Overall Quality of “Early” Potato Tubers as Affected by Organic Cultivation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site, Climate, and Soil
2.2. Experimental Design, Plant Material, and Crop Management
2.3. Sample Collection and Preparation for Analysis
2.4. Physico-Chemical Analyses
2.5. Nutritional Analysis
2.6. Sensorial Analysis of Cooked Tubers
Sample Preparation
2.7. Weather Conditions during the Trials
2.8. Statistical Analysis
3. Results and Discussions
3.1. Physico-Chemical Traits
3.2. Nutritional Traits
3.3. Sensorial Traits
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement.
Informed Consent Statement.
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO Food and Agricultural Organization. 2019. Available online: www.fao.org (accessed on 23 March 2021).
- Ierna, A.; Rizzarelli, P.; Malvuccio, A.; Rapisarda, M. Effect of different anti-browning agents on quality of minimally processed early potatoes packaged on a compostable film. LWT-Food Sci. Technol. 2017, 85, 434–439. [Google Scholar] [CrossRef]
- Ierna, A.; Melilli, M.G. Ascorbic Acid and Total Phenolics Content in Early Potatoes as Affected by Growing Season, Genotype and Harvest Time. Acta Hortic. 2014, 133–141. [Google Scholar] [CrossRef]
- Friedman, M. Chemistry, Biochemistry, and Dietary Role of Potato Polyphenols. A Review. J. Agric. Food Chem. 1997, 45, 1523–1540. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. Sustainable and Profitable Nitrogen Fertilization Management of Potato. Agronomy 2019, 9, 582. [Google Scholar] [CrossRef] [Green Version]
- Bacchi, M.A.; De Nadai Fernandes, E.A.; Tsai, S.M.; Santos, L.G.C. Conventional and organic potatoes: Assessment of elemental composition using k 0 -INAA. J. Radioanal. Nucl. Chem. 2004, 259, 421–424. [Google Scholar] [CrossRef]
- Maggio, A.; Carillo, P.; Bulmetti, G.S.; Fuggi, A.; Barbieri, G.; De Pascale, S. Potato yield and metabolic profiling under conventional and organic farming. Eur. J. Agron. 2008, 28, 343–350. [Google Scholar] [CrossRef]
- Woese, K.; Lange, D.; Boess, C.; Bögl, K.W. A Comparison of Organically and Conventionally Grown Foods—Results of a Review of the Relevant Literature. J. Sci. Food Agric. 1997, 74, 281–293. [Google Scholar] [CrossRef]
- Ierna, A. Characterization of potato genotypes by chlorophyll fluorescence during plant aging in a Mediterranean environment. Photosynthetica 2007, 45, 568–575. [Google Scholar] [CrossRef]
- Ierna, A.; Mauromicale, G. How Moderate Water Stress Can Affect Water Use Efficiency Indices in Potato. Agronomy 2020, 10, 1034. [Google Scholar] [CrossRef]
- Ierna, A. Tuber yield and quality characteristics of potatoes for off-season crops in a Mediterranean environment. J. Sci. Food Agric. 2010, 90, 85–90. [Google Scholar] [CrossRef]
- Ierna, A.; Parisi, B. Crop growth and tuber yield of “early” potato crop under organic and conventional farming. Sci. Hortic. (Amsterdam) 2014, 165, 260–265. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. Nutritional and sensory characteristics of “early” potato cultivars under organic and conventional cultivation systems. Food Chem. 2012, 133, 1249–1254. [Google Scholar] [CrossRef]
- Lombardo, S.; Lo Monaco, A.; Pandino, G.; Parisi, B.; Mauromicale, G. The phenology, yield and tuber composition of ‘early’ crop potatoes: A comparison between organic and conventional cultivation systems. Renew. Agric. Food Syst. 2013, 28, 50–58. [Google Scholar] [CrossRef]
- Lombardo, S.; Pandino, G.; Mauromicale, G. The effect on tuber quality of an organic versus a conventional cultivation system in the early crop potato. J. Food Compos. Anal. 2017, 62, 189–196. [Google Scholar] [CrossRef]
- Fernqvist, F.; Spendrup, S.; Ekelund, L. Changing consumer intake of potato, a focus group study. Br. Food J. 2015, 117, 210–221. [Google Scholar] [CrossRef]
- Wszelaki, A.L.; Delwiche, J.F.; Walker, S.D.; Liggett, R.E.; Scheerens, J.C.; Kleinhenz, M.D. Sensory quality and mineral and glycoalkaloid concentrations in organically and conventionally grown redskin potatoes (Solanum tuberosum). J. Sci. Food Agric. 2005, 85, 720–726. [Google Scholar] [CrossRef]
- Hajŝlová, J.; Schulzová, V.; Slanina, P.; Janné, K.; Hellenäs, K.E.; Andersson, C. Quality of organically and conventionally grown potatoes: Four-year study of micronutrients, metals, secondary metabolites, enzymic browning and organoleptic properties. Food Addit. Contam. 2005, 22, 514–534. [Google Scholar] [CrossRef]
- Djaman, K.; Sanogo, S.; Koudahe, K.; Allen, S.; Saibou, A.; Essah, S. Characteristics of organically grown compared to conventionally grown potato and the processed products: A review. Sustainability 2021, 13, 6289. [Google Scholar] [CrossRef]
- Violante, P. Metodi di Analisi Chimica del Suolo; Franco, A., Ed.; Italian Ministry of Agriculture: Milan, Italy, 2000.
- Ierna, A.; Pellegrino, A.; Di Silvestro, I.; Buccheri, M. Sensory and physico-chemical characteristics of minimally processed “early” potato tubers as affected by anti-browning treatments and cultivar. Acta Hortic. 2016, 1141, 229–236. [Google Scholar] [CrossRef]
- Hunter, R.S.; Harold, R.W. Uniform Color Scale. The Measurement of Appearance, 2nd ed.; John Wiley and Sons Inc.: New York, NY, USA, 1987; Chapter 8. [Google Scholar]
- McGuire, R.G. Reporting of Objective Color Measurements. HortScience 2019, 27, 1254–1255. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis of the AOAC; AOAC: Rockville, MD, USA, 2008. [Google Scholar]
- Slinkard, K.; Singleton, V.L. Total Phenol Analysis: Automation and Comparison with Manual Methods. Am. J. Enol. Vitic. 1977, 28, 49–55. [Google Scholar]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Hejtmánková, K.; Kotíková, Z.; Hamouz, K.; Pivec, V.; Vacek, J.; Lachman, J. Influence of flesh colour, year and growing area on carotenoid and anthocyanin content in potato tubers. J. Food Compos. Anal. 2013, 32, 20–27. [Google Scholar] [CrossRef]
- Haase, T.; Schüler, C.; Haase, N.U.; Heß, J. Suitability of Organic Potatoes for Industrial Processing: Effect of Agronomical Measures on Selected Quality Parameters at Harvest and after Storage. Potato Res. 2007, 50, 115–141. [Google Scholar] [CrossRef]
- Gilsenan, C.; Burke, R.M.; Barry-Ryan, C. A study of the physicochemical and sensory properties of organic and conventional potatoes (Solanum tuberosum) before and after baking. Int. J. Food Sci. Technol. 2010, 45, 475–481. [Google Scholar] [CrossRef] [Green Version]
- Finotti, E.; Bertone, A.; Vivanti, V. Balance between nutrients and anti-nutrients in nine Italian potato cultivars. Food Chem. 2006, 99, 698–701. [Google Scholar] [CrossRef]
- Herencia, J.F.; García-Galavís, P.A.; Dorado, J.A.R.; Maqueda, C. Comparison of nutritional quality of the crops grown in an organic and conventional fertilized soil. Sci. Hortic. (Amst.) 2011, 129, 882–888. [Google Scholar] [CrossRef]
- Tein, B.; Kauer, K.; Eremeev, V.; Luik, A.; Selge, A.; Loit, E. Farming systems affect potato (Solanum tuberosum L.) tuber and soil quality. F. Crop. Res. 2014, 156, 1–11. [Google Scholar] [CrossRef]
- Bender, I.; Ess, M.W.V.; Matt, D.; Moor, U.; Tr nutare, T.N.; Luik, A. Quality of organic and conventional carrots. Agron. Res. 2009, 7, 572–577. [Google Scholar]
- Pieper, J.R.; Barrett, D.M. Effects of organic and conventional production systems on quality and nutritional parameters of processing tomatoes. J. Sci. Food Agric. 2009, 89, 177–194. [Google Scholar] [CrossRef]
- Toor, R.K.; Savage, G.P.; Heeb, A. Influence of different types of fertilisers on the major antioxidant components of tomatoes. J. Food Compos. Anal. 2006, 19, 20–27. [Google Scholar] [CrossRef]
- Palmer, M.W.; Cooper, J.; Tétard-Jones, C.; Średnicka-Tober, D.; Barański, M.; Eyre, M.; Shotton, P.N.; Volakakis, N.; Cakmak, I.; Ozturk, L.; et al. The influence of organic and conventional fertilisation and crop protection practices, preceding crop, harvest year and weather conditions on yield and quality of potato (Solanum tuberosum) in a long-term management trial. Eur. J. Agron. 2013, 49, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.R. Antioxidants in potato. Am. J. Potato Res. 2005, 82, 163–172. [Google Scholar] [CrossRef]
- Silva, G.H.; Chase, R.W.; Hammerschmidt, R.; Cash, J.N. After-Cooking Darkening of Spartan Pearl Potatoes as Influenced by Location, Phenolic Acids, and Citric Acid. J. Agric. Food Chem. 1991, 39, 871–873. [Google Scholar] [CrossRef]
- Brandt, K.; Leifert, C.; Sanderson, R.; Seal, C.J. Agroecosystem Management and Nutritional Quality of Plant Foods: The Case of Organic Fruits and Vegetables. CRC. Crit. Rev. Plant Sci. 2011, 30, 177–197. [Google Scholar] [CrossRef]
- Zapata, P.J.; Tucker, G.A.; Valero, D.; Serrano, M. Quality parameters and antioxidant properties in organic and conventionally grown broccoli after pre-storage hot water treatment. J. Sci. Food Agric. 2013, 93, 1140–1146. [Google Scholar] [CrossRef]
- Chassy, A.W.; Bui, L.; Renaud, E.N.C.; Van Horn, M.; Mitchell, A.E. Three-Year Comparison of the Content of Antioxidant Microconstituents and Several Quality Characteristics in Organic and Conventionally Managed Tomatoes and Bell Peppers. J. Agric. Food Chem. 2006, 54, 8244–8252. [Google Scholar] [CrossRef]
- Winter, C.K.; Davis, S.F. Organic Foods. J. Food Sci. 2006, 71, R117–R124. [Google Scholar] [CrossRef]
- Wegener, C.B.; Jansen, G.; Jurgens, H.-U. Influence of Drought and Wounding Stress on Soluble Phenols and Proteins in Potato Tubers. Sustain. Agric. Res. 2014, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Brazinskiene, V.; Asakaviciute, R.; Miezeliene, A.; Alencikiene, G.; Ivanauskas, L.; Jakstas, V.; Viskelis, P.; Razukas, A. Effect of farming systems on the yield, quality parameters and sensory properties of conventionally and organically grown potato (Solanum tuberosum L.) tubers. Food Chem. 2014, 145, 903–909. [Google Scholar] [CrossRef]
Genotype | Shape | Skin Color | Pulp Color | Cooking Type 1 |
---|---|---|---|---|
Arinda | long oval | yellow | yellow | B |
Bionica | oval | yellow | cream | AB |
Ditta | long oval | yellow | yellow | A |
ISCI 4F88 | oval | yellow | yellow | B |
Marabel | oval | yellow | yellow | B |
Cultivation System | Type | Active Ingredient | Phenological Stage |
---|---|---|---|
Conventional | Herbicides | Clomazone | Pre-emergence |
Pesticides | Benfuracarb (wireworms) | Before planting | |
Cimoxanyl, Dimetonorf, zoxamide (late blight) | During crop growth | ||
Cipermethrin (aphids) | During crop growth | ||
Imidacloprid (colorado bittle) | During crop growth | ||
Fertilizers | Superphosphate, Potassium sulphate | Before planting | |
Ammonium nitrate | At complete emergence and tuber initiation | ||
Organic | Herbicides | No (hand-holing) | |
Pesticides | Tribasic copper sulphate (late blight) | During crop growth | |
Fertilizers | Meat and bone meal based (a) and dried manure based (b) commercial products | Before planting |
Source of Variation | Cultivation System (CS) | Genotype (G) | Season (Se) | CS × G | CS × Se | G × Se |
---|---|---|---|---|---|---|
Lightness SK | 29 *** | 6 *** | 1 NS | 5 ** | 5 ** | 1 NS |
Chroma SK | 8 ** | 11 *** | 0.02 NS | 3 * | 34 *** | 0.06 NS |
Hue angle SK | 10 ** | 14 *** | 2 NS | 4 * | 0.1 NS | 0.08 NS |
Skin thickness | 75 *** | 28 *** | 22 *** | 8 *** | 8 ** | 2 NS |
Firmness | 36 *** | 7 *** | 16 *** | 3 ** | 5 NS | 5 ** |
pH | 171 *** | 38 *** | 1 NS | 1 NS | 5 NS | 1 NS |
Titratable acidity | 138 *** | 14 *** | 319 *** | 7 *** | 13 NS | 20 *** |
Dry matter | 40 *** | 38 *** | 28 *** | 4 ** | 6 NS | 10 *** |
Ascorbic acid | 96 *** | 86 *** | 14 *** | 29 *** | 8 ** | 11 *** |
Total phenolics | 176 *** | 82 *** | 72 *** | 7 *** | 34 *** | 22 *** |
Antioxidant activity | 100 *** | 40 *** | 116 *** | 8 *** | 19 *** | 13 *** |
Consistency AB | 2 NS | 26 *** | 3 NS | 2 NS | 0.04 NS | 1 NS |
Typical taste AB | 6 ** | 12 *** | 4 NS | 3 NS | 0.07 NS | 1 NS |
Blackening AB | - | - | - | - | - | - |
Crispness AF | 33 *** | 54 *** | 7 ** | 19 *** | 2 NS | 1 NS |
Typical taste AF | 36 *** | 18 *** | 10 ** | 12 *** | 3 NS | 0.5 NS |
Browning index AF | 51 *** | 66 *** | 8 ** | 5 ** | 6 NS | 0.6 NS |
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Cultivation System | |||||||||||
Conventional | 60.7 b | 25.4 b | 86.8 b | 6.6 b | 2.19 b | 6.0 a | 199 a | 18.4 b | 103 a | 221 b | 56 a |
Organic | 64.2 a | 26.7 a | 88.2 a | 8.0 a | 2.32 a | 5.7 b | 156 b | 19.6 a | 76 b | 333 a | 42 b |
Genotype | |||||||||||
Arinda | 60.2 | 24.8 b | 85.0 b | 7.6 a | 2.33 b | 6.1 a | 164 b | 17.9 c | 114 a | 180 d | 54 b |
Bionica | 62.2 | 25.0 b | 87.9 a | 7.2 ab | 2.27 bc | 5.7 c | 189 a | 18.3 bc | 104 b | 266 b | 59 a |
Ditta | 62.8 | 28.1 a | 89.0 a | 7.6 a | 2.12 cd | 6.0 a | 165 b | 19.0 b | 97 b | 348 a | 45 c |
ISCI 4F88 | 65.2 | 27.6 a | 89.5 a | 7.4 a | 2.58 a | 5.6 c | 197 a | 20.8 a | 78 c | 371 a | 42 c |
Marabel | 61.8 | 24.7 b | 86.2 b | 6.6 b | 1.98 d | 5.9 b | 172 b | 18.8 b | 56 d | 191 c | 35 d |
Season | |||||||||||
Season I | 62.4 a | 26.1 a | 87.4 a | 7.5 a | 2.39 a | 5.9 a | 145 b | 19.6 a | 88 a | 313 a | 40 b |
Season II | 62.5 a | 26.0 a | 87.6 a | 7.1 b | 2.13 b | 5.8 a | 209 a | 18.4 b | 91 a | 241 b | 54 a |
Cultivation System | Genotype | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
Conventional | |||||||||||
Arinda | 59.3 b | 23.3 b | 83.6 b | 6.4 cd | 2.24 bc | 193 ab | 16.9 e | 130 a | 140 f | 60 ab | |
Bionica | 59.4 b | 24.2 ab | 86.6 ab | 6.4 cd | 2.37 b | 207 ab | 18.0 d | 134 a | 209 e | 73 a | |
Ditta | 59.1 b | 28.5 a | 87.4 ab | 7.7 ad | 2.21 bc | 191 ab | 18.3 cd | 112 ab | 291 cd | 49 bc | |
ISCI 4F88 | 65.4 a | 27.7 a | 89.7 a | 6.5 cd | 2.32 bc | 225 a | 20.2 b | 90 bd | 300 cd | 48 bc | |
Marabel | 60.4 b | 23.5 b | 86.7 ab | 6.0 d | 1.83 d | 177 bc | 18.7 cd | 49 e | 163f | 38 c | |
Organic | |||||||||||
Arinda | 61.1 ab | 26.3 ab | 86.4 ab | 8.9 a | 2.43 b | 136 c | 19.0 cd | 97 bc | 218 e | 47 bc | |
Bionica | 65.1 a | 25.9 ab | 89.2 a | 8.0 ac | 2.17 bc | 171 bc | 18.6 cd | 74 ce | 324 c | 46 bc | |
Ditta | 66.6 a | 27.8 a | 90.6 a | 7.6 ad | 2.03 cd | 137 c | 19.8 bc | 82 bd | 396 b | 40 bc | |
ISCI 4F88 | 65.1 a | 27.5 a | 89.3 a | 8.4 ab | 2.86 a | 169 bc | 21.5 a | 66 de | 451 a | 35 c | |
Marabel | 63.2 ab | 25.9 ab | 85.8 ab | 7.2 bd | 2.15 bc | 168 bc | 18.9 cd | 63 de | 275 cd | 32 c |
Cultivation System | Season | Lightness | Chroma | Skin Thickness 1 | Ascorbic Acid 2 | Total Phenolics 3 | Antioxidant Activity 4 |
---|---|---|---|---|---|---|---|
Conventional | I | 61.5 b | 26.8 ab | 6.8 c | 96 b | 267 b | 45 b |
II | 59.9 b | 24.1 b | 6.4 c | 110 a | 175 c | 67 a | |
Organic | I | 63.4 ab | 25.4 ab | 9.4 a | 80 c | 358 a | 38 c |
II | 65.0 a | 27.9 a | 7.7 b | 73 d | 308 b | 47 b |
After Boiling | After Frying | |||||
---|---|---|---|---|---|---|
Consistency 1 | Typical Taste 2 | Blackening 3 | Crispness 2 | Typical Taste 2 | Browning Index 4 | |
Cultivation System | ||||||
Conventional | 2.0 a | 2.3 a | 0 | 1.8 b | 2.3 b | 2.3 a |
Organic | 2.1 a | 2.5 a | 0 | 2.3 a | 2.5 a | 2.1 b |
Genotype | ||||||
Arinda | 1.4 c | 2.7 a | 0 | 2.2 b | 2.6 a | 2.1 c |
Bionica | 2.0 b | 2.7 a | 0 | 1.4 d | 2.4 b | 2.6 a |
Ditta | 2.7 a | 2.3 bc | 0 | 1.8 c | 2.3 bc | 2.3 b |
ISCI 4F88 | 1.5 c | 2.0 c | 0 | 2.9 a | 2.3 bc | 2.0 c |
Marabel | 2.4 a | 2.4 ab | 0 | 2.0 b | 2.2 c | 1.9 c |
Season | ||||||
Season I | 1.9 b | 2.5 a | 0 | 2.2 a | 2.6 a | 2.0 b |
Season II | 2.2 a | 2.3 a | 0 | 1.9 b | 2.1 b | 2.3 a |
Cultivation System | Genotype | Crispness 1 | Typical Taste 1 | Browning Index 2 |
---|---|---|---|---|
Conventional | Arinda | 1.8 d | 2.4 ab | 2.2 bc |
Bionica | 1.4 e | 2.7 a | 2.9 a | |
Ditta | 1.4 e | 1.8 d | 2.5 ab | |
ISCI 4F88 | 2.4 b | 2.3 bc | 2.0 c | |
Marabel | 2.3 bc | 2.0 c | 2.0 c | |
Organic | Arinda | 2.3 bc | 2.7 a | 2.0 c |
Bionica | 1.4 e | 2.3 bc | 2.3 bc | |
Ditta | 2.3 bc | 2.7 a | 2.2 bc | |
ISCI 4F88 | 3.3 a | 2.4 ab | 2.1 bc | |
Marabel | 2.0 cd | 2.3 bc | 1.8 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ierna, A.; Parisi, B.; Melilli, M.G. Overall Quality of “Early” Potato Tubers as Affected by Organic Cultivation. Agronomy 2022, 12, 296. https://doi.org/10.3390/agronomy12020296
Ierna A, Parisi B, Melilli MG. Overall Quality of “Early” Potato Tubers as Affected by Organic Cultivation. Agronomy. 2022; 12(2):296. https://doi.org/10.3390/agronomy12020296
Chicago/Turabian StyleIerna, Anita, Bruno Parisi, and Maria Grazia Melilli. 2022. "Overall Quality of “Early” Potato Tubers as Affected by Organic Cultivation" Agronomy 12, no. 2: 296. https://doi.org/10.3390/agronomy12020296
APA StyleIerna, A., Parisi, B., & Melilli, M. G. (2022). Overall Quality of “Early” Potato Tubers as Affected by Organic Cultivation. Agronomy, 12(2), 296. https://doi.org/10.3390/agronomy12020296