Response of Rapeseed (Brassica napus L.) to Silver and Gold Nanoparticles as a Function of Concentration and Length of Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and In Vitro Culture Medium
2.2. Characteristics of NPs
2.3. Biometric Analyses
2.4. Spectrophotometric Analyses of Plant Pigments
2.5. Biochemical Analyses
2.6. Statistical Analysis
3. Results
3.1. Effect of NPs on the Growth of Seedlings
3.1.1. Shoots
3.1.2. Roots
3.2. Effect of NPs on the Content of Chlorophyll, Carotenoids and Anthocyanins
3.3. Effect of NPs on the Phenolics Content
3.4. Effect of NPs on the Free Sugars Content
3.5. Effect of NPs on the ROS Content
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Rastogi, A.; Zivcak, M.; Sytar, O.; Kalaji, H.M.; He, X.; Mbarki, S.; Brestic, M. Impact of Metal and Metal Oxide Nanoparticles on Plant: A Critical Review. Front. Chem. 2017, 5, 78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maurer-Jones, M.A.; Gunsolus, I.L.; Murphy, C.J.; Haynes, C.L. Toxicity of engineered nanoparticles in the environment. Anal. Chem. 2013, 85, 3036–3049. [Google Scholar] [CrossRef] [Green Version]
- Auffan, M.; Rose, J.; Bottero, J.Y.; Lowry, G.V.; Jolivet, J.P.; Wiesner, M.R. Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat. Nanotechnol. 2009, 4, 634–641. [Google Scholar] [CrossRef] [PubMed]
- Marzec, A.; Pulit, J.; Kwaśny, J.; Banach, M. Nanometale—wybrane technologie wytwarzania. Czas. Tech.-Chem. 2012, 109, 95–107. (In Polish) [Google Scholar]
- Dębińska, E.; Rzepka, M.; Kremieniewski, M. Nanocząsteczki—Nowa droga w kształtowaniu parametrów świeżych i stwardniałych zaczynów cementowych. Naft. Gaz 2016, 12, 1084–1091. (In Polish) [Google Scholar] [CrossRef]
- Radad, K.; Al-Shraim, M.; Moldzio, R.; Rausch, W.D. Recent advances in benefits and hazards of engineered nanoparticles. Environ. Toxicol. Pharmacol. 2012, 34, 661–672. [Google Scholar] [CrossRef]
- Wang, P.; Lombi, E.; Zjao, F.J.; Kopittke, P.M. Nanotechnology: A new opportunity in plant sciences. Trends Plant Sci. 2016, 21, 699–712. [Google Scholar] [CrossRef]
- Yan, A.; Chen, Z. Impacts of Silver Nanoparticles on Plants: A Focus on the Phytotoxicity and Underlying Mechanism. Int. J. Mol. Sci. 2019, 20, 1003. [Google Scholar] [CrossRef]
- Barbasz, A.; Kreczmer, B.; Oćwieja, M. Effects of exposure of callus cells of two wheat varieties to silver nanoparticles and silver salt (AgNO3). Acta Physiol. Plant. 2016, 38, 76. [Google Scholar] [CrossRef] [Green Version]
- Barrena, R.; Casals, E.; Colón, J.; Font, X.; Sánchez, A.; Puntes, V. Evaluation of the ecotoxicity of model nanoparticles. Chemosphere 2009, 75, 850–857. [Google Scholar] [CrossRef] [Green Version]
- Alvarez Perez, S.; Tapia, M.A.M.; González Vega, M.E.; Ardisana, E.F.; Chávez Medina, J.A.; Flores Zamora, G.L.; Bustamante, D.V. Nanotechnology and Plant Tissue Culture. In Plant Nanobionics; Nanotechnology in the Life Sciences; Prasad, R., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 333–370. [Google Scholar]
- Timoteo de Oliveira, C.; Paiva, R.; Reis, M.V.; Claro, P.I.C.; Ferraz, L.M.; Marconcini, J.M.; de Oliveira, J.E. In vitro growth of Physalis peruviana L. affected by silver nanoparticles. 3 Biotech 2019, 9, 145. [Google Scholar] [CrossRef]
- Cvjetko, P.; Milošic, A.; Domijan, A.M.; Vinkovic Vrcek, I.; Tolic, S.; Peharec-Štefanic, P.; Letofsky-Papst, I.; Tkalec, M.; Balen, B. Toxicity of silver ions and differently coated silver nanoparticles in Allium cepa roots. Ecotoxicol. Environ. Saf. 2017, 137, 18–28. [Google Scholar] [CrossRef]
- Marambio-Jones, C.; Hoek, E.M. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 2010, 12, 1531–1551. [Google Scholar] [CrossRef]
- Kokura, S.; Handa, O.; Takagi, T.; Ishikawa, T.; Naito, Y.; Yoshikawa, T. Silver nanoparticles as a safe preservative for use in cosmetics. Nanomed. Nanotechnol. Biol. Med. 2010, 6, 570–574. [Google Scholar] [CrossRef]
- Singh, N.; Manshian, B.; Jenkins, G.J.; Griffiths, S.M.; Williams, P.M.; Maffeis, T.G.; Wright, C.J.; Doak, S.H. Nano genotoxicology: The DNA damaging potential of engineered nanomaterials. Biomaterials 2009, 30, 3891–3914. [Google Scholar] [CrossRef]
- Tiede, K.; Boxall, A.B.; Tear, S.P.; Lewis, J.; David, H.; Hassellöv, M. Detection and characterization of engineered nanoparticles in food and the environment. Food Addit. Contam. 2008, 25, 795–821. [Google Scholar] [CrossRef]
- Godin, B.; Sakamoto, J.H.; Serda, R.E.; Grattoni, A.; Bouamrani, A. Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol. Sci. 2010, 31, 199–205. [Google Scholar] [CrossRef] [Green Version]
- Kohl, Y.; Kaiser, C.; Bost, W.; Stracke, F.; Fournelle, M.; Wischke, C.; Thielecke, H.; Lendlein, A.; Kratz, K.; Lemor, R. Preparation and biological evaluation of multifunctional PLGA-nanoparticles designed for photoacoustic imaging. Nanomed. Nanotechnol. Biol. Med. 2011, 7, 228–237. [Google Scholar] [CrossRef]
- Kreuter, J.; Gelperina, S. Use of nanoparticles for cerebral cancer. Tumori 2008, 94, 271–277. [Google Scholar] [CrossRef]
- Meng, H.; Liong, M.; Xia, T.; Li, Z.; Ji, Z.; Zink, J.I.; Nell, A.E. Engineered design of mesoporous silica nanoparticles to deliver doxorubicin and P-glycoprotein siRNA to overcome drug resistance in a cancer cell line. ACS Nano 2010, 4, 4539–4550. [Google Scholar] [CrossRef]
- Gopinath, K.; Gowri, S.; Karthika, V.; Arumugam, A. Green synthesis of gold nanoparticles from fruit extract of Terminalia arjuna, for the enhanced seed germination activity of Gloriosa superba. J. Nanostruct. Chem. 2014, 4, 1–11. [Google Scholar] [CrossRef]
- Ruttkay-Nedecky, B.; Krystofova, O.; Nejdl, L.; Adam, V. Nanoparticles based on essential metals and their phytotoxicity. J. Nanobiotechnol. 2017, 15, 33. [Google Scholar] [CrossRef] [PubMed]
- Spinoso-Castillo, J.L.; Chavez-Santoscoy, R.A.; Bogdanchikova, N.; Pérez-Sato, J.A.; Morales-Ramos, V.; Bello-Bello, J.J. Antimicrobial and hormetic effects of silver nanoparticles on in vitro regeneration of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. Plant Cell Tissue Organ Cult. 2017, 129, 195–207. [Google Scholar] [CrossRef]
- Wang, Y.; Dimkpa, C.; Deng, C.; Elmer, W.H.; Gardea-Torresdey, J.; White, J.C. Impact of engineered nanomaterials on rice (Oryza sativa L.): A critical review of current knowledge. Environ. Pollut. 2022, 297, 118738. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 1962, 15, 473–499. [Google Scholar] [CrossRef]
- Aghdaei, M.; Salehi, H.; Sarmast, M.K. Effects of silver nanoparticles on Tecomella undulata (Roxb.) seem, micropropagation. Adv. Hortic. Sci. 2012, 26, 21–24. [Google Scholar]
- Kokina, I.; Gerbreders, V.; Sledevskis, E.; Bulanovs, A. Penetration of nanoparticles in flax (Linum usitatissimum L.) calli and regenerants. J. Biotechnol. 2013, 165, 127–132. [Google Scholar] [CrossRef]
- Arora, S.; Sharma, P.; Kumar, S.; Nayan, R.; Khanna, P.K.; Zaidi, M.G.H. Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regul. 2012, 66, 303–310. [Google Scholar] [CrossRef]
- Lahuta, L.B.; Szablińska-Piernik, J.; Głowacka, K.; Stałanowska, K.; Railean-Plugaru, V.; Horbowicz, M.; Pomastowski, P.; Buszewski, B. The Effect of Bio-Synthesized Silver Nanoparticles on Germination, Early Seedling Development, and Metabolome of Wheat (Triticum aestivum L.). Molecules 2022, 27, 2303. [Google Scholar] [CrossRef]
- Kumar, V.; Guleria, P.; Kumar, V.; Yadav, S.K. Gold nanoparticle exposure induces growth and yield enhancement in Arabidopsis thaliana. Sci. Total Environ. 2013, 461, 462–468. [Google Scholar] [CrossRef]
- Razavizadeh, R.; Rostami, F. Risks and Benefits Assessments of Silver Nanoparticles in Tomato Plants under in vitro Culture. Eng. Res. J. 2015, 3, 51–57. [Google Scholar]
- El-Temsah, Y.E.; Joner, E.J. Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environ. Toxicol. 2010, 27, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.S.; Li, M.; Chang, F.Y.; Li, W.; Yin, L.Y. Physiological analysis of silver nanoparticles and AgNO3 toxicity to Spirodela polyrhiza. Environ. Toxicol. Chem. 2012, 31, 1880–1886. [Google Scholar] [CrossRef] [PubMed]
- Kaveh, R.; Li, Y.S.; Ranjbar, S.; Tehrani, R.; Brueck, C.L.; Van Aken, B. Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environ. Sci. Technol. 2013, 47, 10637–10644. [Google Scholar] [CrossRef]
- Tripathi, D.K.; Tripathi, A.; Singh, S.; Singh, Y.; Vishwakarma, K.; Yadav, G.; Sharma, S.; Singh, V.K.; Mishra, R.K.; Upadhyay, R.G.; et al. Uptake, accumulation and toxicity of silver nanoparticle in autotrophic plants, and heterotrophic microbes: A concentric review. Front. Microbiol. 2017, 8, 7. [Google Scholar] [CrossRef] [Green Version]
- Qian, H.; Peng, X.; Han, X.; Ren, J.; Sun, L.; Fu, Z. Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J. Environ. Sci. 2013, 25, 1947–1955. [Google Scholar] [CrossRef]
- Nair, P.M.G.; Chung, I.M. Physiological and molecular level effects of silver nanoparticles exposure in rice (Oryza sativa L.) seedlings. Chemosphere 2014, 112, 105–113. [Google Scholar] [CrossRef]
- Shaikhaldein, H.O.; Al-Qurainy, F.; Nadeem, M.; Khan, S.; Tarroum, M.; Salih, A.M. Biosynthesis and characterization of silver nanoparticles using Ochradenus arabicus and their physiological effect on Maerua oblongifolia raised in vitro. Sci. Rep. 2020, 10, 17569. [Google Scholar] [CrossRef]
- Homaee, M.B.; Ehsanpour, A.A. Silver nanoparticles and silver ions: Oxidative stress responses and toxicity in potato (Solanum tuberosum L.) grown in vitro. Hortic. Environ. Biotechnol. 2016, 57, 544–553. [Google Scholar] [CrossRef]
- Thiruvengadam, M.; Gurunathan, S.; Chung, I.M. Physiological, metabolic, and transcriptional effects of biologically-synthesized silver nanoparticles in turnip (Brassica rapa ssp. rapa L.). Protoplasma 2015, 252, 1031–1046. [Google Scholar] [CrossRef]
- Yasur, J.; Rani, P.U. Environmental effects of nanosilver: Impact on castor seed germination, seedling growth, and plant physiology. Environ. Sci. Pollut. Res. 2013, 20, 8636–8648. [Google Scholar] [CrossRef] [PubMed]
- Szollosi, R.; Molnár, A.; Kondak, S.; Kolbert, Z. Dual Effect of Nanomaterials on Germination and Seedling Growth: Stimulation vs. Phytotoxicity. Plants 2020, 9, 1745. [Google Scholar] [CrossRef] [PubMed]
- Shah, V.; Belozerova, I. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollut. 2009, 197, 143–148. [Google Scholar] [CrossRef]
- Xie, H.; Mason, M.M.; Wise, J.P., Sr. Genotoxicity of metal nanoparticles. Rev. Environ. Health 2011, 26, 251–268. [Google Scholar] [CrossRef] [PubMed]
- Tomaszewska-Sowa, M.; Siwik-Ziomek, A.; Figas, A.M.; Bocian, K. Assessment of metal nanoparticle-induced morphological and physiological changes in in vitro cultures of rapeseed (Brassica napus L.). EJPAU 2018, 21, 10. [Google Scholar] [CrossRef]
- Domeradzka-Gajda, Y.-K.; Nocuń, M.; Roszak, J.; Janasik, B.; Quarles, C.D., Jr.; Wąsowicz, W.; Grobelny, J.; Tomaszewska, E.; Celichowski, G.; Ranoszek-Soliwoda, K.; et al. A study on the in vitro percutaneous absorption of silver nanoparticles in combination with aluminum chloride, methyl paraben or di-n-butyl phthalate. Toxicol. Lett. 2017, 272, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Pudlarz, A.; Czechowska, E.; Ranoszek-Soliwoda, K.; Tomaszewska, E.; Celichowski, G.; Grobelny, J.; Szemraj, J. Immobilization of Recombinant Human Catalase on Gold and Silver Nanoparticles. Appl. Biochem. Biotechnol. 2018, 185, 717–735. [Google Scholar] [CrossRef]
- Wettstein, D. Chlorophyll–letale und der submikroskopische Formwechsel der Plastiden. Exp. Cell Res. 1957, 12, 427–487. [Google Scholar] [CrossRef]
- Harborne, J.B. Comparative Biochemistry of the Flavonoids; Academic Press: London, UK, 1967. [Google Scholar]
- Maksimović, J.J.D.; Živanović, B.D. Quantification of the antioxidant activity in salt-stressed tissues. In Plant Salt Tolerance; Humana Press: Totowa, NY, USA, 2012; pp. 237–250. [Google Scholar]
- Zahir, S.; Zhang, F.; Chen, J.; Zhu, S. Determination of Oxidative Stress and Antioxidant Enzyme Activity for Physiological Phenotyping During Heavy Metal Exposure. In Environmental Toxicology and Toxicogenomics; Humana: New York, NY, USA, 2021; pp. 241–249. [Google Scholar]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for the detemination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Bacete, L.; Melida, H.; Pattathil, S.; Hahn, M.G.; Molina, A.; Miedes, E. Characterization of plant cell wall damage-associated molecular patterns regulating immune responses. In Plant Pattern Recognition Receptors: Methods and Protocols. Methods in Molecular Biology; Shan, L., He, P., Eds.; Springer Science + Buisness Media, Humana Press: New York, NY, USA, 2017; pp. 13–24. [Google Scholar]
- Rizwan, M.; Ali, S.; Qayyum, M.F.; Ok, Y.S.; Adrees, M.; Ibrahim, M.; Zia-ur-Rehman, M.; Farid, M.; Abbas, F. Effect of metal and metal oxide nanoparticles on growth and physiology of globally important food crops: A critical review. J. Hazard. Mater. 2017, 322, 2–16. [Google Scholar] [CrossRef]
- Sharma, P.; Bhatt, D.; Zaidi, M.G.H.; Saradhi, P.P.; Khanna, P.K.; Arora, S. Silver Nanoparticle-Mediated Enhancement in Growth and Antioxidant Status of Brassica juncea. Appl. Biochem. Biotechnol. 2012, 167, 2225–2233. [Google Scholar] [CrossRef] [PubMed]
- Sabo-Attwood, T.; Unrine, J.M.; Stone, J.W.; Murphy, C.J.; Ghoshroy, S.; Blom, D.; Bertsch, P.M.; Newman, L.A. Uptake, distribution and toxicity of gold nanoparticles in tobacco (Nicotiana xanthi) seedlings. Nanotoxicology 2012, 6, 353–360. [Google Scholar] [CrossRef] [PubMed]
- Mazumdar, H.; Ahmed, G.U. Phytotoxicity effect of silver nanoparticles on Oryza sativa. Int. J. Chem. Tech. Res. 2011, 3, 1494–1500. [Google Scholar]
- Mirzajani, F.; Askari, H.; Hamzelou, S.; Farzaneh, M.; Ghassempour, A. Effect of silver nanoparticles on Oryza sativa L. and its rhizosphere bacteria. Ecotoxicol. Environ. Saf. 2013, 88, 48–54. [Google Scholar] [CrossRef] [PubMed]
- Yin, L.; Colman, B.P.; McGill, B.M.; Wright, J.P.; Bernhardt, E.S. Effects of silver nanoparticle exposure on germination and early growth of eleven wetland plants. PLoS ONE 2012, 7, e47674. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, H.S.; Qiu, X.N.; Li, G.B.; Li, W.; Yin, L.Y. Silver nanoparticles induced accumulation of reactive oxygen species and alteration of antioxidant systems in the aquatic plant Spirodela polyrhiza. Environ. Toxicol. Chem. 2014, 33, 1398–1405. [Google Scholar] [CrossRef] [PubMed]
- Geisler-Lee, J.; Wang, Q.; Yao, Y.; Zhang, W.; Geisler, M.; Li, K.; Huang, Y.; Chen, Y.; Kolmakov, A.; Ma, X. Phytotoxicity, accumulation and transport of silver nanoparticles by Arabidopsis thaliana. Nanotoxicology 2013, 7, 323–337. [Google Scholar] [CrossRef]
- Solfanelli, C.; Poggi, A.; Loreti, E.; Alpi, A.; Perata, P. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol. 2006, 140, 637–646. [Google Scholar] [CrossRef] [Green Version]
- Guo, N.; Cheng, F.; Wu, J.; Liu, B.; Zheng, S.; Liang, J.; Wang, X. Anthocyanin biosynthetic genes in Brassica rapa. BMC Genom. 2014, 15, 426. [Google Scholar] [CrossRef] [Green Version]
- Nagata, T.; Todoriki, S.; Masumizu, T.; Suda, I.; Furuta, S.; Du, Z.; Kikuchi, S. Levels of active oxygen species are controlled by ascorbic acid and anthocyanin in Arabidopsis. J. Agric. Food Chem. 2003, 51, 2992–2999. [Google Scholar] [CrossRef]
- Carocho, M.; Ferreira, I.C. A review on antioxidants, pro-oxidants and related controversy: Natural and synthetic compounds, screening and analysismethodologies and future perspectives. Food Chem. Toxicol. 2013, 51, 15–25. [Google Scholar] [CrossRef]
- Gould, K.S.; McKelvie, J.; Markham, K.R. Do anthocyanins function as antioxidants in leaves? Imaging of H2O2 in red and green leaves after mechanical injury. Plant Cell Environ. 2002, 25, 1261–1269. [Google Scholar] [CrossRef]
- Kim, M.J.; Kwak, H.S.; Kim, S.S. Effects of germination on protein, -aminobutyric acid, phenolic acids, and antioxidant capacity in wheat. Molecules 2018, 23, 2244. [Google Scholar] [CrossRef] [Green Version]
- Al-Huqail, A.A.; Hatata, M.M.; Al-Huqail, A.A.; Ibrahim, M.M. Preparation, characterization of silver phytonanoparticles and their impact on growth potential of Lupinus termis L. seedlings. Saudi J. Biol. Sci. 2018, 25, 313–319. [Google Scholar] [CrossRef]
- Mahakham, W.; Theerakulpisut, P.; Maensiri, S.; Phumying, S.; Sarmah, A.K. Environmentally benign synthesis of phytochemicals-capped gold nanoparticles as nanopriming agent for promoting maize seed germination. Sci. Total Environ. 2016, 573, 1089–1102. [Google Scholar] [CrossRef]
- Ashraf, M.; Harris, P.J.C. Potential biochemical indicators of salinity tolerance in plants. Plant Sci. 2004, 166, 3–16. [Google Scholar] [CrossRef]
- Watanabe, S.; Kojima, K.; Ide, Y.; Sasaki, S. Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro. Plant Cell Tissue Organ Cult. 2000, 63, 199–206. [Google Scholar] [CrossRef]
- Shonjani, S. Salt Sensitivity of Rice, Maize, Sugar Beet, and Cotton during Germination and Early Vegetative Growth. Ph.D. Thesis, Institute of Plant Nutrition, Justus Liebig University, Giessen, The Netherlands, 2002. [Google Scholar]
- Chen, J.; Liu, X.; Wang, C.; Yin, S.S.; Li, X.L.; Hu, W.J.; Simon, M.; Shen, Z.J.; Xiao, Q.; Chu, C.C.; et al. Nitric oxide ameliorates zinc oxide nanoparticles-induced phytotoxicity in rice seedlings. J. Hazard. Mater. 2015, 297, 173–182. [Google Scholar] [CrossRef]
- Wang, S.; Lui, H.; Zhang, Y.; Xin, H. The effect of CuO NPs on reactive oxygen species and cell cycle gene expression in roots of rice. Environ. Toxicol. Chem. 2015, 34, 554–561. [Google Scholar] [CrossRef]
- Speranza, A.; Crinelli, R.; Scoccianti, V.; Taddei, A.R.; Iacobucci, M.; Bhattacharya, P.; Ke, P.C. In vitro toxicity of silver nanoparticles to kiwifruit pollen exhibits peculiar traits beyond the cause of silver ion release. Environ. Pollut. 2013, 179, 258–267. [Google Scholar] [CrossRef]
- Brunner, T.J.; Wick, P.; Manser, P.; Spohn, P.; Grass, R.N.; Limbach, L.K.; Bruinink, A.; Stark, W.J. In Vitro Cytotoxicity of Oxide Nanoparticles: Comparison to Asbestos, Silica, and the Effect of Particle Solubility. Environ. Sci. Technol. 2006, 40, 4374–4381. [Google Scholar] [CrossRef] [PubMed]
Treatment Time (Days) | Concentration of Nanoparticles | Shoot Length (cm) | Shoot Fresh Weight (mg) | Shoot Dry Weight (mg) |
---|---|---|---|---|
7 | Control | 6.33 ± 2.06 a–e * | 93.98 ± 19.14 c–e | 4.70 ± 0.95 c–e |
AgNPs 50 ppm | 3.67 ± 1.03 ef | 82.17 ± 19.55 de | 4.11 ± 0.97 de | |
AgNPs 100 ppm | 2.50 ± 1.22 f | 52.67 ± 8.64 e | 2.63 ± 0.43 e | |
AuNPs 50 ppm | 3.33 ± 1.36 f | 93.00 ± 42.87 de | 4.65 ± 2.14 de | |
AuNPs 100 ppm | 4.17 ± 0.98 c–f | 75.67 ± 19.45 e | 3.78 ± 0.97 e | |
14 | Control | 9.17 ± 1.83 a | 155.50 ± 34.61 b–d | 7.78 ± 1.72 b–d |
AgNPs 50 ppm | 7.83 ± 1.50 ab | 191.33 ± 32.61 ab | 9.57 ± 1.63 ab | |
AgNPs 100 ppm | 7.25 ± 1.63 a–c | 150.50 ± 25.09 b–d | 7.53 ± 1.25 b–d | |
AuNPs 50 ppm | 4.83 ± 1.57 b–f | 76.50 ± 30.22 e | 3.83 ± 1.51 e | |
AuNPs 100 ppm | 5.08 ± 2.63 b–f | 97.33 ± 47.93 de | 4.87 ± 2.39 de | |
21 | Control | 9.83 ± 1.72 a | 237.00 ± 40.92 ab | 11.85 ± 2.04 ab |
AgNPs 50 ppm | 6.17 ± 1.16 a–e | 171.50 ± 72.31 a–d | 8.58 ± 3.61 a–d | |
AgNPs 100 ppm | 6.67 ± 1.03 a–d | 307.00 ± 56.49 a | 15.35 ± 2.82 a | |
AuNPs 50 ppm | 8.00 ± 1.78 ab | 197.67 ± 95.77 a–c | 9.88 ± 3.64 a–c | |
AuNPs 100 ppm | 4.00 ± 1.09 d–f | 90.67 ± 40.10 de | 4.53 ± 2.00 de |
Treatment Time (Days) | Concentration of Nanoparticles | Max Root Length (cm) | Root Fresh Weight (mg) | Root Dry Weight (mg) |
---|---|---|---|---|
7 | Control | 5.33 ± 1.94 ab * | 81.67 ± 28.57 b | 4.08 ± 1.42 b |
AgNPs 50 ppm | 5.83 ± 1.16 a | 51.67 ± 11.69 b–d | 2.58 ± 0.58 b–d | |
AgNPs 100 ppm | 4.00 ± 0.89 a–d | 60.00 ± 8.36 bc | 3.00 ± 0.42 bc | |
AuNPs 50 ppm | 5.00 ± 1.78 ab | 54.33 ± 7.65 b–d | 2.72 ± 0.38 b–d | |
AuNPs 100 ppm | 4.33 ± 0.81 a–d | 61.17 ± 14.27 bc | 3.06 ± 0.71 bc | |
14 | Control | 4.75 ± 1.08 ab | 132.50 ± 29.78 a | 6.63 ± 1.48 a |
AgNPs 50 ppm | 3.58 ± 0.64 a–e | 60.33 ± 17.03 b–d | 3.02 ± 0.85 bc | |
AgNPs 100 ppm | 3.42 ± 0.37 a–e | 51.67 ± 8.16 b–d | 2.58 ± 0.40 b–d | |
AuNPs 50 ppm | 2.33 ± 0.40 c–e | 47.50 ± 18.09 bc | 2.38 ± 0.90 b–d | |
AuNPs 100 ppm | 2.25 ± 0.61 de | 26.83 ± 6.17 d | 1.34 ± 0.30 d | |
21 | Control | 6.00 ± 1.54 a | 80.83 ± 16.36 b | 4.04 ± 0.81 b |
AgNPs 50 ppm | 3.92 ± 1.02 a–d | 49.83 ± 11.92 b–d | 2.49 ± 0.59 b–d | |
AgNPs 100 ppm | 4.67 ± 1.72 a–c | 57.67 ± 25.42 b–d | 2.88 ± 1.27 b–d | |
AuNPs 50 ppm | 3.00 ± 1.54 b–e | 33.17 ± 27.83 cd | 1.66 ± 1.39 cd | |
AuNPs 100 ppm | 1.92 ± 1.02 e | 31.00 ± 17.49 cd | 1.55 ± 0.87 cd |
Treatment Time (Days) | Concentration of Nanoparticles | Chl. a (mg/g FW) | Chl. b (mg/g FW) | Chl. Total (mg/g FW) | Carotenoids (mg/g FW) | Anthocyanins (mg/g FW) |
---|---|---|---|---|---|---|
7 | Control | 1.44 a–d * | 0.72 a | 2.15 ± 0.32 ab | 0.89 ± 0.12 a–c | 0.25 ± 0.08 ab |
AgNPs 50 ppm | 0.75 e | 0.37 b–e | 1.12 ± 0.12 f | 0.49 ± 0.03 d | 0.31 ± 0.08 ab | |
AgNPs 100 ppm | 0.86 de | 0.33 de | 1.18 ± 0.21 ef | 0.55 ± 0.08 cd | 0.25 ± 0.03 ab | |
AuNPs 50 ppm | 1.16 a–e | 0.38 b–e | 1.55 ± 0.24 a–f | 0.73± 0.11 a–d | 0.23 ± 0.02 ab | |
AuNPs 100 ppm | 0.91 c–e | 0.31 e | 1.22 ± 0. 13 d–f | 0.58 ± 0.06 b–d | 0.24 ± 0.01 ab | |
14 | Control | 1.00 b–e | 0.35 c–e | 1.35 ± 0.36 b–f | 0.67 ± 0.17 a–d | 0.31 ± 0.07 ab |
AgNPs 50 ppm | 1.16 a–e | 0.42 b–e | 1.58 ± 0.43 a–f | 0.73 ± 0.21 a–d | 0.18 ± 0.01 b | |
AgNPs 100 ppm | 1.51 a–c | 0.57 ab | 2.09 ± 0.47 ab | 0.91 ± 0.19 ab | 0.39 ± 0.36 ab | |
AuNPs 50 ppm | 1.35 a–d | 0.44 b–e | 1.78 ± 0.37 a–f | 0.84 ± 0.17 a–c | 0.24 ± 0.06 ab | |
AuNPs 100 ppm | 1.40 a–d | 0.44 b–e | 1.84 ± 0.62 a–f | 0.86 ± 0.27 a–c | 0.25 ± 0.05 ab | |
21 | Control | 1.54 a–c | 0.54 a–d | 2.08 ± 0.86 a–d | 0.93 ± 0.35 ab | 0.33 ± 0.10 ab |
AgNPs 50 ppm | 1.69 a | 0.54 a–c | 2.23 ± 0.37 a | 0.99 ± 0.16 a | 0.49 ± 0.18 a | |
AgNPs 100 ppm | 1.46 a–d | 0.44 b–e | 1.90 ± 0.5 a–e | 0.86 ± 0.20 a–c | 0.32 ± 0.12 ab | |
AuNPs 50 ppm | 1.00 b–e | 0.32 e | 1.31 ± 0.49 c–f | 0.64 ± 0.21 a–d | 0.20 ± 0.03 b | |
AuNPs 100 ppm | 1.55 ab | 0.49 a–e | 2.04 ± 0.33 a–c | 0.94 ± 0.12 ab | 0.29 ± 0.07 ab |
Concentration of Nanoparticles | Phenolics mg/g Fresh Weight (FW) | ||
---|---|---|---|
7 Treatment Time (Days) | 14 Treatment Time (Days) | 21 Treatment Time (Days) | |
0NPs | 1.32 ± 0.04 a * | 0.82 ± 0.11 bc | 1.06 ± 0.04 ab |
AgNPs 50 ppm | 1.01 ± 0.09 ab | 1.08 ± 0.12 ab | 0.97 ± 0.08 a–c |
AgNPs 100 ppm | 0.85 ± 0.03 bc | 1.11 ± 0.12 ab | 0.98 ± 0.02 a–c |
AuNPs 50 ppm | 1.00 ± 0.03 ab | 0.97 ± 0.13 a–c | 0.97 ± 0.00 a–c |
AuNPs 100 ppm | 0.62 ± 0.02 c | 0.93 ± 0.05 bc | 0.82 ± 0.03 bc |
Concentration of Nanoparticles | Sugars mg/g FW | ||
---|---|---|---|
7 Treatment Time (Days) | 14 Treatment Time (Days) | 21 Treatment Time (Days) | |
0NPs | 7.42 ± 1.79 a–c * | 4.83 ± 1.16 a–c | 2.90 ± 0.37 bc |
AgNPs 50 ppm | 5.79 ± 0.35 a–c | 5.88 ± 1.14 a–c | 4.02 ± 0.65 a–c |
AgNPs 100 ppm | 6.52 ± 0.49 a–c | 3.96 ± 0.65 a–c | 3.98 ± 0.96 a–c |
AuNPs 50 ppm | 16.88 ± 0.84 a | 5.60 ± 2.39 a–c | 10.53 ± 0.03 a |
AuNPs 100 ppm | 8.62 ± 1.60 ab | 2.89 ± 0.53 c | 3.44 ± 0.96 bc |
Concentration of Nanoparticles | H2O2 nM/g FW | ||
---|---|---|---|
7 Treatment Time (Days) | 14 Treatment Time (Days) | 21 Treatment Time (Days) | |
0NPs | 351.15 ± 26.18 a * | 251.54± 8.80 cd | 290.2 ± 9.73 a–d |
AgNPs 50 ppm | 267.51 ± 9.53 b–d | 243.90 ± 13.59 d | 272.76 ± 14.64 b–d |
AgNPs 100 ppm | 280.21 ± 1.59 b–d | 253.23 ± 5.66 cd | 268.60 ± 4.04 b–d |
AuNPs 50 ppm | 308.66 ± 16.78 a–c | 287.22 ± 16.90 a–d | 285.84 ± 0.51 a–d |
AuNPs 100 ppm | 319.99 ± 7.50 ab | 258.87 ± 13.87 b–d | 293.53 ± 11.24 a–d |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tomaszewska-Sowa, M.; Lisiecki, K.; Pańka, D. Response of Rapeseed (Brassica napus L.) to Silver and Gold Nanoparticles as a Function of Concentration and Length of Exposure. Agronomy 2022, 12, 2885. https://doi.org/10.3390/agronomy12112885
Tomaszewska-Sowa M, Lisiecki K, Pańka D. Response of Rapeseed (Brassica napus L.) to Silver and Gold Nanoparticles as a Function of Concentration and Length of Exposure. Agronomy. 2022; 12(11):2885. https://doi.org/10.3390/agronomy12112885
Chicago/Turabian StyleTomaszewska-Sowa, Magdalena, Karol Lisiecki, and Dariusz Pańka. 2022. "Response of Rapeseed (Brassica napus L.) to Silver and Gold Nanoparticles as a Function of Concentration and Length of Exposure" Agronomy 12, no. 11: 2885. https://doi.org/10.3390/agronomy12112885
APA StyleTomaszewska-Sowa, M., Lisiecki, K., & Pańka, D. (2022). Response of Rapeseed (Brassica napus L.) to Silver and Gold Nanoparticles as a Function of Concentration and Length of Exposure. Agronomy, 12(11), 2885. https://doi.org/10.3390/agronomy12112885