Yield and Quality of Three Cultivars of Dark Fire-Cured (Kentucky) Tobacco (Nicotiana tabacum L.) Subjected to Organic (Compost) and Mineral Nitrogen Fertilization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Treatments, Crop Management and Weather Conditions
2.2. Growth Components, Yield Measurements, Color Parameters, Leaf Quality Traits and N Use Efficiency
2.3. Statistical Analysis
3. Results
3.1. Yield, Yield and Growth Components, and N Use Efficiency
3.2. Quality Traits of Cured Products
4. Discussion
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Giannelos, P.N.; Zannikos, F.; Stournas, S.; Lois, E.; Anastopoulos, G. Tobacco seed oil as an alternative diesel fuel: Physical and chemical properties. Ind. Crop. Prod. 2002, 16, 1–9. [Google Scholar] [CrossRef]
- Twyman, R.M.; Stoger, E.; Schillberg, S.; Christou, P.; Fischer, R. Molecular farming in plants: Host systems and expression technology. Trends Biotechnol. 2003, 21, 570–578. [Google Scholar] [CrossRef]
- Stanisavljević, I.T.; Lazić, M.L.; Veljković, V.B. Ultrasonic extraction of oil from tobacco (Nicotiana tabacum L.) seeds. Ultrason. Sonochem. 2007, 14, 646–652. [Google Scholar] [CrossRef] [PubMed]
- Sifola, M.I.; Di Giacomo, M. Produzione di Olio Energetico da Semi di Tabacco. In Proceedings of the XXXVIII SIA, Firenze, Italy, 21–23 September 2009. [Google Scholar]
- Rawat, A.; Mali, R.R.; Saini, A.K.; Chauhan, P.K.; Singh, V.; Sharma, P. Phytochemical Properties and Pharmcological Activities of Nicotiana tabacum: A Review. Indian J. Pharm. Biol. Res. 2013, 1, 74–82. [Google Scholar] [CrossRef]
- Barla, F.G.; Kumar, S. Tobacco biomass as a source of advanced biofuels. Biofuels 2016, 10, 335–346. [Google Scholar] [CrossRef]
- Sifola, M.I.; Carrino, L.; Cozzolino, E.; Del Piano, L.; Graziani, G.; Ritieni, A. Potential of Pre-Harvest Wastes of Tobacco (Nicotiana tabacum L.) Crops, Grown for Smoke Products, as Source of Bioactive Compounds (Phenols and Flavonoids). Sustainability 2021, 13, 2087. [Google Scholar] [CrossRef]
- Food and Agriculture Organization. FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 17 November 2021).
- ISTAT. Agricoltura, Coltivazioni ed Allevamenti, Coltivazioni, Coltivazioni Industriali, Tabacco. Available online: http://dati.istat.it (accessed on 17 November 2021).
- Akehurst, B.C. Tobacco, 2nd ed.; Tropical agricultural series; Logman Inc.: New York, NY, USA, 1981; p. 736. [Google Scholar]
- Davis, D.L.; Nielsen, M.T. (Eds.) Tobacco: Production, Chemistry and Technology. In The Quarterly Review of Biology; World Agriculture Series; Blackwell Science: Oxford, MS, USA; Malden, MA, USA, 1999; p. 480. [Google Scholar]
- Henry, J.B.; Vann, M.C.; Lewis, R.S. Agronomic Practices Affecting Nicotine Concentration in Flue-Cured Tobacco: A Review. Agron. J. 2019, 111, 3067–3075. [Google Scholar] [CrossRef] [Green Version]
- Sifola, M.I.; Cuocolo, B.; Postiglione, L. Effect of increasing nitrogen fertilization rate on yield and quality of Burley tobacco (Nicotiana tabacum L.) grown under stressed and well-watered conditions. Ital. J. Agron. 1998, 2, 117–125. [Google Scholar]
- Sifola, M.I.; Postiglione, L. The effect of nitrogen fertilization on nitrogen use efficiency of irrigated and non irrigated tobacco (Nicotiana tabacum L.). Plant Soil 2003, 252, 313–323. [Google Scholar] [CrossRef]
- Borges, A.; Morejón, R.; Izquierdo, A.; Monzón, L.; Ortega, E.; Rodés, R. Nitrogen Fertilization for Optimizing the Quality and Yield of Shade Grown Cuban Cigar Tobacco: Required Nitrogen Amounts, Application Schedules, Adequate Leaf Nitrogen Levels, and Early Season Diagnostic Tests. Beitr. Zur Tab. Int. Contrib. Tob. Res. 2012, 25, 336–349. [Google Scholar] [CrossRef] [Green Version]
- Sifola, M.I.; Ianuario, S.; Carrino, L.; Cozzolino, E.; Lucibelli, A.; Coppola, A. A survey of N responses of Kentucky tobacco (Nicotiana tabacum L.) yield and quality for cigars manufacture in the Benevento province (Southern Italy). Beitr. Zur Tab. Int. Contrib. Tob. Res. 2018, 28, 14–29. [Google Scholar]
- Chen, Y.; Ren, K.; He, X.; Chen, Y.; Hu, B.; Hu, X.; Li, J.; Jin, Y.; Zhao, Z.; Zou, C. The response of flue-cured tobacco cultivar K326 to nitrogen fertilizer rate in China. J. Agric. Sci. 2020, 158, 371–382. [Google Scholar] [CrossRef]
- Carino, P.M. Growth, Yield, Quality and Dry Matter Partitioning in Three Flue-Cured Tobacco Varieties at Different Topping Times and Nitrogen Fertilization [Philippines] 1987. Abstract. Available online: https://agris.fao.org/agris-search/search.do?recordID=PH8810126 (accessed on 24 November 2021).
- Sifola, M.I.; Raimondi, G.; Maggio, A. Improving the sustainability of tobacco cultivation by optimizing nitrogen fertilization. Aust. J. Crop Sci. 2017, 11, 1399–1405. [Google Scholar]
- Yoshida, D.; Takahashi, T. Influences of Nitrogen nutrition on nicotine synthesis in tobacco plant. Soil Sci. Plant Nutr. 1960, 6, 1–6. [Google Scholar] [CrossRef]
- Sifola, M.I.; Postiglione, L. The effect of nitrogen fertilization and irrigation on dry matter partitioning, yield and quality of tobacco (Nicotiana tabacum L.) Burley type. Agric. Medit. 2002, 132, 33–43. [Google Scholar]
- Sifola, M.I.; Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Piccirillo, G.; Del Piano, L.; Mori, M. Yield Response, Quality Traits, and Nitrogen-Use Efficiency of a Burley Tobacco Crop Grown in Mediterranean Areas (Southern Italy) as Affected by Intensive N Management. Agronomy 2021, 11, 1837. [Google Scholar] [CrossRef]
- McCants, C.B.; Woltz, W.G. Growth and mineral nutrition of tobacco. Adv. Agron. 1967, 19, 211–265. [Google Scholar]
- Sims, J.L.; Sheen, S.J.; Grunwald, C.; Atkinson, W.O. Effects of nitrogen fertilization and stalk position on certain chemical and physical characteristics of three tobacco genotypes. Can. J. Plant Sci. 1975, 55, 485–490. [Google Scholar] [CrossRef]
- Orphanos, R.I.; Metochis, M. Nitrogen fertigation of flue-cured tobacco in a Mediterranean environment. Plant Soil 1990, 125, 29–37. [Google Scholar] [CrossRef]
- Amirhandeh, M.S.; Nosratabad, A.F.; Norouzi, M.; Harutyunyan, S. Response of Coker (flue-cured) tobacco (Nicotiana tabacum) to inoculation with Azotobacter chroococcum at various levels of nitrogen fertilization. Aust. J. Crop Sci. 2012, 6, 861–868. [Google Scholar]
- Drake, M.P.; Vann, M.C.; Fisher, L.R. Nitrogen application rate influence on yield, quality, and chemical constituents of flue-cured tobacco, Part I: Application timing. Tob. Sci. 2015, 52, 11–17. [Google Scholar] [CrossRef]
- Peterson, L.A. Nitrate Accumulation in Tobacco Leaves in Relation to N, P, and K Concentrations of the Leaf1. Agron. J. 1968, 60, 26–29. [Google Scholar] [CrossRef]
- Tso, T.C. Production, Physiology and Biochemistry of Tobacco Plant; Ideals Inc.: Beltsville, MD, USA, 1990; p. 753. [Google Scholar]
- Fischer, S.; Spiegelhalder, B.; Preussmann, R. Preformed tobacco-specific nitrosamines in tobacco-role of nitrate and influence of tobacco type. Carcinogenesis 1989, 10, 1511–1517. [Google Scholar] [PubMed]
- Wang, J.; Yang, H.; Shi, H.; Zhou, J.; Bai, R.; Zhang, M.; Jin, T. Nitrate and nitrite promote formation of tobacco-specific nitrosamines via nitrogen oxides intermediates during postcured storage under warm temperature. J. Chem. 2017, 2017, 11. [Google Scholar] [CrossRef] [Green Version]
- Brown, B.G.; Borschke, A.J.; Doolittle, D.J. An analysis of the role of tobacco-specific nitrosamines in the carcinogenicity of tobacco smoke. Nonlinearity Biol. Toxicol. Med. 2003, 1, 179–198. [Google Scholar] [CrossRef] [Green Version]
- Edwards, S.H.; Hassink, M.D.; Taylor, K.M.; Watson, C.H.; Kuklenyik, P.; Kimbrell, B.; Wang, L.; Chen, P.; Valentín-Blasini, L. Tobacco-Specific Nitrosamines in the Tobacco and Mainstream Smoke of Commercial Little Cigars. Chem. Res. Toxicol. 2021, 34, 1034–1045. [Google Scholar] [CrossRef]
- Kaiser, D.R.; Sequinatto, L.; Reinert, D.J.; Reichert, J.M.; Rheinheimer, D.S.; Dalbianco, L. High nitrogen fertilization of tobacco crop in headwater watershed contaminates subsurface and well waters with nitrate. J. Chem. 2015, 2015, 375092. [Google Scholar] [CrossRef] [Green Version]
- Nichols, B.C.; Davis, R.L.; Bowman, D.R.; McMurtrey, J.E. Further studieson fertilizing Burley tobacco in the Tennessee central basin. Tenn. Agric. Exp. Stn. Bull. 1966, 341, 2–23. [Google Scholar]
- Atkinson, W.O.; Sims, J.L. Nitrogen composition of Burley tobacco. II. Influence of nitrogen fertilization, suckering practice and harvest date on yield, value and distribution of dry matter among plant parts. Tob. Sci. 1971, 15, 63–66. [Google Scholar]
- Mylonas, V.A.; Athanasiadis, V.N.; Perakis, X.A. Effects of nitrogen and potassium on yield, value and chemical composition of Burley tobacco. Coop. Cent. Sci. Res. Relat. Phytopatol. Stud. Group. Agron. Stud. Group. Rep. 1981, 25, 70–83. [Google Scholar]
- Link, L.A.; Terrill, T.R. Influence of nitrogen and potassium fertilization on the yield, quality and chemical composition of Burley tobacco. Tob. Int. 1982, 184, 26–29. [Google Scholar]
- MIPAAF. Disciplinare di Produzione del Tabacco Kentucky. 2019. Available online: https://www.politicheagricole.it (accessed on 28 November 2021).
- Regione Campania. Disposizioni Regionali di Applicazione delle Riduzioni ed Esclusioni del Sostegno per Inadempienze dei Beneficiari Agli Impegni Specifici Relativi alla Misura 214 (ad Eccezione delle Azioni e2 ed f2) del PSR 2007–2013 ed Alle Misure 10.1, 11 e 13 del PSR 2014–2020. Available online: http://www.agricoltura.regione.campania.it/psr_2014_2020/pdf/DRD_206-26-09-17.pdf (accessed on 28 November 2021).
- Shiralipour, A.; McConnell, D.B.; Smith, W.H. Uses and benefits of MSW compost: A review and an assessment. Biomass Bioenergy 1992, 3, 267–279. [Google Scholar] [CrossRef]
- Hargreaves, C.; Adl, M.S.; Warman, P.R. A review of the use of composted municipal solid waste in agriculture. J. Agric. Ecosyst. Environ. 2008, 123, 1–14. [Google Scholar] [CrossRef]
- Martínez-Blanco, J.; Lazcano, C.; Boldrin, A.; Muñoz, P.; Rieradevall, J.; Møller, J.; Antón, A.; Christensen, T.H. Assessing the environmental benefits of compost use-on-land through an LCA perspective. Sustain. Agric. Rev. 2013, 2, 255–318. [Google Scholar]
- Taiwo, A.M. Composting as A Sustainable Waste Management Technique in Developing Countries. J. Environ. Sci. Technol. 2011, 4, 98–102. [Google Scholar] [CrossRef] [Green Version]
- Cialani, C.; Mortazavi, R. The Cost of Urban Waste Management: An Empirical Analysis of Recycling Patterns in Italy. Front. Sustain. 2020, 2, 8. [Google Scholar] [CrossRef]
- Iglesias-Jimenez, E.; Álvarez, C.E. Apparent availability of nitrogen in composted municipal refuse. Biol. Fertil. Soils 1993, 16, 313–318. [Google Scholar] [CrossRef] [Green Version]
- Oueriemmi, H.; Zoghlami, R.I.; Ardhaoui, K.; Kidd, P.S.; Moussa, M. Influence of Municipal Solid Waste Compost Application on Soil Fertility and Barley Yield. In Proceedings of the Water-19, Paris, France, 22–24 July 2019. [Google Scholar]
- Cahyono, P.; Loekito, S.; Wiharso, D.; Rahmat, A.; Nishimura, N.; Senge, M. Effects of compost on soil properties and yield of pineapple (Ananas comusus L. Merr.) on red acid soil, Lampung, Indonesia. Int. J. Geomate 2020, 19, 33–39. [Google Scholar] [CrossRef]
- Abdus Salam, A.B.; Ashrafuzzaman, M.; Sikder, S.; Asif Mahmud, J.C.; Joardar, J.C. Influence of municipal solid waste compost on yield of tomato applied solely and in combination with inorganic fertilizer where nitrogen is the only variable factor. Malays. J. Sustain. Agric. 2021, 5, 29–33. [Google Scholar] [CrossRef]
- Mkhabela, M.; Warman, P.R. The Influence of Municipal Solid Waste Compost on Yield, Soil Phosphorus Availability and Uptake by Two Vegetable Crops, Grown in a Pugwash Sandy Loam Soil in Nova Scotia. Agric. Ecosyst. Environ. 2005, 106, 57–67. [Google Scholar] [CrossRef]
- Khalid, A.; Mourad, M.; Alami, I.T.; Lahcen, K.; Brahim, S. Effect of slow release organic nitrogen fertilizer combined with compost on soil fertility, yield and quality of organic zucchini in sandy soil. In Proceedings of the 15th RAMIRAN International Conference, Versailles, France, 3–5 June 2013. [Google Scholar]
- Sims, J.L.; Palmer, G.K.; Wells, K.L. Factors Affecting Colors of Cured Burley Leaf. Soil Sci. News Views 1993, 14, 1–3. Available online: https://uknowledge.uky.edu/cgi/viewcontent.cgi?article=1105&context=pss_views (accessed on 17 August 2021).
- Bilalis, D.; Karkanis, A.; Triantafyllidis, V.; Ladavos, A.; Bizos, D.; Patsiali, S.; Efthimiadou, A.; Papatheohari, Y. Effects of organic and inorganic fertilization on growth, yield and nicotine content of flue-cured and oriental tobacco (Nicotiana tabacum L.) seedlings grown in organic and conventional float system. J. Food Agric. Environ. 2010, 8, 585–589. [Google Scholar]
- Bing, L.; Kun, H.; Yali, F.; Hongguang, L.; Chi, W.; Xiaotian, Z.; Qinghua, L.; Chengxiao, H. Effect of combined application of organic fertilizer and chemical fertilizer in different ratios on growth, yield and quality of flue-cured tobacco. Asian Agric. Res. 2017, 9, 43–51. [Google Scholar]
- Tabaxi, I.; Ζisi, C.; Karydogianni, S.; Folina, A.E.; Kakabouki, I.; Kalivas, A.; Bilalis, D. Effect of organic fertilization on quality and yield of oriental tobacco (Nicotiana tabacum L.) under Mediterranean conditions. Asian J. Agric. Biol. 2021, 1, 1–7. [Google Scholar] [CrossRef]
- Yang, L.Y.; Yang, S.L.; Li, J.Y.; Ma, J.H.; Pang, T.; Zou, C.M.; He, B.; Gong, M. Effects of different growth temperatures on growth, development, and plastid pigments metabolism of tobacco (Nicotiana tabacum L.) plants. Bot. Stud. 2018, 59, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Ascione, S.; Ruggiero, C. Leaf area estimation of Burley tobacco using linear leaf measurements. Agric. Mediterr. 2000, 130, 228–234. [Google Scholar]
- Sifola, M.I.; Cuocolo, B.; Postiglione, L. Dry matter accumulation, leaf development and stem elongation in tobacco plants grown under different regimes of nitrogen fertilization and irrigation. Agrochimica 2003, 1, 40–53. [Google Scholar]
- Jurik, T.W. Temporal and spatial patterns of specific leaf weight in successional northern hardwood tree species. Am. J. Bot. 1986, 73, 1083–1092. [Google Scholar] [CrossRef]
- Guru, S.K.; Jain, V.; Pal, M.A.D.A.N.; Abrol, Y.P. Relationship between specific leaf weight and photosynthetic rate in two wheat genotypes. Indian J. Plant Physiol. 1999, 4, 117–120. [Google Scholar]
- Shi, H.; Wang, R.; Bush, L.P.; Zhou, J.; Yang, H.; Fannin, N.; Bai, R. Changes in TSNA contents during tobacco storage and the effect of temperature and nitrate level on TSNA formation. J. Agric. Food Chem. 2013, 61, 11588–11594. [Google Scholar] [CrossRef]
- Bailey, W.A. Effect of nitrogen rate on growth, yield, quality, and leaf chemistry of dark tobacco. Tob. Sci. 2014, 51, 13–22. [Google Scholar]
- Montemurro, F.; Maiorana, M.; Convertini, G.; Ferri, D. Compost organic amendments in fodder crops: Effects on yield, nitrogen utilization and soil characteristics. Compos. Sci. Util. 2006, 14, 114–123. [Google Scholar] [CrossRef]
I Year | II Year | ||
---|---|---|---|
Texture | |||
_ Sand | % | 45.0 | 45.2 |
_ Silt | % | 37.6 | 37.5 |
_ Clay | % | 17.4 | 17.3 |
Texture | Loamy | Loamy | |
Total N | g kg−1 | 0.80 | 0.82 |
P2O5 | mg kg−1 | 37.8 | 36.8 |
K2O | mg kg−1 | 250.8 | 275.9 |
Organic matter | % | 1.02 | 1.01 |
NO3-N | mg kg−1 | 6.0 | 5.2 |
NH4-N | mg kg−1 | 2.5 | 3.4 |
pH | 7.5 | 7.5 | |
Electrical conductivity | dS m−1 | 0.075 | 0.072 |
Dry matter | % | 74.0 |
Organic C | % d.w. | 28.0 |
Humic and fulvic acids | % d.w. | 14.2 |
Total N | % d.w. | 2.1 |
Organic N | % d.w. | 2.0 |
C/N | 13.3 | |
P2O5 | % d.w. | 0.8 |
K2O | % d.w. | 1.8 |
Cu | mg kg−1 | 67.2 |
Zn | mg kg−1 | 146.0 |
pH | 7.9 | |
Salinity | meq 100 g−1 | 53.2 |
Significance | Yield | Leaf nb | ILA | SLW | LA | Stem dm | Stem Height | NUE |
---|---|---|---|---|---|---|---|---|
Years (Y) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.05 |
Cultivar (C) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
N Fertilization (F) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Y × C | ns | 0.01 | 0.05 | 0.01 | ns | 0.01 | 0.01 | ns |
Y × F | 0.01 | ns | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.05 |
C × F | ns | ns | ns | ns | ns | ns | ns | ns |
Y × C × F | ns | ns | ns | ns | ns | ns | ns | ns |
Treatments | Leaf Number | ILA | SLW | LA | Stem Diameter | Stem Height | |
---|---|---|---|---|---|---|---|
m2 | kg m −2 | m2 plant−1 | cm | m | |||
I year | Foiano | 19.5 ab | 0.157 e | 0.074 b | 3.06 ns | 3.87 b | 1.04 b |
Riccio | 17.6 de | 0.173 d | 0.083 a | 3.02 ns | 3.76 b | 0.86 e | |
SLK | 16.9 e | 0.196 c | 0.080 a | 3.26 ns | 3.78 b | 0.90 d | |
II year | Foiano | 19.9 a | 0.211 b | 0.064 c | 4.21 ns | 4.08 a | 1.11 a |
Riccio | 18.4 cd | 0.235 a | 0.067 c | 4.31 ns | 4.00 a | 1.00 c | |
SLK | 18.9 bc | 0.239 a | 0.067 c | 4.52 ns | 3.70 b | 1.00 c | |
I year | N0 | 16.7 ns | 0.162 bc | 0.070 ce | 2.68 e | 3.46 ef | 0.88 d |
C10 | 18.2 ns | 0.180 b | 0.073 cd | 3.05 d | 3.85 cd | 0.94 c | |
C10N | 18.4 ns | 0.179 b | 0.084 ab | 3.23 cd | 3.92 bd | 0.96 c | |
C20 | 18.4 ns | 0.177 b | 0.078 bc | 3.20 cd | 3.71 de | 0.95 c | |
C20N | 18.8 ns | 0.173 b | 0.089 a | 3.22 cd | 3.99 ac | 0.96 c | |
MIN | 18.5 ns | 0.181 b | 0.082 ab | 3.28 c | 3.90 bd | 0.92 cd | |
II year | N0 | 17.7 ns | 0.146 c | 0.066 df | 2.58 e | 3.43 f | 0.95 c |
C10 | 18.3 ns | 0.239 a | 0.059 f | 4.34 b | 3.71 de | 0.97 c | |
C10N | 19.7 ns | 0.245 a | 0.067 de | 4.80 a | 4.05 ac | 1.07 ab | |
C20 | 19.0 ns | 0.248 a | 0.063 df | 4.68 a | 4.14 ab | 1.05 b | |
C20N | 19.9 ns | 0.247 a | 0.068 de | 4.90 a | 4.23 a | 1.11 a | |
MIN | 19.7 ns | 0.244 a | 0.065 df | 4.78 a | 3.98 ac | 1.07 ab |
Significance | Nitrates | Total N | Alkaloids | L* | a*/b* | Score |
---|---|---|---|---|---|---|
Years (Y) | ns | ns | 0.05 | 0.01 | - | 0.01 |
Cultivar (C) | ns | 0.01 | 0.05 | 0.01 | 0.01 | 0.05 |
N Fertilization (F) | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
Y × C | ns | ns | ns | ns | ns | ns |
Y × F | 0.05 | 0.01 | 0.01 | 0.01 | 0.01 | 0.01 |
C × F | ns | ns | ns | 0.01 | 0.01 | 0.05 |
Y × C × F | ns | ns | ns | ns | ns | ns |
Treatments | Nitrates | Total N | Alkaloids | |
---|---|---|---|---|
% d.w. | % d.w. | % d.w. | ||
Foiano | 1.40 b | 4.13 b | 4.22 b | |
Riccio | 1.81 ab | 4.28 a | 4.37 ab | |
SLK | 1.85 a | 4.36 a | 4.48 a | |
I year | N0 | 0.64 d | 3.53 e | 3.61 g |
C10 | 1.49 bd | 4.14 d | 4.19 ef | |
C10N | 1.98 bc | 4.17 cd | 4.77 ad | |
C20 | 1.02 cd | 4.19 cd | 4.25 df | |
C20N | 2.44 ab | 4.74 ab | 5.02 ab | |
MIN | 2.27 ab | 4.43 bd | 4.87 ac | |
II year | N0 | 0.54 d | 3.18 e | 2.76 h |
C10 | 1.14 cd | 4.16 cd | 4.04 fg | |
C10N | 1.12 cd | 4.45 bd | 4.63 ae | |
C20 | 2.02 bc | 4.61 ab | 4.47 cf | |
C20N | 2.34 a | 4.92 a | 5.12 a | |
MIN | 2.27 ab | 4.55 ac | 4.54 bf |
Treatments | L* | a*/b* | Score | |
---|---|---|---|---|
I year | N0 | 22.71 f | 0.69 f | 4.38 e |
C10 | 24.68 e | 0.72 e | 5.25 d | |
C10N | 29.42 b | 0.82 c | 6.63 a | |
C20 | 25.48 d | 0.90 ab | 5.83 bc | |
C20N | 25.40 de | 0.90 ab | 6.04 b | |
MIN | 27.44 c | 0.81 c | 5.92 bc | |
II year | N0 | 20.53 g | 0.62 g | 3.42 f |
C10 | 25.58 d | 0.75 d | 5.29 d | |
C10N | 30.58 a | 0.82 c | 6.71 a | |
C20 | 25.93 d | 0.88 b | 5.79 bc | |
C20N | 25.56 d | 0.91 a | 5.50 cd | |
MIN | 28.79 b | 0.81 c | 5.92 bc | |
Foiano | N0 | 21.88 h | 0.64 i | 3.88 f |
C10 | 25.51 ef | 0.74 fg | 5.19 e | |
C10N | 29.91 b | 0.82 e | 6.50 ab | |
C20 | 26.74 d | 0.88 d | 5.75 cd | |
C20N | 25.79 e | 0.87 d | 5.63 ce | |
MIN | 28.00 c | 0.81 e | 5.75 cd | |
Riccio | N0 | 20.61 h | 0.65 i | 3.94 f |
C10 | 24.41 g | 0.72 g | 5.25 de | |
C10N | 29.15 b | 0.82 e | 6.75 a | |
C20 | 24.72 fg | 0.91 bc | 5.94 c | |
C20N | 25.16 eg | 0.94 a | 5.69 ce | |
MIN | 27.07 i | 0.81 e | 6.00 bc | |
SLK | N0 | 22.39 h | 0.68 h | 3.87 f |
C10 | 25.47 ef | 0.75 f | 5.38 de | |
C10N | 30.94 a | 0.82 e | 6.75 a | |
C20 | 25.66 e | 0.88 cd | 5.75 cd | |
C20N | 25.49 ef | 0.91 b | 6.00 bc | |
MIN | 29.28 b | 0.81 e | 6.00 bc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sifola, M.I.; Cozzolino, E.; Di Mola, I.; Ottaiano, L.; del Piano, L.; Mori, M. Yield and Quality of Three Cultivars of Dark Fire-Cured (Kentucky) Tobacco (Nicotiana tabacum L.) Subjected to Organic (Compost) and Mineral Nitrogen Fertilization. Agronomy 2022, 12, 483. https://doi.org/10.3390/agronomy12020483
Sifola MI, Cozzolino E, Di Mola I, Ottaiano L, del Piano L, Mori M. Yield and Quality of Three Cultivars of Dark Fire-Cured (Kentucky) Tobacco (Nicotiana tabacum L.) Subjected to Organic (Compost) and Mineral Nitrogen Fertilization. Agronomy. 2022; 12(2):483. https://doi.org/10.3390/agronomy12020483
Chicago/Turabian StyleSifola, Maria Isabella, Eugenio Cozzolino, Ida Di Mola, Lucia Ottaiano, Luisa del Piano, and Mauro Mori. 2022. "Yield and Quality of Three Cultivars of Dark Fire-Cured (Kentucky) Tobacco (Nicotiana tabacum L.) Subjected to Organic (Compost) and Mineral Nitrogen Fertilization" Agronomy 12, no. 2: 483. https://doi.org/10.3390/agronomy12020483
APA StyleSifola, M. I., Cozzolino, E., Di Mola, I., Ottaiano, L., del Piano, L., & Mori, M. (2022). Yield and Quality of Three Cultivars of Dark Fire-Cured (Kentucky) Tobacco (Nicotiana tabacum L.) Subjected to Organic (Compost) and Mineral Nitrogen Fertilization. Agronomy, 12(2), 483. https://doi.org/10.3390/agronomy12020483