | 1.02 d | 0.13 de | 29.5 a | 38.1 c |
F1V3 | 7.10 a | 1.39 a | 0.24 b | 30.5 a | 37.4 cd |
F1V4 | 6.55 b | 1.22 cd | 0.21 c | 27.9 a | 38.4 bc |
F2V1 | 7.06 a | 1.09 cd | 0.33 a | 29.9 a | 39.5 a |
F2V2 | 6.55 b | 1.01d | 0.31 a | 29.7 a | 36.8 de |
F2V3 | 7.11 a | 1.24 b | 0.32 a | 28.8 a | 36.1 ef |
F2V4 | 7.06 a | 1.29 ab | 0.23 bc | 28.9 a | 36.2 ef |
F3V1 | 6.49 b | 0.56 e | 0.13 de | 28.8 a | 35.4 fg |
F3V2 | 7.06 a | 0.49 ef | 0.14 d | 28.1 a | 30.4 h |
F3V3 | 6.11 a | 0.45 ef | 0.12 de | 27.9 a | 35.1 g |
F3V4 | 6.08 c | 0.39 f | 0.11 e | 29.5 a | 35.3 fg |
“p” value for | |||||
F | <0.0001 | <0.0001 | <0.0001 | 0.54 | <0.0001 |
V | 0.1607 | 0.0010 | <0.0001 | 0.96 | <0.0001 |
F × V | <0.0001 | 0.0010 | <0.0001 | 0.661 | <0.0001 |
CV | 3.05 | 8.12 | 7.28 | 6.92 | 1.49 |
Treatment | 35 DAP (cm) | 65 DAP (cm) | 112 DAP (Harvest Time) (cm) | |
---|---|---|---|---|
Fertilizers | F1 | 43.77 a | 88.77 a | 108.77 a |
F2 | 39.79 a | 84.79 a | 104.79 a | |
F3 | 43.40 a | 88.40 a | 108.40 a | |
Variety | V1 | 48.12 a | 93.12 a | 113.12 a |
V2 | 45.27 ab | 90.27 ab | 110.27 ab | |
V3 | 40.49 bc | 85.49 bc | 105.49 bc | |
V4 | 35.39 c | 80.39 c | 100.39 c | |
“p” value for: | ||||
F | 0.352 ns | 0.352 ns | 1.10 ns | |
V | 0.007 ** | 0.007 ** | 5.32 ns | |
F × V | 0.090 ns | 0.090 ns | 2.78 ns | |
CV | 17.18 | 8.33 | 6.78 |
Treatments | 35 DAP | 65 DAP | 112 DAP (Harvest Time) |
---|---|---|---|
F1V1 | 20.00 a | 18.00 a | 13.00 a |
F1V2 | 15.60 cde | 13.60 cde | 8.60 cde |
F1V3 | 15.00 de | 13.00 de | 8.00 de |
F1V4 | 19.50 a | 17.50 a | 12.50 a |
F2V1 | 15.50 cde | 13.50 cde | 8.50 cde |
F2V2 | 15.70 cde | 13.70 cde | 8.70 cde |
F2V3 | 14.10 e | 12.10 e | 7.10 e |
F2V4 | 16.50 bcd | 14.50 bcd | 9.50 bcd |
F3V1 | 16.90 bc | 14.90 bc | 9.90 bc |
F3V2 | 16.93 bc | 14.93 bc | 9.93 bc |
F3V3 | 14.46 e | 12.46 e | 7.46 e |
F3V4 | 17.46 b | 15.46 b | 10.46 b |
“p” value for: | |||
F | <0.0001 ** | <0.0001 ** | <0.0001 ** |
V | <0.0001 ** | <0.0001 ** | <0.0001 ** |
F × V | 0.001 ** | 0.001 ** | 0.001 ** |
CV | 5.24 | 5.96 | 9.11 |
Treatments Code | Panicle Number per Plant | Filled Grain per Panicle (%) | Unfilled Grain per Panicle (%) | Panicle Dry Weight per Plant (MC 14%) |
---|---|---|---|---|
F1V1 | 13.00 a | 90.19 a | 7.83 f | 149.30 a |
F1V2 | 8.60 cde | 87.65 a | 12.35 cde | 150.40 a |
F1V3 | 8.00 de | 88.75 a | 10.36 f | 149.70 a |
F1V4 | 12.50 a | 87.73 a | 13.14 cde | 141.10 a |
F2V1 | 8.50 cde | 88.59 a | 11.41 de | 100.60 bcd |
F2V2 | 8.70 cde | 86.62 a | 13.37 cd | 134.20 a |
F2V3 | 7.10 e | 84.19 ab | 12.93 cde | 105.30 bc |
F2V4 | 9.50 bcd | 85.57 a | 15.17 c | 110.70 b |
F3V1 | 9.90 bc | 85.51 a | 14.49 c | 90.40 cd |
F3V2 | 9.93 bc | 65.53 c | 34.91 a | 86.90 d |
F3V3 | 7.46 e | 88.65 a | 11.35 de | 106.70 bc |
F3V4 | 10.46 b | 79.15 b | 25.29 b | 111.30 b |
“p” value for: | ||||
F | <0.0001 ** | 0.0021 ** | <0.0001 ** | 0.464 ns |
V | <0.0001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** |
F × V | 0.001 ** | <0.0001 ** | <0.0001 ** | <0.0001 ** |
CV | 9.11 | 4.06 | 9.99 | 7.45 |
Treatment | 1000 Grain Weight (g) | Harvest Index | Yield(t ha−1) | Straw Production(t ha−1) | Total Biomass (Grain + Straw) t ha−1 | |
---|---|---|---|---|---|---|
Fertilizer | F1 | 17.00 a | 0.64 a | 8.57 a | 3.07 a | 11.64 a |
F2 | 17.83 a | 0.62 a | 8.53 a | 3.22 a | 11.76 a | |
F3 | 17.83 a | 0.65 a | 8.73 a | 3.02 a | 11.75 a | |
Variety | V1 | 17.77 a | 0.62 a | 9.18 a | 3.46 a | 12.64 a |
V2 | 17.44 a | 0.64 a | 9.08 a | 3.23 ab | 12.30 a | |
V3 | 17.94 a | 0.64 a | 8.38 a | 2.99 ab | 11.37 b | |
V4 | 17.05 a | 0.65 a | 7.81 b | 2.74 b | 10.55 c | |
“p”-value | F | ns | 0.9 ns | 0.58 ns | 0.570 ns | 0.883 ns |
V | ns | 0.89 ns | 15.42 ns | 0.027 ns | <0.0001 ** | |
F × V | ns | 1.63 ns | 0.29 ns | 0.114 ns | 0.351 ns | |
CV | 8.49 | 9.56 | 5.65 | 15.54 | 5.74 |
Treatments Code | Yield (t ha−1) | Price (IDR kg−1) | Cost (IDR ha−1) | Revenue (IDR ha−1) | Profit (IDR ha−1) | RCR | BEP-Y (t ha−1) | BEP-P (IDR kg−1) |
---|---|---|---|---|---|---|---|---|
F1V1 | 8.90 | 4700 | 20,455,000 | 41,830,000 | 21,375,000 | 2.04 | 4352.13 | 2298.31 |
F1V2 | 9.13 | 4700 | 20,455,000 | 42,911,000 | 22,456,000 | 2.10 | 4352.13 | 2240.42 |
F1V3 | 8.40 | 4700 | 20,455,000 | 39,480,000 | 19,025,000 | 1.93 | 4352.13 | 2435.12 |
F1V4 | 7.83 | 4700 | 20,455,000 | 36,801,000 | 16,346,000 | 1.80 | 4352.13 | 2612.39 |
F2V1 | 9.23 | 4700 | 19,795,000 | 43,381,000 | 23,586,000 | 2.19 | 4211.70 | 2144.70 |
F2V2 | 8.93 | 4700 | 19,795,000 | 41,971,000 | 22,176,000 | 2.12 | 4211.70 | 2216.69 |
F2V3 | 8.20 | 4700 | 19,795,000 | 38,540,000 | 18,745,000 | 1.95 | 4211.70 | 2414.02 |
F2V4 | 7.77 | 4700 | 19,795,000 | 36,519,000 | 16,724,000 | 1.84 | 4211.70 | 2547.62 |
F3V1 | 9.40 | 4700 | 19,240,000 | 44,180,000 | 24,940,000 | 2.30 | 4093.62 | 2046.81 |
F3V2 | 9.17 | 4700 | 19,240,000 | 43,099,000 | 23,859,000 | 2.24 | 4093.62 | 2098.15 |
F3V3 | 8.53 | 4700 | 19,240,000 | 40,091,000 | 20,851,000 | 2.08 | 4093.62 | 2255.57 |
F3V4 | 7.83 | 4700 | 19,240,000 | 36,801,000 | 17,561,000 | 1.91 | 4093.62 | 2457.22 |
Treatments Code | Straw Biomass (kg ha−1) | Straw Economic Value (IDR) | Total Revenue |
---|---|---|---|
(Grain + Straw) (IDR ha−1) | |||
F1V1 | 3000 | 3,000,000 | 24,375,000 |
F1V2 | 3100 | 3,100,000 | 25,556,000 |
F1V3 | 2900 | 2,900,000 | 21,925,000 |
F1V4 | 3005 | 3,005,000 | 19,351,000 |
F2V1 | 3200 | 3,200,000 | 26,786,000 |
F2V2 | 3100 | 3,100,000 | 25,276,000 |
F2V3 | 3300 | 3,300,000 | 22,045,000 |
F2V4 | 3220 | 3,220,000 | 19,944,000 |
F3V1 | 3022 | 3,022,000 | 27,962,000 |
F3V2 | 3001 | 3,001,000 | 26,860,000 |
F3V3 | 3011 | 3,011,000 | 23,862,000 |
F3V4 | 3033 | 3,033,000 | 20,594,000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sutardi; Pertiwi, M.D.; Praptana, R.H.; Anda, M.; Purwaningsih, H.; Triastono, J.; Kristamtini; Susanto, U.; Widyayanti, S.; Kabarsih, M.; et al. Increasing Yield and Economic Value of Upland Rice Using Inorganic Fertilizer and Poultry Manure in Dryland. Agronomy 2022, 12, 2829. https://doi.org/10.3390/agronomy12112829
Sutardi, Pertiwi MD, Praptana RH, Anda M, Purwaningsih H, Triastono J, Kristamtini, Susanto U, Widyayanti S, Kabarsih M, et al. Increasing Yield and Economic Value of Upland Rice Using Inorganic Fertilizer and Poultry Manure in Dryland. Agronomy. 2022; 12(11):2829. https://doi.org/10.3390/agronomy12112829
Chicago/Turabian StyleSutardi, Miranti Dian Pertiwi, Raden Heru Praptana, Markus Anda, Heni Purwaningsih, Joko Triastono, Kristamtini, Untung Susanto, Setyorini Widyayanti, Mahargono Kabarsih, and et al. 2022. "Increasing Yield and Economic Value of Upland Rice Using Inorganic Fertilizer and Poultry Manure in Dryland" Agronomy 12, no. 11: 2829. https://doi.org/10.3390/agronomy12112829
APA StyleSutardi, Pertiwi, M. D., Praptana, R. H., Anda, M., Purwaningsih, H., Triastono, J., Kristamtini, Susanto, U., Widyayanti, S., Kabarsih, M., Sahara, D., Malik, A., Oelviani, R., Arianti, F. D., Harsanti, E. S., Wihardjaka, A., Cempaka, I. G., Riyanto, D., & Widodo, S. (2022). Increasing Yield and Economic Value of Upland Rice Using Inorganic Fertilizer and Poultry Manure in Dryland. Agronomy, 12(11), 2829. https://doi.org/10.3390/agronomy12112829