Assessment of Indicators in a Human Liver Cell Line HL-7702 for Tetracycline Toxicity in Farm Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Cell Culture and Treatments
2.2. Cell Toxicity
2.2.1. Cell Viability
2.2.2. Liver Enzyme Assay
2.2.3. Oxidative Stress Assays
2.3. Transmission Electron Microscopy (TEM)
2.4. Soil TC Diagnosis Experiment
2.5. Statistical Analysis
3. Results
3.1. Effects of TC on Cell Viability (MTT) and Stability (LDH Release) in HL-7702 Cells
3.2. Effects of TC on Liver Function (AST, ALP, ALP)
3.3. TC-Induced Oxidative Stress in HL-7702 Cells
4. Discussion
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Moulin, G.; Cavalié, P.; Pellanne, I.; Chevance, A.; Laval, A.; Millemann, Y.; Colin, P.; Chauvin, C. A comparison of antimicrobial usage in human and veterinary medicine in France from 1999 to 2005. J. Antimicrob. Chemother. 2008, 62, 617–625. [Google Scholar] [CrossRef] [Green Version]
- Mathers, J.J.; Flick, S.C.; Cox, L.A.J. Longer-duration uses of tetracyclines and penicillins in U.S. food-producing animals: Indications and microbiologic effects. Environ. Int. 2011, 37, 991–1004. [Google Scholar] [CrossRef] [PubMed]
- Hvistendahl, M. China takes aim at rampant antibiotic resistance. Science 2012, 336, 795. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Wang, W.; Xu, W. Effects of tetracycline antibiotics in chicken manure on soil microbes and antibiotic resistance genes (ARGs). Environ. Geochem. Health 2022, 44, 273–284. [Google Scholar] [CrossRef] [PubMed]
- Halling-Sørensen, B.; Sengeløv, G.; Tjørnelund, J. Toxicity of tetracyclines and tetracycline degradation products to environmentally relevant bacteria, including selected tetracycline resistant bacteria. Arch. Environ. Contam. Toxicol. 2002, 42, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Du, L.; Liu, W.K. Occurrence, fate, and ecotoxicity of antibiotics in agro-ecosystems. A review. Agron. Sustain. Dev. 2012, 32, 309–327. [Google Scholar] [CrossRef] [Green Version]
- Blackwell, P.A.; Kay, P.; Boxall, B.A. The dissipation and transport of veterinary antibiotics in a sandy loam soil. Chemosphere 2007, 67, 292–299. [Google Scholar] [CrossRef]
- Murray, A.K.; Stanton, I.; Gaze, W.H.; Snape, J. Dawning of a new era: Environmental risk assessment of antibiotics and their potential to select for antimicrobial resistance. Water Res. 2021, 200, 117233. [Google Scholar] [CrossRef]
- Ahmed, M.B.M.; Rajapaksha, A.U.; Lim, J.E.; Vu, N.T.; Kim, I.S.; Kang, H.M.; Lee, S.S.; Ok, Y.S. Distribution and accumulative pattern of TCs and sulfonamides in edible vegetables of cucumber, tomato, and lettuce. J. Agric. Food Chem. 2015, 63, 398–405. [Google Scholar] [CrossRef]
- Li, Y.W.; Wu, X.L.; Mo, C.H.; Tai, Y.P.; Huang, X.P.; Xiang, L. Investigation of sulfonamide, tetracycline, and quinolone antibiotics in vegetable farmland soil in the Pearl River Delta area, southern China. J. Agric. Food Chem. 2011, 59, 7268–7276. [Google Scholar] [CrossRef]
- Kim, S.; Aga, D.S. Potential ecological and human health impacts of antibiotics and antibiotic-resistant bacteria from wastewater treatment plants. J. Toxicol. Environ. Health. Part B 2007, 10, 559–573. [Google Scholar] [CrossRef]
- Zhu, Y.G.; Johnson, T.A.; Su, J.Q.; Qiao, M.; Guo, G.X.; Stedtfeld, R.D.; Hashsham, S.A.; Tiedje, J.M. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 2013, 110, 3435–3440. [Google Scholar] [CrossRef] [Green Version]
- Boonsaner, M.; Hawker, D.W. Evaluation of food chain transfer of the antibiotic oxytetracycline and human risk assessment. Chemosphere 2013, 93, 1009–1014. [Google Scholar] [CrossRef] [PubMed]
- Micallef, S.A.; Rosenberg, G.R.E.; George, A.; Ewing, L.; Tall, B.D.; Boyer, M.S.; Joseph, S.W.; Sapkota, A.R. Diversity, distribution and antibiotic resistance of Enterococcus spp. recovered from tomatoes, leaves, water and soil on U.S. Mid-Atlantic farms. Food Microbiol. 2013, 36, 465–474. [Google Scholar] [CrossRef]
- Liu, D.; Lu, L.; Wang, M.; Hussain, B.; Tian, S.; Luo, W.; Zhou, J.; Yang, X. Tetracycline uptake by pak choi grown on contaminated soils and its toxicity in human liver cell line HL-7702. Environ. Pollut. 2019, 253, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Prematta, T.; Shah, S.; Ishmael, F.T. Physician approaches to beta-lactam use in patients with penicillin hypersensitivity. Allergy. Asthma. Proc. 2012, 33, 145–151. [Google Scholar] [CrossRef]
- Xie, X.J.; Zhou, Q.X.; Lin, D.S.; Guo, J.M.; Bao, Y.Y. Toxic effect of tetracycline exposure on growth, antioxidative and genetic indices of wheat (Triticum aestivum L.). Environ. Sci. Pollut. Res. 2011, 18, 566–575. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.X.; Gao, J.; Xie, X.J.; Zhou, Q.X. DNA damage and biochemical toxicity of antibiotics in soil on the earthworm Eisenia fetida. Chemosphere 2012, 89, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.L.; Shen, Q.H.; Liu, F.; Ma, J.; Xu, G.; Wang, Y.L.; Wu, M.H. Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai, China. J. Hazard. Mater. 2012, 235–236, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Ji, K.; Kho, Y.L.; Park, Y.; Choi, K. Influence of a five-day vegetarian diet on urinary levels of antibiotics and phthalate metabolites: A pilot study with “Temple Stay” participants. Environ. Res. 2010, 110, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Dudka, I.; Kossowska, B.; Senhadri, H.; Latajka, R.; Hajek, J.; Andrzejak, R.; Antonowicz-Juchniewicz, J.; Gancarz, R. Metabonomic analysis of serum of workers occupationally exposed to arsenic, cadmium and lead for biomarker research: A preliminary study. Environ. Int. 2014, 68, 71–81. [Google Scholar] [CrossRef]
- Espín, S.; Martínez-López, E.; Jiménez, P.; María-Mojica, P.; García-Fernández, A.J. Effects of heavy metals on biomarkers for oxidative stress in Griffon vulture (Gyps fulvus). Environ. Res. 2014, 129, 59–68. [Google Scholar] [CrossRef]
- Tonomura, Y.; Kato, Y.; Hanafusa, H.; Morikawa, Y.; Matsuyama, K.; Uehara, T.; Ueno, M.; Torii, M. Diagnostic and predictive performance and standardized threshold of traditional biomarkers for drug-induced liver injury in rats. J. Appl. Toxicol. 2015, 35, 165–172. [Google Scholar] [CrossRef]
- Wei, K.Q.; Yang, J.X. Oxidative damage induced by copper and beta-cypermethrin in gill of the freshwater crayfish Procambarus clarkia. Ecotoxicol. Environ. Saf. 2015, 113, 446–453. [Google Scholar] [CrossRef]
- Eisenbrand, G.; Pool-Zobel, B.P.; Baker, V.; Balls, M.; Blaauboer, B.J.; Boobis, A.; Carere, A.; Kevekordes, S.; Lhuguenot, J.C.; Pieters, R.; et al. Methods of in vitro toxicology. Food Chem. Toxicol. 2002, 40, 193–236. [Google Scholar] [CrossRef]
- Bousmaha-Marroki, L.; Boutillier, D.; Marroki, A.; Grangette, C. In vitro anti-staphylococcal and anti-inflammatory abilities of lacticaseibacillus rhamnosus from infant gut microbiota as potential probiotic against infectious women mastitis. Probiotics Antimicro. 2021, 13, 970–981. [Google Scholar] [CrossRef]
- Shen, C.; Meng, Q.; Schmelzer, E.; Bader, A. Gel entrapment culture of rat hepatocytes for investigation of tetracycline-induced toxicity. Toxicol. Appl. Pharmacol. 2009, 238, 178–187. [Google Scholar] [CrossRef]
- Mater, N.; Geret, F.; Castillo, L.; Faucet-Marquis, V.; Albasi, C.; Pfohl-Leszkowicz, A. In vitro tests aiding ecological risk assessment of ciprofloxacin, tamoxifen and cyclophosphamide in range of concentrations released in hospital wastewater and surface water. Environ. Int. 2014, 63, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Anderson, D.; Russell, T. The Status of Alternative Methods in Toxicology; Royal Society of Chemistry: Cambridge, UK, 1995. [Google Scholar]
- Wang, L.; Liu, H.F.; Cai, Z.W.; Gan, Y.Q.; Han, C.Q. The effects of NDP and DDP on liver and kidney cells injure. Guangdong Med. J. 2012, 33, 736–738. (In Chinese) [Google Scholar]
- Leitner, J.M.; Graninger, W.; Thalhammer, F. Hepatotoxicity of antibacterials: Pathomechanisms and clinical data. Infection 2010, 38, 3–11. [Google Scholar] [CrossRef]
- Simon, V.V.S.K.; Sasikumar, R.; Kanthlal, S.K. In vitro protective effect of ascorbic acid against antibiotic-induced hepatotoxicity. Curr. Drug Discov. Technol. 2020, 17, 357–364. [Google Scholar] [CrossRef] [PubMed]
- Ganong, W.F. Gastrointestinal Tract Functions. Review of Medical Physiology, 22th ed.; The McGraw-Hill Companies: New York, NY, USA, 2006; pp. 210–231. [Google Scholar]
- Ford, S.M.; Laska, D.A.; Hottendorf, G.H.; Williams, P.D. Correlation between the in-vitro and in-vivo nephrotoxicity of parenteral antibiotics in the rabbit. Toxicol. Method. 1993, 3, 1–17. [Google Scholar] [CrossRef]
- Asha, K.K.; Sankar, T.V.; Viswanathan, N.P.G. Effect of tetracycline on pancreas and liver function of adult male albino rats. J. Pharm. Pharmacol. 2007, 59, 1241–1248. [Google Scholar] [CrossRef]
- Björnsson, E.; Lindberg, J.; Olsson, R. Liver reactions to low-dose tetracyclines. Scand. J. Gastroenterol. 1997, 32, 390–395. [Google Scholar] [CrossRef] [PubMed]
- Pratt, D.S.; Kaplan, M.M. Laboratory tests. In Schiff’s Diseases of the Liver, 8th ed.; Schiff, E.R., Sorrell, M.F., Maddrey, W.C., Eds.; Lippincott–Raven: Philadelphia, PA, USA, 1999; Volume 1, pp. 205–244. [Google Scholar]
- Al-Shaibani, E.A.S.; Alarami, A.M.J.; Al-Awar, M.S.A.; Salih, E.M.A.; Al-Eryani, M.A.Y. Antioxidant protective effect of vitamin E in penicillin and streptomycin-induced hepatotoxicity in guinea pig. J. Agric. Biol. Sci. 2013, 8, 546–554. [Google Scholar]
- Murphy, M.P. How mitochondria produce reactive oxygen species. Biochem. J. 2009, 417, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Briedé, J.J.; Jennen, D.G.J.; Summeren, A.V.; Saritas-Brauers, K.; Schaart, G.; Kleinjans, J.C.S.; de Kok, T.M.C.M. Increased mitochondrial ROS formation by acetaminophen in human hepatic cells is associated with gene expression changes suggesting disruption of the mitochondrial electron transport chain. Toxicol. Lett. 2015, 234, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Lewen, A.; Matz, P.; Chan, P.H. Free radical pathways in CNS injury. Neurotrauma 2000, 17, 871–890. [Google Scholar] [CrossRef]
- Yang, X.E.; Liu, D.; Lu, L.L.; Feng, Y.; Li, T.Q. A Diagnostic Method of Soil Antibiotic Pollution. CN201410764095.4, 24 August 2016. (In Chinese). [Google Scholar]
Equation | r | Significance (p Value) | Range of x Values (μg L−1) | |
---|---|---|---|---|
MTT | yT a = −0.000181xT + 0.867 | −0.648 | 0.116 | 0–1000 |
LDH | yT = 0.155xT + 149.517 | 0.982 ** | 0.000 | 0–1000 |
CAT | yT = 8.084 × 10−6xT + 0.00778 | 0.817 * | 0.025 | 0–1000 |
H2O2 | yT = 0.001xT + 5.440 | 0.827 * | 0.022 | 0–1000 |
MDA | yT = 0.000502xT + 0.107 | 0.863 * | 0.012 | 0–1000 |
ALT | yT = 0.00723xT + 2.894 | 0.985 ** | 0.000 | 0–1000 |
AST | yT = 0.004xT + 6.881 | 0.957 ** | 0.001 | 0–1000 |
ALP | yT = 1.5 × 10−4xT + 0.970 | 0.641 | 0.120 | 0–1000 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Aziz, R.; Shohag, M.J.I.; Lu, L.; Wang, Y.; Feng, Y.; Li, T.; Wang, M.; Tian, S.; Yang, X.; et al. Assessment of Indicators in a Human Liver Cell Line HL-7702 for Tetracycline Toxicity in Farm Soil. Agronomy 2022, 12, 730. https://doi.org/10.3390/agronomy12030730
Liu D, Aziz R, Shohag MJI, Lu L, Wang Y, Feng Y, Li T, Wang M, Tian S, Yang X, et al. Assessment of Indicators in a Human Liver Cell Line HL-7702 for Tetracycline Toxicity in Farm Soil. Agronomy. 2022; 12(3):730. https://doi.org/10.3390/agronomy12030730
Chicago/Turabian StyleLiu, Di, Rukhsanda Aziz, Md. Jahidul Islam Shohag, Lingli Lu, Yuyan Wang, Ying Feng, Tingqiang Li, Mei Wang, Shengke Tian, Xiaoe Yang, and et al. 2022. "Assessment of Indicators in a Human Liver Cell Line HL-7702 for Tetracycline Toxicity in Farm Soil" Agronomy 12, no. 3: 730. https://doi.org/10.3390/agronomy12030730
APA StyleLiu, D., Aziz, R., Shohag, M. J. I., Lu, L., Wang, Y., Feng, Y., Li, T., Wang, M., Tian, S., Yang, X., Chen, S., Tu, M., & Wang, Z. (2022). Assessment of Indicators in a Human Liver Cell Line HL-7702 for Tetracycline Toxicity in Farm Soil. Agronomy, 12(3), 730. https://doi.org/10.3390/agronomy12030730