Development of SNP Marker Sets for Marker-Assisted Background Selection in Cultivated Cucumber Varieties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials
2.2. RNA Extraction and Transcriptome Sequencing
2.3. Transcriptome Analysis for the Identification and Filtering of Useful SNPs for Breeding
2.4. Development and Validation of SNP Markers
2.5. Phylogenetic Analysis and Drawing the Marker Density Diagram
2.6. Functional Analysis of Putative Gene Bearing SNPs for the Background Markers
3. Results
3.1. Functional Analysis of Putative Genes Bearing SNPs for the Background Markers
3.2. Development and Validation of Common BMs in the Fluidigm Platform
3.3. Development and Validation of KASP Markers as Core BMs
3.4. The Development of Type-Specific BMs for Baekdadagi Breeding Materials
3.5. Computational Annotation of Putative Genes Bearing SNPs in Common BM
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naegele, R.P.; Wehner, T.C. Genetic Resources of Cucumber. In Genetics and Genomics of Cucurbitaceae; Grumet, R., Katzir, N., Garcia-Mas, J., Eds.; Plant Genetics and Genomics: Crops and Models; Springer International Publishing: Cham, Switzerland, 2016; Volume 20, pp. 61–86. ISBN 978-3-319-49330-5. [Google Scholar]
- Park, G.; Choi, Y.; Jung, J.-K.; Shim, E.-J.; Kang, M.; Sim, S.-C.; Chung, S.-M.; Lee, G.P.; Park, Y. Genetic Diversity Assessment and Cultivar Identification of Cucumber (Cucumis Sativus L.) Using the Fluidigm Single Nucleotide Polymorphism Assay. Plants 2021, 10, 395. [Google Scholar] [CrossRef] [PubMed]
- Center for Agricultural Outlook. Available online: https://aglook.krei.re.kr (accessed on 10 September 2021).
- Li, Z.; Zhang, Z.; Yan, P.; Huang, S.; Fei, Z.; Lin, K. RNA-Seq Improves Annotation of Protein-Coding Genes in the Cucumber Genome. BMC Genom. 2011, 12, 540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, S.; Li, R.; Zhang, Z.; Li, L.; Gu, X.; Fan, W.; Lucas, W.J.; Wang, X.; Xie, B.; Ni, P.; et al. The Genome of the Cucumber, Cucumis Sativus L. Nat. Genet. 2009, 41, 1275–1281. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Li, H.; Huang, W.; Xu, Y.; Zhou, Q.; Wang, S.; Ruan, J.; Huang, S.; Zhang, Z. A Chromosome-Scale Genome Assembly of Cucumber (Cucumis Sativus L.). GigaScience 2019, 8, giz072. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jenkins, S.; Gibson, N. High-Throughput SNP Genotyping. Comp. Funct. Genom. 2002, 3, 57–66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ganal, M.W.; Altmann, T.; Röder, M.S. SNP Identification in Crop Plants. Curr. Opin. Plant Biol. 2009, 12, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.Y.; Kim, J.G.; Kang, B.C.; Song, K. Assessment of the Genetic Diversity of the Breeding Lines and a Genome Wide Association Study of Three Horticultural Traits Using Worldwide Cucumber (Cucumis spp.) Germplasm Collection. Agronomy 2020, 10, 1736. [Google Scholar] [CrossRef]
- Park, G.; Sim, S.-C.; Jung, J.-K.; Shim, E.-J.; Chung, S.-M.; Lee, G.P.; Park, Y. Development of Genome-Wide Single Nucleotide Polymorphism Markers for Variety Identification of F1 Hybrids in Cucumber (Cucumis Sativus L.). Sci. Hortic. 2021, 285, 110173. [Google Scholar] [CrossRef]
- Wang, X.; Bao, K.; Reddy, U.K.; Bai, Y.; Hammar, S.A.; Jiao, C.; Wehner, T.C.; Ramírez-Madera, A.O.; Weng, Y.; Grumet, R.; et al. The USDA Cucumber (Cucumis Sativus L.) Collection: Genetic Diversity, Population Structure, Genome-Wide Association Studies, and Core Collection Development. Hortic. Res. 2018, 5, 64. [Google Scholar] [CrossRef]
- Zhang, J.; Yang, J.; Zhang, L.; Luo, J.; Zhao, H.; Zhang, J.; Wen, C. A New SNP Genotyping Technology Target SNP-Seq and Its Application in Genetic Analysis of Cucumber Varieties. Sci. Rep. 2020, 10, 5623. [Google Scholar] [CrossRef] [Green Version]
- Hasan, N.; Choudhary, S.; Naaz, N.; Sharma, N.; Laskar, R.A. Recent Advancements in Molecular Marker-Assisted Selection and Applications in Plant Breeding Programmes. J. Genet. Eng. Biotechnol. 2021, 19, 128. [Google Scholar] [CrossRef] [PubMed]
- Jeong, H.S.; Jang, S.; Han, K.; Kwon, J.K.; Kang, B.C. Marker-Assisted Backcross Breeding for Development of Pepper Varieties (Capsicum Annuum) Containing Capsinoids. Mol. Breed. 2015, 35, 226. [Google Scholar] [CrossRef]
- Shasidhar, Y.; Variath, M.T.; Vishwakarma, M.K.; Manohar, S.S.; Gangurde, S.S.; Sriswathi, M.; Sudini, H.K.; Dobariya, K.L.; Bera, S.K.; Radhakrishnan, T.; et al. Improvement of Three Popular Indian Groundnut Varieties for Foliar Disease Resistance and High Oleic Acid Using SSR Markers and SNP Array in Marker-Assisted Backcrossing. Crop J. 2020, 8, 1–15. [Google Scholar] [CrossRef]
- Rai, N.; Bellundagi, A.; Kumar, P.K.C.; Kalasapura Thimmappa, R.; Rani, S.; Sinha, N.; krishna, H.; Jain, N.; Singh, G.P.; Singh, P.K.; et al. Marker-Assisted Backcross Breeding for Improvement of Drought Tolerance in Bread Wheat (Triticum Aestivum L. Em Thell). Plant Breed. 2018, 137, 514–526. [Google Scholar] [CrossRef]
- Bolger, A.M.; Lohse, M.; Usadel, B. Trimmomatic: A Flexible Trimmer for Illumina Sequence Data. Bioinformatics 2014, 30, 2114–2120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Manivannan, A.; Kim, D.-S.; Lee, E.-S.; Lee, H.-E. Transcriptome Sequencing Assisted Discovery and Computational Analysis of Novel SNPs Associated with Flowering in Raphanus Sativus In-Bred Lines for Marker-Assisted Backcross Breeding. Hortic. Res. 2019, 6, 120. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.; Pertea, G.; Trapnell, C.; Pimentel, H.; Kelley, R.; Salzberg, S.L. TopHat2: Accurate Alignment of Transcriptomes in the Presence of Insertions, Deletions and Gene Fusions. Genome Biol. 2013, 14, R36. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Durbin, R. Fast and Accurate Short Read Alignment with Burrows–Wheeler Transform. Bioinformatics 2009, 25, 1754–1760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Broad Institute. Picard Toolkit. GitHub Repository. 2019. Available online: https://broadinstitute.github.io/picard/ (accessed on 12 December 2021).
- DePristo, M.A.; Banks, E.; Poplin, R.; Garimella, K.V.; Maguire, J.R.; Hartl, C.; Philippakis, A.A.; del Angel, G.; Rivas, M.A.; Hanna, M.; et al. A Framework for Variation Discovery and Genotyping Using Next-Generation DNA Sequencing Data. Nat. Genet. 2011, 43, 491–498. [Google Scholar] [CrossRef]
- McKenna, A.; Hanna, M.; Banks, E.; Sivachenko, A.; Cibulskis, K.; Kernytsky, A.; Garimella, K.; Altshuler, D.; Gabriel, S.; Daly, M.; et al. The Genome Analysis Toolkit: A MapReduce Framework for Analyzing next-Generation DNA Sequencing Data. Genome Res. 2010, 20, 1297–1303. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Poplin, R.; Ruano-Rubio, V.; DePristo, M.A.; Fennell, T.J.; Carneiro, M.O.; Van der Auwera, G.A.; Kling, D.E.; Gauthier, L.D.; Levy-Moonshine, A.; Roazen, D.; et al. Scaling Accurate Genetic Variant Discovery to Tens of Thousands of Samples. bioRxiv 2017, 201178. [Google Scholar] [CrossRef] [Green Version]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ Data to High-Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef]
- Li, H.; Handsaker, B.; Wysoker, A.; Fennell, T.; Ruan, J.; Homer, N.; Marth, G.; Abecasis, G.; Durbin, R. 1000 Genome Project Data Processing Subgroup The Sequence Alignment/Map Format and SAMtools. Bioinformatics 2009, 25, 2078–2079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a Genetic Linkage Map in Man Using Restriction Fragment Length Polymorphisms. Am. J. Hum. Genet. 1980, 32, 314–331. [Google Scholar] [PubMed]
- Hwang, J.; Li, J.; Liu, W.-Y.; An, S.-J.; Cho, H.; Her, N.H.; Yeam, I.; Kim, D.; Kang, B.-C. Double Mutations in EIF4E and EIFiso4E Confer Recessive Resistance to Chilli Veinal Mottle Virus in Pepper. Mol. Cells 2009, 27, 329–336. [Google Scholar] [CrossRef] [PubMed]
- Perrier, X.; Flori, A.; Bonnot, F. Data analysis methods. In Genetic Diversity of Cultivated Tropical Plants, 1st ed.; Hamon, P., Seguin, M., Perrier, X., Glaszmann, J.C., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 43–76. [Google Scholar]
- Sayers, E.W.; Beck, J.; Bolton, E.E.; Bourexis, D.; Brister, J.R.; Canese, K.; Comeau, D.C.; Funk, K.; Kim, S.; Klimke, W.; et al. Database Resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2021, 49, D10–D17. [Google Scholar] [CrossRef]
- Blast2GO: A Universal Tool for Annotation, Visualization and Analysis in Functional Genomics Research. Bioinformatics 2005, 21, 3674–3676. [CrossRef] [Green Version]
- Shiryev, S.A.; Papadopoulos, J.S.; Schaffer, A.A.; Agarwala, R. Improved BLAST Searches Using Longer Words for Protein Seeding. Bioinformatics 2007, 23, 2949–2951. [Google Scholar] [CrossRef] [Green Version]
- Ye, J.; Zhang, Y.; Cui, H.; Liu, J.; Wu, Y.; Cheng, Y.; Xu, H.; Huang, X.; Li, S.; Zhou, A.; et al. WEGO 2.0: A Web Tool for Analyzing and Plotting GO Annotations, 2018 Update. Nucleic Acids Res. 2018, 46, W71–W75. [Google Scholar] [CrossRef]
- Reif, J.C.; Zhang, P.; Dreisigacker, S.; Warburton, M.L.; van Ginkel, M.; Hoisington, D.; Bohn, M.; Melchinger, A.E. Wheat Genetic Diversity Trends during Domestication and Breeding. Theor. Appl. Genet. 2005, 110, 859–864. [Google Scholar] [CrossRef] [PubMed]
- The International Peach Genome Initiative; Verde, I.; Abbott, A. The High-Quality Draft Genome of Peach (Prunus Persica) Identifies Unique Patterns of Genetic Diversity, Domestication and Genome Evolution. Nat. Genet. 2013, 45, 487–494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flint-Garcia, S.A. Genetics and Consequences of Crop Domestication. J. Agric. Food Chem. 2013, 61, 8267–8276. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.-B.; Somers, D.J. Genome-Wide Reduction of Genetic Diversity in Wheat Breeding. Crop Sci. 2009, 49, 161–168. [Google Scholar] [CrossRef]
- Park, S.; Kumar, P.; Shi, A.; Mou, B. Population Genetics and Genome-wide Association Studies Provide Insights into the Influence of Selective Breeding on Genetic Variation in Lettuce. Plant Genome 2021, 14, e20086. [Google Scholar] [CrossRef]
- Ha, J.; Satyawan, D.; Jeong, H.; Lee, E.; Cho, K.-H.; Kim, M.Y.; Lee, S.-H. A Near-Complete Genome Sequence of Mungbean (Vigna Radiata L.) Provides Key Insights into the Modern Breeding Program. Plant Genome 2021, 14, e20121. [Google Scholar] [CrossRef]
- De Wilde, B.; Lefever, S.; Dong, W.; Dunne, J.; Husain, S.; Derveaux, S.; Hellemans, J.; Vandesompele, J. Target Enrichment Using Parallel Nanoliter Quantitative PCR Amplification. BMC Genom. 2014, 15, 184. [Google Scholar] [CrossRef] [Green Version]
- Hollants, S.; Redeker, E.J.W.; Matthijs, G. Microfluidic Amplification as a Tool for Massive Parallel Sequencing of the Familial Hypercholesterolemia Genes. Clin. Chem. 2012, 58, 717–724. [Google Scholar] [CrossRef] [PubMed]
Filtering Criteria | No. of Remaining SNPs | No. of Filtered SNPs | Filtering Percentage (%) 1 |
---|---|---|---|
SNPs (reads depth ≥ 10) | 62.378 | - | - |
Homozygous/Diallelic | 58.436 | 3942 | 6.3 |
MAF (PIC > 0.35) | 51.435 | 7001 | 12 |
Segregation ratio (1:1) | 4985 | 46.450 | 90.3 |
Flanking SNP (>60 bp) | 2462 | 2523 | 50.6 |
No. of BM 2 markers | 371 | 2091 | 84.9 |
Chromosome | Size (Mbp) | No. of SNPs/Markers (Density 1) | ||||
---|---|---|---|---|---|---|
Selected SNPs | Common BMs 2,3 | Polymorphic Common BMs | Core BMs 4 | “Baekdadagi” BMs 5 | ||
Chr1 | 22.7 | 37 (1.6) | 37 (1.6) | 36 (1.6) | 6 (0.3) | 0 (0.0) |
Chr2 | 20.6 | 48 (2.3) | 47 (2.3) | 41 (2.0) | 7 (0.3) | 11 (0.5) |
Chr3 | 39.0 | 78 (2.0) | 76 (1.9) | 71 (1.8) | 9 (0.2) | 18 (0.5) |
Chr4 | 22.6 | 60 (2.7) | 60 (2.7) | 56 (2.5) | 8 (0.4) | 8 (0.4) |
Chr5 | 10 | 22 (2.2) | 22 (2.2) | 19 (1.9) | 5 (0.5) | 1 (0.1) |
Chr6 | 27.4 | 74 (2.7) | 71 (2.6) | 59 (2.2) | 8 (0.3) | 5 (0.2) |
Chr7 | 18.8 | 52 (2.8) | 50 (2.7) | 45 (2.4) | 7 (0.4) | 16 (0.9) |
Total | 161 | 371 (2.3) | 363 (2.3) | 327 (2.0) | 50 (0.3) | 59 (0.4) |
Statistical Analysis | 363 Common BMs 1 | 50 Core BMs | 59 Baekdadagi BMs | |||
---|---|---|---|---|---|---|
28 Inbred Group A Individuals | 29 Inbred Group B Individuals | 36 Baekdadagi Group Individuals | 62 Parental Group Individuals | 36 Baekdadagi Group Individuals | 36 Baekdadagi Group Individuals | |
Min of PICs | 0.27 | 0.03 | 0.05 | 0.07 | 0.05 | 0.26 |
Max of PICs | 0.375 | 0.375 | 0.37 | 0.37 | 0.37 | 0.375 |
Average of PICs | 0.37 | 0.22 | 0.21 | 0.25 | 0.10 | 0.35 |
Standard deviation of PICs | 0.08 | 0.12 | 0.12 | 0.08 | 0.11 | 0.03 |
25% percentile of PICs | 0.37 | 0.12 | 0.10 | 0.20 | 0.00 | 0.33 |
Median of PICs | 0.37 | 0.21 | 0.18 | 0.23 | 0.00 | 0.36 |
75% percentile of PICs | 0.37 | 0.34 | 0.33 | 0.31 | 0.18 | 0.37 |
No. of polymorphic markers | 327 | 324 | 189 | 48 | 22 | 59 |
Ratio of markers (0.1 > PIC > 0) 2 | 0% | 18.2% | 33.3% | 4.2% | 31.8% | - |
Ratio of markers (0.2 > PIC > 0.1) | 0% | 26.9% | 17.5% | 22.9% | 18.2% | - |
Ratio of markers (0.3 > PIC > 0.2) | 0.9% | 25.3% | 18.0% | 43.8% | 22.7% | 8.5% |
Ratio of markers (PIC > 0.3) | 99.1% | 29.6% | 31.2% | 29.2% | 27.3% | 91.5% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, E.S.; Yang, H.-B.; Kim, J.; Lee, H.-E.; Lee, Y.-R.; Kim, D.-S. Development of SNP Marker Sets for Marker-Assisted Background Selection in Cultivated Cucumber Varieties. Agronomy 2022, 12, 487. https://doi.org/10.3390/agronomy12020487
Lee ES, Yang H-B, Kim J, Lee H-E, Lee Y-R, Kim D-S. Development of SNP Marker Sets for Marker-Assisted Background Selection in Cultivated Cucumber Varieties. Agronomy. 2022; 12(2):487. https://doi.org/10.3390/agronomy12020487
Chicago/Turabian StyleLee, Eun Su, Hee-Bum Yang, Jinhee Kim, Hye-Eun Lee, Ye-Rin Lee, and Do-Sun Kim. 2022. "Development of SNP Marker Sets for Marker-Assisted Background Selection in Cultivated Cucumber Varieties" Agronomy 12, no. 2: 487. https://doi.org/10.3390/agronomy12020487
APA StyleLee, E. S., Yang, H.-B., Kim, J., Lee, H.-E., Lee, Y.-R., & Kim, D.-S. (2022). Development of SNP Marker Sets for Marker-Assisted Background Selection in Cultivated Cucumber Varieties. Agronomy, 12(2), 487. https://doi.org/10.3390/agronomy12020487