Overall Quality of “Early” Potato Tubers as Affected by Organic Cultivation
Abstract
1. Introduction
2. Materials and Methods
2.1. Site, Climate, and Soil
2.2. Experimental Design, Plant Material, and Crop Management
2.3. Sample Collection and Preparation for Analysis
2.4. Physico-Chemical Analyses
2.5. Nutritional Analysis
2.6. Sensorial Analysis of Cooked Tubers
Sample Preparation
2.7. Weather Conditions during the Trials
2.8. Statistical Analysis
3. Results and Discussions
3.1. Physico-Chemical Traits
3.2. Nutritional Traits
3.3. Sensorial Traits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement.
Informed Consent Statement.
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO Food and Agricultural Organization. 2019. Available online: www.fao.org (accessed on 23 March 2021).
- Ierna, A.; Rizzarelli, P.; Malvuccio, A.; Rapisarda, M. Effect of different anti-browning agents on quality of minimally processed early potatoes packaged on a compostable film. LWT-Food Sci. Technol. 2017, 85, 434–439. [Google Scholar] [CrossRef]
- Ierna, A.; Melilli, M.G. Ascorbic Acid and Total Phenolics Content in Early Potatoes as Affected by Growing Season, Genotype and Harvest Time. Acta Hortic. 2014, 133–141. [Google Scholar] [CrossRef]
- Friedman, M. Chemistry, Biochemistry, and Dietary Role of Potato Polyphenols. A Review. J. Agric. Food Chem. 1997, 45, 1523–1540. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. Sustainable and Profitable Nitrogen Fertilization Management of Potato. Agronomy 2019, 9, 582. [Google Scholar] [CrossRef]
- Bacchi, M.A.; De Nadai Fernandes, E.A.; Tsai, S.M.; Santos, L.G.C. Conventional and organic potatoes: Assessment of elemental composition using k 0 -INAA. J. Radioanal. Nucl. Chem. 2004, 259, 421–424. [Google Scholar] [CrossRef]
- Maggio, A.; Carillo, P.; Bulmetti, G.S.; Fuggi, A.; Barbieri, G.; De Pascale, S. Potato yield and metabolic profiling under conventional and organic farming. Eur. J. Agron. 2008, 28, 343–350. [Google Scholar] [CrossRef]
- Woese, K.; Lange, D.; Boess, C.; Bögl, K.W. A Comparison of Organically and Conventionally Grown Foods—Results of a Review of the Relevant Literature. J. Sci. Food Agric. 1997, 74, 281–293. [Google Scholar] [CrossRef]
- Ierna, A. Characterization of potato genotypes by chlorophyll fluorescence during plant aging in a Mediterranean environment. Photosynthetica 2007, 45, 568–575. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. How Moderate Water Stress Can Affect Water Use Efficiency Indices in Potato. Agronomy 2020, 10, 1034. [Google Scholar] [CrossRef]
- Ierna, A. Tuber yield and quality characteristics of potatoes for off-season crops in a Mediterranean environment. J. Sci. Food Agric. 2010, 90, 85–90. [Google Scholar] [CrossRef]
- Ierna, A.; Parisi, B. Crop growth and tuber yield of “early” potato crop under organic and conventional farming. Sci. Hortic. (Amsterdam) 2014, 165, 260–265. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. Nutritional and sensory characteristics of “early” potato cultivars under organic and conventional cultivation systems. Food Chem. 2012, 133, 1249–1254. [Google Scholar] [CrossRef]
- Lombardo, S.; Lo Monaco, A.; Pandino, G.; Parisi, B.; Mauromicale, G. The phenology, yield and tuber composition of ‘early’ crop potatoes: A comparison between organic and conventional cultivation systems. Renew. Agric. Food Syst. 2013, 28, 50–58. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The effect on tuber quality of an organic versus a conventional cultivation system in the early crop potato. J. Food Compos. Anal. 2017, 62, 189–196. [Google Scholar] [CrossRef]
- Fernqvist, F.; Spendrup, S.; Ekelund, L. Changing consumer intake of potato, a focus group study. Br. Food J. 2015, 117, 210–221. [Google Scholar] [CrossRef]
- Wszelaki, A.L.; Delwiche, J.F.; Walker, S.D.; Liggett, R.E.; Scheerens, J.C.; Kleinhenz, M.D. Sensory quality and mineral and glycoalkaloid concentrations in organically and conventionally grown redskin potatoes (Solanum tuberosum). J. Sci. Food Agric. 2005, 85, 720–726. [Google Scholar] [CrossRef]
- Hajŝlová, J.; Schulzová, V.; Slanina, P.; Janné, K.; Hellenäs, K.E.; Andersson, C. Quality of organically and conventionally grown potatoes: Four-year study of micronutrients, metals, secondary metabolites, enzymic browning and organoleptic properties. Food Addit. Contam. 2005, 22, 514–534. [Google Scholar] [CrossRef]
- Djaman, K.; Sanogo, S.; Koudahe, K.; Allen, S.; Saibou, A.; Essah, S. Characteristics of organically grown compared to conventionally grown potato and the processed products: A review. Sustainability 2021, 13, 6289. [Google Scholar] [CrossRef]
- Violante, P. Metodi di Analisi Chimica del Suolo; Franco, A., Ed.; Italian Ministry of Agriculture: Milan, Italy, 2000.
- Ierna, A.; Pellegrino, A.; Di Silvestro, I.; Buccheri, M. Sensory and physico-chemical characteristics of minimally processed “early” potato tubers as affected by anti-browning treatments and cultivar. Acta Hortic. 2016, 1141, 229–236. [Google Scholar] [CrossRef]
- Hunter, R.S.; Harold, R.W. Uniform Color Scale. The Measurement of Appearance, 2nd ed.; John Wiley and Sons Inc.: New York, NY, USA, 1987; Chapter 8. [Google Scholar]
- McGuire, R.G. Reporting of Objective Color Measurements. HortScience 2019, 27, 1254–1255. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of the AOAC; AOAC: Rockville, MD, USA, 2008. [Google Scholar]
- Slinkard, K.; Singleton, V.L. Total Phenol Analysis: Automation and Comparison with Manual Methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Hejtmánková, K.; Kotíková, Z.; Hamouz, K.; Pivec, V.; Vacek, J.; Lachman, J. Influence of flesh colour, year and growing area on carotenoid and anthocyanin content in potato tubers. J. Food Compos. Anal. 2013, 32, 20–27. [Google Scholar] [CrossRef]
- Haase, T.; Schüler, C.; Haase, N.U.; Heß, J. Suitability of Organic Potatoes for Industrial Processing: Effect of Agronomical Measures on Selected Quality Parameters at Harvest and after Storage. Potato Res. 2007, 50, 115–141. [Google Scholar] [CrossRef]
- Gilsenan, C.; Burke, R.M.; Barry-Ryan, C. A study of the physicochemical and sensory properties of organic and conventional potatoes (Solanum tuberosum) before and after baking. Int. J. Food Sci. Technol. 2010, 45, 475–481. [Google Scholar] [CrossRef]
- Finotti, E.; Bertone, A.; Vivanti, V. Balance between nutrients and anti-nutrients in nine Italian potato cultivars. Food Chem. 2006, 99, 698–701. [Google Scholar] [CrossRef]
- Herencia, J.F.; García-Galavís, P.A.; Dorado, J.A.R.; Maqueda, C. Comparison of nutritional quality of the crops grown in an organic and conventional fertilized soil. Sci. Hortic. (Amst.) 2011, 129, 882–888. [Google Scholar] [CrossRef]
- Tein, B.; Kauer, K.; Eremeev, V.; Luik, A.; Selge, A.; Loit, E. Farming systems affect potato (Solanum tuberosum L.) tuber and soil quality. F. Crop. Res. 2014, 156, 1–11. [Google Scholar] [CrossRef]
- Bender, I.; Ess, M.W.V.; Matt, D.; Moor, U.; Tr nutare, T.N.; Luik, A. Quality of organic and conventional carrots. Agron. Res. 2009, 7, 572–577. [Google Scholar]
- Pieper, J.R.; Barrett, D.M. Effects of organic and conventional production systems on quality and nutritional parameters of processing tomatoes. J. Sci. Food Agric. 2009, 89, 177–194. [Google Scholar] [CrossRef]
- Toor, R.K.; Savage, G.P.; Heeb, A. Influence of different types of fertilisers on the major antioxidant components of tomatoes. J. Food Compos. Anal. 2006, 19, 20–27. [Google Scholar] [CrossRef]
- Palmer, M.W.; Cooper, J.; Tétard-Jones, C.; Średnicka-Tober, D.; Barański, M.; Eyre, M.; Shotton, P.N.; Volakakis, N.; Cakmak, I.; Ozturk, L.; et al. The influence of organic and conventional fertilisation and crop protection practices, preceding crop, harvest year and weather conditions on yield and quality of potato (Solanum tuberosum) in a long-term management trial. Eur. J. Agron. 2013, 49, 83–92. [Google Scholar] [CrossRef]
- Brown, C.R. Antioxidants in potato. Am. J. Potato Res. 2005, 82, 163–172. [Google Scholar] [CrossRef]
- Silva, G.H.; Chase, R.W.; Hammerschmidt, R.; Cash, J.N. After-Cooking Darkening of Spartan Pearl Potatoes as Influenced by Location, Phenolic Acids, and Citric Acid. J. Agric. Food Chem. 1991, 39, 871–873. [Google Scholar] [CrossRef]
- Brandt, K.; Leifert, C.; Sanderson, R.; Seal, C.J. Agroecosystem Management and Nutritional Quality of Plant Foods: The Case of Organic Fruits and Vegetables. CRC. Crit. Rev. Plant Sci. 2011, 30, 177–197. [Google Scholar] [CrossRef]
- Zapata, P.J.; Tucker, G.A.; Valero, D.; Serrano, M. Quality parameters and antioxidant properties in organic and conventionally grown broccoli after pre-storage hot water treatment. J. Sci. Food Agric. 2013, 93, 1140–1146. [Google Scholar] [CrossRef]
- Chassy, A.W.; Bui, L.; Renaud, E.N.C.; Van Horn, M.; Mitchell, A.E. Three-Year Comparison of the Content of Antioxidant Microconstituents and Several Quality Characteristics in Organic and Conventionally Managed Tomatoes and Bell Peppers. J. Agric. Food Chem. 2006, 54, 8244–8252. [Google Scholar] [CrossRef]
- Winter, C.K.; Davis, S.F. Organic Foods. J. Food Sci. 2006, 71, R117–R124. [Google Scholar] [CrossRef]
- Wegener, C.B.; Jansen, G.; Jurgens, H.-U. Influence of Drought and Wounding Stress on Soluble Phenols and Proteins in Potato Tubers. Sustain. Agric. Res. 2014, 3, 1. [Google Scholar] [CrossRef][Green Version]
- Brazinskiene, V.; Asakaviciute, R.; Miezeliene, A.; Alencikiene, G.; Ivanauskas, L.; Jakstas, V.; Viskelis, P.; Razukas, A. Effect of farming systems on the yield, quality parameters and sensory properties of conventionally and organically grown potato (Solanum tuberosum L.) tubers. Food Chem. 2014, 145, 903–909. [Google Scholar] [CrossRef]
Genotype | Shape | Skin Color | Pulp Color | Cooking Type 1 |
---|---|---|---|---|
Arinda | long oval | yellow | yellow | B |
Bionica | oval | yellow | cream | AB |
Ditta | long oval | yellow | yellow | A |
ISCI 4F88 | oval | yellow | yellow | B |
Marabel | oval | yellow | yellow | B |
Cultivation System | Type | Active Ingredient | Phenological Stage |
---|---|---|---|
Conventional | Herbicides | Clomazone | Pre-emergence |
Pesticides | Benfuracarb (wireworms) | Before planting | |
Cimoxanyl, Dimetonorf, zoxamide (late blight) | During crop growth | ||
Cipermethrin (aphids) | During crop growth | ||
Imidacloprid (colorado bittle) | During crop growth | ||
Fertilizers | Superphosphate, Potassium sulphate | Before planting | |
Ammonium nitrate | At complete emergence and tuber initiation | ||
Organic | Herbicides | No (hand-holing) | |
Pesticides | Tribasic copper sulphate (late blight) | During crop growth | |
Fertilizers | Meat and bone meal based (a) and dried manure based (b) commercial products | Before planting |
Source of Variation | Cultivation System (CS) | Genotype (G) | Season (Se) | CS × G | CS × Se | G × Se |
---|---|---|---|---|---|---|
Lightness SK | 29 *** | 6 *** | 1 NS | 5 ** | 5 ** | 1 NS |
Chroma SK | 8 ** | 11 *** | 0.02 NS | 3 * | 34 *** | 0.06 NS |
Hue angle SK | 10 ** | 14 *** | 2 NS | 4 * | 0.1 NS | 0.08 NS |
Skin thickness | 75 *** | 28 *** | 22 *** | 8 *** | 8 ** | 2 NS |
Firmness | 36 *** | 7 *** | 16 *** | 3 ** | 5 NS | 5 ** |
pH | 171 *** | 38 *** | 1 NS | 1 NS | 5 NS | 1 NS |
Titratable acidity | 138 *** | 14 *** | 319 *** | 7 *** | 13 NS | 20 *** |
Dry matter | 40 *** | 38 *** | 28 *** | 4 ** | 6 NS | 10 *** |
Ascorbic acid | 96 *** | 86 *** | 14 *** | 29 *** | 8 ** | 11 *** |
Total phenolics | 176 *** | 82 *** | 72 *** | 7 *** | 34 *** | 22 *** |
Antioxidant activity | 100 *** | 40 *** | 116 *** | 8 *** | 19 *** | 13 *** |
Consistency AB | 2 NS | 26 *** | 3 NS | 2 NS | 0.04 NS | 1 NS |
Typical taste AB | 6 ** | 12 *** | 4 NS | 3 NS | 0.07 NS | 1 NS |
Blackening AB | - | - | - | - | - | - |
Crispness AF | 33 *** | 54 *** | 7 ** | 19 *** | 2 NS | 1 NS |
Typical taste AF | 36 *** | 18 *** | 10 ** | 12 *** | 3 NS | 0.5 NS |
Browning index AF | 51 *** | 66 *** | 8 ** | 5 ** | 6 NS | 0.6 NS |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Cultivation System | |||||||||||
Conventional | 60.7 b | 25.4 b | 86.8 b | 6.6 b | 2.19 b | 6.0 a | 199 a | 18.4 b | 103 a | 221 b | 56 a |
Organic | 64.2 a | 26.7 a | 88.2 a | 8.0 a | 2.32 a | 5.7 b | 156 b | 19.6 a | 76 b | 333 a | 42 b |
Genotype | |||||||||||
Arinda | 60.2 | 24.8 b | 85.0 b | 7.6 a | 2.33 b | 6.1 a | 164 b | 17.9 c | 114 a | 180 d | 54 b |
Bionica | 62.2 | 25.0 b | 87.9 a | 7.2 ab | 2.27 bc | 5.7 c | 189 a | 18.3 bc | 104 b | 266 b | 59 a |
Ditta | 62.8 | 28.1 a | 89.0 a | 7.6 a | 2.12 cd | 6.0 a | 165 b | 19.0 b | 97 b | 348 a | 45 c |
ISCI 4F88 | 65.2 | 27.6 a | 89.5 a | 7.4 a | 2.58 a | 5.6 c | 197 a | 20.8 a | 78 c | 371 a | 42 c |
Marabel | 61.8 | 24.7 b | 86.2 b | 6.6 b | 1.98 d | 5.9 b | 172 b | 18.8 b | 56 d | 191 c | 35 d |
Season | |||||||||||
Season I | 62.4 a | 26.1 a | 87.4 a | 7.5 a | 2.39 a | 5.9 a | 145 b | 19.6 a | 88 a | 313 a | 40 b |
Season II | 62.5 a | 26.0 a | 87.6 a | 7.1 b | 2.13 b | 5.8 a | 209 a | 18.4 b | 91 a | 241 b | 54 a |
Cultivation System | Genotype | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
Conventional | |||||||||||
Arinda | 59.3 b | 23.3 b | 83.6 b | 6.4 cd | 2.24 bc | 193 ab | 16.9 e | 130 a | 140 f | 60 ab | |
Bionica | 59.4 b | 24.2 ab | 86.6 ab | 6.4 cd | 2.37 b | 207 ab | 18.0 d | 134 a | 209 e | 73 a | |
Ditta | 59.1 b | 28.5 a | 87.4 ab | 7.7 ad | 2.21 bc | 191 ab | 18.3 cd | 112 ab | 291 cd | 49 bc | |
ISCI 4F88 | 65.4 a | 27.7 a | 89.7 a | 6.5 cd | 2.32 bc | 225 a | 20.2 b | 90 bd | 300 cd | 48 bc | |
Marabel | 60.4 b | 23.5 b | 86.7 ab | 6.0 d | 1.83 d | 177 bc | 18.7 cd | 49 e | 163f | 38 c | |
Organic | |||||||||||
Arinda | 61.1 ab | 26.3 ab | 86.4 ab | 8.9 a | 2.43 b | 136 c | 19.0 cd | 97 bc | 218 e | 47 bc | |
Bionica | 65.1 a | 25.9 ab | 89.2 a | 8.0 ac | 2.17 bc | 171 bc | 18.6 cd | 74 ce | 324 c | 46 bc | |
Ditta | 66.6 a | 27.8 a | 90.6 a | 7.6 ad | 2.03 cd | 137 c | 19.8 bc | 82 bd | 396 b | 40 bc | |
ISCI 4F88 | 65.1 a | 27.5 a | 89.3 a | 8.4 ab | 2.86 a | 169 bc | 21.5 a | 66 de | 451 a | 35 c | |
Marabel | 63.2 ab | 25.9 ab | 85.8 ab | 7.2 bd | 2.15 bc | 168 bc | 18.9 cd | 63 de | 275 cd | 32 c |
Cultivation System | Season | Lightness | Chroma | Skin Thickness 1 | Ascorbic Acid 2 | Total Phenolics 3 | Antioxidant Activity 4 |
---|---|---|---|---|---|---|---|
Conventional | I | 61.5 b | 26.8 ab | 6.8 c | 96 b | 267 b | 45 b |
II | 59.9 b | 24.1 b | 6.4 c | 110 a | 175 c | 67 a | |
Organic | I | 63.4 ab | 25.4 ab | 9.4 a | 80 c | 358 a | 38 c |
II | 65.0 a | 27.9 a | 7.7 b | 73 d | 308 b | 47 b |
After Boiling | After Frying | |||||
---|---|---|---|---|---|---|
Consistency 1 | Typical Taste 2 | Blackening 3 | Crispness 2 | Typical Taste 2 | Browning Index 4 | |
Cultivation System | ||||||
Conventional | 2.0 a | 2.3 a | 0 | 1.8 b | 2.3 b | 2.3 a |
Organic | 2.1 a | 2.5 a | 0 | 2.3 a | 2.5 a | 2.1 b |
Genotype | ||||||
Arinda | 1.4 c | 2.7 a | 0 | 2.2 b | 2.6 a | 2.1 c |
Bionica | 2.0 b | 2.7 a | 0 | 1.4 d | 2.4 b | 2.6 a |
Ditta | 2.7 a | 2.3 bc | 0 | 1.8 c | 2.3 bc | 2.3 b |
ISCI 4F88 | 1.5 c | 2.0 c | 0 | 2.9 a | 2.3 bc | 2.0 c |
Marabel | 2.4 a | 2.4 ab | 0 | 2.0 b | 2.2 c | 1.9 c |
Season | ||||||
Season I | 1.9 b | 2.5 a | 0 | 2.2 a | 2.6 a | 2.0 b |
Season II | 2.2 a | 2.3 a | 0 | 1.9 b | 2.1 b | 2.3 a |
Cultivation System | Genotype | Crispness 1 | Typical Taste 1 | Browning Index 2 |
---|---|---|---|---|
Conventional | Arinda | 1.8 d | 2.4 ab | 2.2 bc |
Bionica | 1.4 e | 2.7 a | 2.9 a | |
Ditta | 1.4 e | 1.8 d | 2.5 ab | |
ISCI 4F88 | 2.4 b | 2.3 bc | 2.0 c | |
Marabel | 2.3 bc | 2.0 c | 2.0 c | |
Organic | Arinda | 2.3 bc | 2.7 a | 2.0 c |
Bionica | 1.4 e | 2.3 bc | 2.3 bc | |
Ditta | 2.3 bc | 2.7 a | 2.2 bc | |
ISCI 4F88 | 3.3 a | 2.4 ab | 2.1 bc | |
Marabel | 2.0 cd | 2.3 bc | 1.8 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ierna, A.; Parisi, B.; Melilli, M.G. Overall Quality of “Early” Potato Tubers as Affected by Organic Cultivation. Agronomy 2022, 12, 296. https://doi.org/10.3390/agronomy12020296
Ierna A, Parisi B, Melilli MG. Overall Quality of “Early” Potato Tubers as Affected by Organic Cultivation. Agronomy. 2022; 12(2):296. https://doi.org/10.3390/agronomy12020296
Chicago/Turabian StyleIerna, Anita, Bruno Parisi, and Maria Grazia Melilli. 2022. "Overall Quality of “Early” Potato Tubers as Affected by Organic Cultivation" Agronomy 12, no. 2: 296. https://doi.org/10.3390/agronomy12020296
APA StyleIerna, A., Parisi, B., & Melilli, M. G. (2022). Overall Quality of “Early” Potato Tubers as Affected by Organic Cultivation. Agronomy, 12(2), 296. https://doi.org/10.3390/agronomy12020296