Progress in Studies of Climatic Suitability of Crop Quality and Resistance Mechanisms in the Context of Climate Warming
Abstract
:1. Introduction
2. Effects of Climate Change on Crop Quality
3. Effect of Sowing Time Adjustment on Crop Quality
4. Crop Quality Model
5. Study Prospects
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Darwin, R. The impact of global warming on agriculture: A Ricardian analysis: Comment. Am. Econ. Rev. 1999, 89, 1049–1052. [Google Scholar] [CrossRef]
- Cantelaube, P.; Terres, J.M.; Doblas-Reyes, F.J. Influence of climate variability on European agriculture—Analysis of winter wheat production. Clim. Res. 2004, 27, 135–144. [Google Scholar] [CrossRef]
- Tubiello, F.N.; Soussana, J.F.; Howden, S.M. Crop and pasture response to climate change. Proc. Natl. Acad. Sci. USA 2007, 104, 19686–19690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battisti, D.S.; Naylor, R.L. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 2009, 323, 240–244. [Google Scholar] [CrossRef] [Green Version]
- Piao, S.L.; Ciais, P.; Huang, Y.; Shen, Z.H.; Peng, S.S.; Li, J.S.; Zhou, L.P.; Liu, H.Y.; Ma, Y.C.; Ding, Y.H.; et al. The impacts of climate change on water resources and agriculture in China. Nature 2010, 467, 43–51. [Google Scholar] [CrossRef]
- Qin, Z.H.; Tang, H.J.; Li, W.J.; Zhao, S.H. Progress and directions in studying the impacts of climate change on agriculture and grain production in China. Chin. J. Agric. Resour. Reg. Plann. 2013, 34, 1–7, (In Chinese with English abstract). [Google Scholar]
- Wang, H.L.; Zhang, Q.; Wang, R.Y.; Gan, Y.T.; Niu, J.Y.; Zhang, K.; Zhao, F.N.; Zhao, H. Effects of air temperature increase and precipitation change on grain yield and quality of spring wheat in semiarid area of Northwest China. Chin. J. Appl. Ecol. 2015, 26, 67–75, (In Chinese with English abstract). [Google Scholar]
- Chen, K.Z.; Hsu, C. Managing climate change risk in China’s agricultural sector: The potential for an integrated risk management framework. J. Integr. Agric. 2014, 13, 1418–1431. [Google Scholar] [CrossRef]
- Cui, M.M.; Nie, C.H. Study on food security in China based on evaluation index system. Bull. Chin. Acad. Sci. 2019, 34, 910–919, (In Chinese with English abstract). [Google Scholar]
- Chou, J.M.; Dong, W.J.; Xu, H.; Tu, G. New ideas for research on the impact of climate change on China’s food security. Clim. Environ. Res. 2022, 27, 206–216, (In Chinese with English abstract). [Google Scholar]
- Chen, J.; Liu, Y.J.; Zhou, W.M.; Zhang, J.; Pan, T. Effects of climate change and crop management on changes in rice phenology in China from 1981 to 2010. J. Sci. Food Agric. 2021, 101, 6311–6319. [Google Scholar] [CrossRef] [PubMed]
- Xie, L.Y.; Li, Y.; Xu, Y.X.; Zhao, X.; Song, Y.L.; Jiang, T.; Lin, E.D. Updated understanding on the impacts of climate change on food production and food security. Clim. Chang. Res. 2014, 10, 235–239, (In Chinese with English abstract). [Google Scholar]
- IPCC. Climate Change 2014: Impacts, Adaptation, and Vulnerability; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Wu, D.X.; Wang, G.X.; Bai, Y.F.; Liao, J.X. Effects of elevated CO2 concentration on growth, water use, yield and grain quality of wheat under two soil water levels. Agric. Ecosyst. Environ. 2004, 104, 493–507. [Google Scholar] [CrossRef]
- Irigoyen, J.J.; Goicoechea, N.; Antolin, M.C.; Pascual, I.; Sanchez-Diaz, M.; Aguirreolea, J.; Morales, F. Growth, photosynthetic acclimation and yield quality in legumes under climate change simulations: An updated survey. Plant Sci. 2014, 226, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.Y.; Qu, L.Q.; Wu, Y.R.; Zhang, J.S.; Wang, T. Current progress and prospect of crop quality research. Sci. Sin. 2021, 51, 1405–1414, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Kong, L.P.; Zhang, H.Y.; Zhao, Y.M. Effects of sowing date and planting density on starch RVA properties and kernel quality of two maize varieties. J. Maize Sci. 2014, 22, 98–102, 108, (In Chinese with English abstract). [Google Scholar]
- Zhang, S.; Zhao, L.M.; Yi, C.F.; Gao, B.D. Effect of sowing time on seed and nutrient quality formation of spring maize. J. Inner. Mongolia. Agric. Univ. 2000, 21, 26–29, (In Chinese with English abstract). [Google Scholar]
- Guo, J.P.; Gao, S.H.; Liu, L. An experimental study of the impacts of meteorological condition on crops qualities and yield. Clim. Environ. Res. 2001, 6, 361–367, (In Chinese with English abstract). [Google Scholar]
- Moya, T.B.; Ziska, L.H.; Weldon, C.; Quilang, J.E.P.; Jones, P. Microclimate in open-top chambers: Implications for predicting climate change effects on rice production. Trans. ASAE 1997, 40, 739–747. [Google Scholar] [CrossRef]
- Lin, E.D.; Xiong, W.; Ju, H.; Xu, Y.L.; Li, Y.; Bai, L.P.; Xie, L.Y. Climate change impacts on crop yield and quality with CO2 fertilization in China. Philos. Trans. Biol. Sci. 2005, 360, 2149–2154. [Google Scholar]
- Liu, S.Y.; Dong, S.T.; Hu, C.H. The study of relationship between ecological environment and maize enzyme activity. Acta. Agric. Boreali-Sin. 2004, 4, 62–65, (In Chinese with English abstract). [Google Scholar]
- Zhou, W.; Cui, F.Z.; Duan, H.K.; Hao, G.H.; Yang, H.; Liu, R.R. Effects of sowing date on yield and quality of waxy maize. Crops 2020, 2, 156–161, (In Chinese with English abstract). [Google Scholar]
- Motzo, R.; Giunta, F.; Deidda, M. Relationships between grain-filling parameters, fertility, earliness and grain protein of durum wheat in a Mediterranean environment. Field Crops Res. 1996, 47, 129–142. [Google Scholar] [CrossRef]
- Pan, J.; Zhu, Y.; Cao, W.X.; Dai, T.B.; Jiang, D. Predicting the protein content of grain in winter wheat with meteorological and genotypic factors. Plant Prod. Sci. 2006, 9, 323–333. [Google Scholar] [CrossRef]
- Lee, B.H.; Kenkel, P.; Brorsen, B.W. Pre-harvest forecasting of county wheat yield and wheat quality using weather information. Agric. For. Meteorol. 2013, 168, 26–35. [Google Scholar] [CrossRef]
- Vollmer, E.; Mußhoff, O. Average protein content and its variability in winter wheat: A forecast model based on weather parameters. Earth Interact. 2018, 22, 1–24. [Google Scholar] [CrossRef]
- Smith, G.P.; Gooding, M.J. Models of wheat grain quality considering climate, cultivar and nitrogen effects. Agric. For. Meteorol. 1999, 94, 159–170. [Google Scholar] [CrossRef]
- Marta, A.D.; Grifoni, D.; Mancini, M.; Zipoli, G.; Orlandini, S. The influence of climate on durum wheat quality in Tuscany, Central Italy. Int. J. Biometeorol. 2011, 55, 87–96. [Google Scholar] [CrossRef]
- Zhu, T.Q.; Song, Q.H.; Meng, X.F. Influences of various growth factors on yield and grain quality in wheat—Taking Zhumadian’s wheat production in the past ten years as example. Crops 2020, 6, 80–88, (In Chinese with English abstract). [Google Scholar]
- Dai, T.B.; Zhao, H.; Jing, Q.; Jiang, D.; Cao, W.X. Effects of high temperature and water stress during grain filling on grain protein and starch formation in winter wheat. Acta. Ecol. Sin. 2006, 11, 3670–3676, (In Chinese with English abstract). [Google Scholar]
- Zhao, Y.; Li, Z.; Hu, X.; Yang, G.; Wang, B.; Duan, D.; Fu, Y.; Liang, J.; Zhao, C. Spatial heterogeneity of county-level grain protein content in winter wheat in the Huang-Huai-Hai region of China. Eur. J. Agron. 2022, 134, 126466. [Google Scholar] [CrossRef]
- Caubel, J.; de Cortazar-Atauri, I.G.; Vivant, A.C.; Launay, M.; de Noblet-Ducoudre, N. Assessing future meteorological stresses for grain maize in France. Agric. Syst. 2018, 159, 237–247. [Google Scholar] [CrossRef]
- Bonfante, A.; Alfieri, S.M.; Albrizio, R.; Basile, A.; De Mascellis, R.; Gambuti, A.; Giorio, P.; Langella, G.; Manna, P.; Monaco, E.; et al. Evaluation of the effects of future climate change on grape quality through a physically based model application: A case study for the Aglianico grapevine in Campania region, Italy. Agric. Syst. 2017, 152, 100–109. [Google Scholar] [CrossRef]
- Xu, J.Q.; Qian, C.; Sun, Y.K.; Zhou, Y.J. Effects of different sowing date on yield and quality of maize. Heilongjiang Agric. Sci. 2019, 8, 32–34, (In Chinese with English abstract). [Google Scholar]
- Yang, H.; Shi, Y.L.; Lu, D.L.; Lu, W.P. Effect of sowing date on starch physicochemical properties of summer waxy maize. J. Nucl. Agric. 2016, 30, 1754–1762, (In Chinese with English abstract). [Google Scholar]
- Feng, Y.Z.; Chen, H.Y.; Yu, T.Y.; Wen, H.T. Influence of sowing date on main components of waxy maize sowed in autumn in south China. Chin. J. Agrometeorol. 2006, 27, 142–146, (In Chinese with English abstract). [Google Scholar]
- Li, X.L.; Zhao, M.; Li, C.F.; Ge, J.Z.; Hou, H.P.; Li, Q.; Hou, L.B. Effect of sowing-date and planting density on dry matter accumulation dynamic and establishment of its simulated model in maize. Acta. Agron. Sin. 2010, 36, 2143–2153, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Wu, F.L.; Wang, L.; Zhao, X. Effect of harvesting period on quality and fresh yield of waxy corn Zhenghuangnuo No.2. J. Henan Agric. Sci. 2016, 45, 29–31, (In Chinese with English abstract). [Google Scholar]
- Lu, D.L.; Guo, H.F.; Dong, C.; Lu, W.P. Differences of physicochemical properties for waxy maize flour at fresh and maturity stages. Acta. Agron. Sin. 2010, 36, 2170–2178, (In Chinese with English abstract). [Google Scholar] [CrossRef]
- Mehdi, T.; Badii, G.; Rym, B.; Mounira, H.; Hmida, B.H.; Salem, L. Apple breeding in Tunisia and the actual climatic context: Quality assessment and crop adaptation. Int. J. Plant Sci. Ecol. 2015, 1, 131–137. [Google Scholar]
- Mkhabela, M.; Bullock, P.; Gervais, M.; Finlay, G.; Sapirstein, H. Assessing indicators of agricultural drought impacts on spring wheat yield and quality on the Canadian prairies. Agric. For. Meteorol. 2010, 150, 399–410. [Google Scholar] [CrossRef]
- Brankovic, G.R.; Dodig, D.; Zoric, M.Z.; Surlan-momirovic, G.G.; Dragicevic, V.; Duric, N. Effects of climatic factors on grain vitreousness stability and heritability in durum wheat. Turk. J. Agric. For. 2014, 38, 429–440. [Google Scholar] [CrossRef]
- Stagnari, F.; Onofri, A.; Codianni, P.; Pisante, M. Durum wheat varieties in N-deficient environments and organic farming: A comparison of yield, quality and stability performances. Plant Breed. 2013, 132, 266–275. [Google Scholar] [CrossRef]
- Kandiannan, K.; Karthikeyan, R.; Krishnan, R.; Kailasam, C.; Balasubramanian, T.N. A crop–weather model for prediction of rice (Oryza sativa L.) yield using an empirical-statistical technique. J. Agron. Crop Sci. 2002, 188, 59–62. [Google Scholar] [CrossRef]
- Kristensen, K.; Schelde, K.; Olesen, J.E. Winter wheat yield response to climate variability in Denmark. J. Agric. Sci. 2011, 149, 33–47. [Google Scholar] [CrossRef]
- Li, Z.; Taylor, J.; Yang, H.; Casa, R.; Jin, X.; Li, Z.; Song, X.; Yang, G. A hierarchical interannual wheat yield and grain protein prediction model using spectral vegetative indices and meteorological data. Field Crops Res. 2020, 248, 107711. [Google Scholar] [CrossRef]
- Xu, X.; Teng, C.; Zhao, Y.; Du, Y.; Zhao, C.; Yang, G.; Jin, X.; Song, X.; Gu, X.; Casa, R.; et al. Prediction of wheat grain protein by coupling multisource remote sensing imagery and ECMWF data. Remote Sen. 2020, 12, 1349. [Google Scholar] [CrossRef]
- De Wit, C.T. Photosynthesis of leaf canopies. In Agricultural Research Reports 663; Centre for agricultural publications and Documentation: Wageningen, The Netherlands, 1965. [Google Scholar]
- Duncan, W.G.; Loomis, R.S.; Williams, W.A.; Hanau, R. A model for simulating photosynthesis in plant communities. Hilgardia 1967, 38, 181–205. [Google Scholar] [CrossRef]
- Jones, J.W.; Hoogenboom, G.; Porter, C.H.; Boote, K.J.; Batchelor, W.D.; Hunt, L.A.; Wilkens, P.W.; Singh, U.; Gijsman, A.J.; Ritchie, J.T. The DSSAT cropping system model. Eur. J. Agron. 2003, 18, 235–265. [Google Scholar] [CrossRef]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.G.; Meinke, H.; Hochman, H.; et al. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef] [Green Version]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.; et al. An overview of the crop model STICS. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- Yin, X.; van Laar, H.H. Crop Systems Dynamics: An Ecophysiological Simulation Model for Genotype-by-Environment Interactions; Wageningen Academic Publishers: Wageningen, The Netherlands, 2005. [Google Scholar]
- Li, T.; Angeles, O.; Marcaida, M.; Manalo, E.; Manalili, M.P.; Radanielson, A.; Mohanty, S. From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments. Agric. For. Meteorol. 2017, 237, 246–256. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Tang, L.; Liu, L.L.; Liu, B.; Zhang, X.H.; Qiu, X.L.; Tian, Y.C.; Cao, W.X. Research progress on the crop growth model CropGrow. Sci. Agric. Sin. 2020, 53, 3235–3256, (In Chinese with English abstract). [Google Scholar]
- Asseng, S.; Ewert, F.; Martre, P.; Rötter, R.P.; Lobell, D.B.; Cammarano, D.; Kimball, B.A.; Ottman, M.J.; Wall, G.W.; White, J.W.; et al. Rising temperatures reduce global wheat production. Nat. Clim. Chang. 2015, 5, 143–147. [Google Scholar] [CrossRef]
- Matiu, M.; Ankerst, D.P.; Menzel, A. Interactions between temperature and drought in global and regional crop yield variability during 1961–2014. PLoS ONE 2017, 12, e0178339. [Google Scholar]
- Zhang, X.H.; Xu, H.; Jiang, L.; Zhao, J.Q.; Zuo, W.J.; Qiu, X.L.; Tian, Y.C.; Cao, W.X.; Zhu, Y. Selection of appropriate spatial resolution for the meteorological data for regional winter wheat potential productivity simulation in China based on WheatGrow model. Agronomy 2018, 8, 198. [Google Scholar] [CrossRef] [Green Version]
- Xiao, D.; Tao, F. Contributions of cultivars, management and climate change to winter wheat yield in the North China Plain in the past three decades. Eur. J. Agron. 2014, 52, 112–122. [Google Scholar] [CrossRef]
- Liu, L.L.; Wang, E.L.; Zhu, Y.; Tang, L.; Cao, W.X. Effects of warming and autonomous breeding on the phenological development and grain yield of double-rice systems in China. Agric. Ecosyst. Environ. 2013, 165, 28–38. [Google Scholar] [CrossRef]
- Folberth, C.; Skalsky, R.; Moltchanova, E.; Balkovic, J.; Azevedo, L.B.; Obersteiner, M.; van der Velde, M. Uncertainty in soil data can outweigh climate impact signals in global crop yield simulations. Nat. Commun. 2016, 7, 11872. [Google Scholar] [CrossRef] [Green Version]
- Chen, H.; Lin, J.; Yang, K.; Wang, P.J.; Yang, F.Y.; Chen, H.L.; Chen, T.; Li, L.C.; Li, L.R.; Chen, F.Z. Construction and application of climate quality evaluation model for Indian jujube. J. Appl. Meteor. Sci. 2021, 32, 443–455, (In Chinese with English abstract). [Google Scholar]
- Liu, Y.; Tang, L.; Qiu, X.; Liu, B.; Zhu, Y. Impacts of 1.5 and 2.0 °C global warming on rice production across China. Agric. For. Meteorol. 2020, 284, 107900. [Google Scholar] [CrossRef]
- Osman, R.; Zhu, Y.; Ma, W.; Zhang, D.; Ding, Z.; Liu, L.; Tang, L.; Liu, B.; Cao, W. Comparison of wheat simulation models for impacts of extreme temperature stress on grain quality. Agric. For. Meteorol. 2020, 288, 107995. [Google Scholar] [CrossRef]
- Sun, J.S.; Xiao, J.F.; Duan, A.W.; Zhang, S.M.; Zhang, J.Y. The effect of water consuming law and water stress on growth, development and yield of summer maize. J. Maize Sci. 1999, 2, 46–49, 52, (In Chinese with English abstract). [Google Scholar]
- Hansen, P.M.; Jorgensen, J.R.; Thomsen, A. Predicting grain yield and protein content in winter wheat and spring barley using repeated canopy reflectance measurements and partial least squares regression. J. Agric. Sci. 2002, 139, 307–318. [Google Scholar] [CrossRef]
- Xue, L.H.; Zhu, Y.; Zhang, X.; Cao, W.X. Predicting wheat grain quality with canopy reflectance spectra. Acta. Agron. Sin. 2004, 30, 1036–1041, (In Chinese with English abstract). [Google Scholar]
- Tang, Y.L.; Huang, J.F.; Wang, R.C. Study on estimating the contents of crude protein and crude starch in rice panicle and paddy by hyperspectral. Sci. Agric. Sin. 2004, 37, 1282–1287, (In Chinese with English abstract). [Google Scholar]
- Zhao, C.J.; Liu, L.Y.; Wang, J.H.; Huang, W.J.; Song, X.Y.; Li, C.J. Predicting grain protein content of winter wheat using remote sensing data based on nitrogen status and water stress. Int. J. Appl. Earth Obs. Geoinf. 2005, 7, 1–9. [Google Scholar] [CrossRef]
- Li, W.G.; Wang, J.H.; Zhao, C.J.; Liu, L.Y.; Song, X.Y.; Tong, Q.X. A model for predicting protein content in winter wheat grain based on Land-Sat TM image and nitrogen accumulation. J. Remote Sens. 2008, 12, 506–514, (In Chinese with English abstract). [Google Scholar]
- Wang, J.H.; Li, C.J.; Liu, L.Y.; Huang, W.J.; Zhao, C.J. Progress of remote sensing monitoring and forecasting crop quality. Sci. Agric. Sin. 2008, 41, 2633–2640, (In Chinese with English abstract). [Google Scholar]
- He, Q.; Zhou, G. Climate-associated distribution of summer maize in China from 1961 to 2010. Agric. Ecosyst. Environ. 2016, 232, 326–335. [Google Scholar] [CrossRef]
- He, Q.; Zhou, G.; Lv, X.; Zhou, M. Climatic suitability and spatial distribution for summer maize cultivation in China at 1.5 and 2.0 °C global warming. Sci. Bull. 2019, 64, 690–697. [Google Scholar] [CrossRef] [Green Version]
- Yang, D.; Jin, Z.F.; Ding, Y.Y.; Huang, H.L.; Wang, Z.H. Method and application of climate quality evaluation for juicy peach. Chin. J. Ecol. 2018, 301, 2532–2540, (In Chinese with English abstract). [Google Scholar]
- Yao, J.Y.; Yu, H.M.; Que, L.J.; Li, Y.C. Soybean climatic quality assessment: Technical models. Chin. Agric. Sci. Bull. 2019, 35, 134–138, (In Chinese with English abstract). [Google Scholar]
- Xie, Y.Y.; Wang, P.J.; Zhu, L.J.; Chen, X.; Huang, Y. Climate quality evaluation model for navel orange in Ganzhou. Chin. J. Ecol. 2019, 38, 2265–2274, (In Chinese with English abstract). [Google Scholar]
- Yang, M.F.; Zhang, L.; Ji, C.R. The climate quality of flat peach in Shihezi: Evaluation method. Chin. Agric. Sci. Bull. 2019, 35, 97–101, (In Chinese with English abstract). [Google Scholar]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Zhou, G.; Liu, J. Progress in Studies of Climatic Suitability of Crop Quality and Resistance Mechanisms in the Context of Climate Warming. Agronomy 2022, 12, 3183. https://doi.org/10.3390/agronomy12123183
He Q, Zhou G, Liu J. Progress in Studies of Climatic Suitability of Crop Quality and Resistance Mechanisms in the Context of Climate Warming. Agronomy. 2022; 12(12):3183. https://doi.org/10.3390/agronomy12123183
Chicago/Turabian StyleHe, Qijin, Guangsheng Zhou, and Jiahong Liu. 2022. "Progress in Studies of Climatic Suitability of Crop Quality and Resistance Mechanisms in the Context of Climate Warming" Agronomy 12, no. 12: 3183. https://doi.org/10.3390/agronomy12123183
APA StyleHe, Q., Zhou, G., & Liu, J. (2022). Progress in Studies of Climatic Suitability of Crop Quality and Resistance Mechanisms in the Context of Climate Warming. Agronomy, 12(12), 3183. https://doi.org/10.3390/agronomy12123183