Response of Wheat Yield and Protein-Related Quality on Late-Season Urea Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Materials and Field Experiments
2.2. Analysis
2.2.1. Grain Yield and Bread-Making Quality Parameters
2.2.2. Extraction and HPLC Analysis of Storage Proteins
2.3. Statistical Analyses
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Visioli, G.; Bonas, U.; Dal Cortivo, C.; Pasini, G.; Marmiroli, N.; Mosca, G.; Vamerali, T. Variations in yield and gluten proteins in durum wheat varieties under late-season foliar versus soil application of nitrogen fertilizer in a northern Mediterranean environment. J. Sci. Food Agric. 2018, 98, 2360–2369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xue, C.; Rossmann, A.; Schuster, R.; Koehler, P.; Mühling, K.H. Split nitrogen application improves wheat baking quality by influencing protein composition rather than concentration. Front. Plant Sci. 2016, 7, 738. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johansson, E.; Prieto-Linde, M.L.; Jönsson, J.Ö. Effects of wheat cultivar and nitrogen application on storage protein composition and bread making quality. Cereal Chem. 2001, 78, 19–25. [Google Scholar] [CrossRef]
- Johansson, E.; Prieto-Linde, M.L.; Svensson, G.; Jönsson, J.Ö. Influences of cultivar, cultivation year and fertilizer rate on amount of protein groups and amount and size distribution of mono- and polymeric proteins in wheat. J. Agric. Sci. 2003, 140, 275–284. [Google Scholar] [CrossRef]
- Johansson, E.; Malik, A.H.; Hussain, A.; Rasheed, F.; Newson, W.R.; Plivelic, T.; Hedenqvist, M.S.; Gällstedt, M.; Kuktaite, R. Wheat gluten polymer structures: The impact of genotype, environment, and processing on their functionality in various applications. Cereal Chem. 2013, 90, 367–376. [Google Scholar] [CrossRef]
- Wieser, H.; Seilmeier, W. The influence of nitrogen fertilization on quantities and proportions of different protein types in wheat flour. J. Sci. Food Agric. 1998, 76, 49–55. [Google Scholar] [CrossRef]
- Varga, B.; Svečnjak, Z. The effect of late-season urea spraying on grain yield and quality of winter wheat cultivars under low and high basal nitrogen fertilization. Field Crops Res. 2006, 96, 125–132. [Google Scholar] [CrossRef]
- Blandino, M.; Visioli, G.; Marando, S.; Marti, A.; Reyneri, A. Impact of late-season N fertilisation strategies on the gluten content and composition of high protein wheat grown under humid Mediterranean conditions. J. Cereal Sci. 2020, 94, 102995. [Google Scholar] [CrossRef]
- Peltonen, J.; Kittila, S.; Peltonen-Sainio, P.; Karjalainen, R. Use of foliar-applied urea to inhibit the development of Septoria nodorum in spring wheat. Crop Prot. 1991, 10, 260–264. [Google Scholar] [CrossRef]
- Bly, A.G.; Woodard, H.J. Foliar nitrogen application timing influence on grain yield and protein concentration of hard red winter and spring wheat. J. Agron. 2003, 95, 335–338. [Google Scholar] [CrossRef]
- Shewry, P.R. Wheat. J. Exp. Bot. 2009, 60, 1537–1553. [Google Scholar] [CrossRef]
- Shewry, P. What is gluten—Why is it special? Front. Nutr. 2019, 6, 101. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.-W.; Kang, C.-S.; Kang, T.-G.; Cho, K.-M.; Park, C.S. Influence of different nitrogen application on flour properties, gluten properties by HPLC and end-use quality of Korean wheat. J. Integr. Agric. 2018, 17, 982–993. [Google Scholar] [CrossRef]
- Zheng, T.; Qi, P.-F.; Cao, Y.-L.; Han, Y.-N.; Ma, H.-L.; Guo, Z.-R.; Wang, Y.; Qiao, Y.-Y.; Hua, S.-Y.; Yu, H.-Y.; et al. Mechanisms of wheat (Triticum aestivum) grain storage proteins in response to nitrogen application and its impacts on processing quality. Sci. Rep. 2018, 81, 11928. [Google Scholar] [CrossRef] [PubMed]
- Hurkman, W.J.; Tanaka, C.K.; Vensel, W.H.; Thilmony, R.; Altenbach, S.B. Comparative proteomic analysis of the effect of temperature and fertilizer on gliadin and glutenin accumulation in the developing endosperm and flour from Triticum aestivum L. cv. Butte 86. Proteome Sci. 2013, 11, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malik, A.H.; Kuktaite, R.; Johansson, E. Combined effect of genetic and environmental factors on the accumulation of proteins in the wheat grain and their relationship to breadmaking quality. J. Cereal Sci. 2013, 57, 170–174. [Google Scholar] [CrossRef]
- Zhen, S.; Deng, X.; Xu, X.; Liu, N.; Zhu, D.; Wang, Z.; Yan, Y. Effect of high-nitrogen fertilizer on gliadin and glutenin subproteomes during kernel development in wheat (Triticum aestivum L.). Crop J. 2020, 8, 38–52. [Google Scholar] [CrossRef]
- Croatian Bureau of Statistics. Available online: https://www.dzs.hr/default_e.htm (accessed on 20 March 2021).
- Varga, B.; Svečnjak, Z.; Jurković, Z.; Kovačević, J.; Jukić, Ž. Wheat grain and flour quality as affected by cropping intensity. Food Technol. Biotechnol. 2003, 41, 321–329. [Google Scholar]
- Nadew, B.B. Effects of climatic and agronomic factors on yield and quality of bread wheat (Triticum aestivum L.) seed: A review on selected factors. Adv. Crop Sci. Technol. 2018, 6, 356. [Google Scholar] [CrossRef]
- Drezner, G.; Dvojkovc, K.; Horvat, D.; Novoselovic, D.; Lalic, A. Environmental impacts on wheat agronomic quality traits. Cereal Res. Commun. 2007, 35, 357–360. [Google Scholar] [CrossRef]
- Williams, R.M.; O’Brien, L.O.; Eagles, H.A.; Solah, V.A.; Jayasena, V. The influences of genotype, environment, and genotype × environment interaction on wheat quality. Aust. J. Agric. Res. 2008, 59, 95–111. [Google Scholar] [CrossRef]
- Gholami, A.; Akhlaghi, S.; Shahsavani, S.; Farrokhi, N. Effects of urea foliar application on grain yield and quality of winter wheat. Commun. Soil Sci. Plant Anal. 2011, 42, 719–727. [Google Scholar] [CrossRef]
- Zecevic, V.; Boskovic, J.; Knezevic, D.; Mcanovic, D.; Milenkovic, S. Influence of cultivar and growing season on quality properties of winter wheat (Triticum aestivum L.). Afr. J. Agric. Res. 2013, 8, 2545–2550. [Google Scholar] [CrossRef]
- Vidican, R.; Mălinaș, A.; Rotar, I.; Kadar, R.; Deac, V.; Mălinaș, C. Assessing Wheat Response to N Fertilization in a Wheat–Maize–Soybean Long-Term Rotation through NUE Measurements. Agronomy 2020, 10, 941. [Google Scholar] [CrossRef]
- Gagliardi, A.; Carucci, F.; Masci, S.; Flagella, Z.; Gatta, G.; Giuliani, M.M. Effects of genotype, growing season and nitrogen level on gluten protein assembly of durum wheat grown under mediterranean conditions. Agronomy 2020, 10, 755. [Google Scholar] [CrossRef]
- Ivić, M.; Grljušić, S.; Plavšin, I.; Dvojković, K.; Lovrić, A.; Rajković, B.; Maričević, M.; Černe, M.; Popović, B.; Lončarić, Z.; et al. Variation for Nitrogen Use Efficiency Traits in Wheat under Contrasting Nitrogen Treatments in South-Eastern Europe. Front. Plant Sci. 2021, 12, 682333. [Google Scholar] [CrossRef] [PubMed]
- Pushman, F.M.; Bingham, J. The effects of a granular nitrogen fertilizer and a foliar spray of urea on the yield and bread-making quality of ten winter wheats. J. Agric. Sci. 1976, 87, 281–292. [Google Scholar] [CrossRef]
- Dick, C.D.; Thompson, N.M.; Epplin, F.M.; Arnall, D.B. Managing late-season foliar nitrogen fertilization to increase grain protein for winter wheat. Agron. J. 2016, 108, 2329–2338. [Google Scholar] [CrossRef]
- Blandino, M.; Vaccino, P.; Reyneri, A. Late-season nitrogen increases improver common and durum wheat quality. Agron. J. 2015, 107, 680–690. [Google Scholar] [CrossRef] [Green Version]
- Tea, I.; Genter, T.; Naulet, N.; Marie, L.M.; Kleiber, D. Interaction between nitrogen and sulfur by foliar application and its effects on flour bread-making quality. J. Sci. Food Agric. 2007, 87, 2853–2859. [Google Scholar] [CrossRef]
- Rekowski, A.; Wimmer, M.A.; Hitzmann, B.; Hermannseder, B.; Hahn, H.; Zörb, C. Application of urease inhibitor improves protein composition and bread-baking quality of urea fertilized winter wheat. J. Plant Nutr. Soil Sci. 2020, 183, 260–270. [Google Scholar] [CrossRef] [Green Version]
- Tea, I.; Genter, T.; Naulet, N.; Boyer, V.; Lummerzheim, M.; Kleiber, D. Effect of foliar sulfur and nitrogen fertilization on wheat storage protein composition and dough mixing properties. Cereal Chem. 2004, 81, 759–766. [Google Scholar] [CrossRef]
- Ferrari, M.; Dal Cortivo, C.; Panozzo, A.; Barion, G.; Visioli, G.; Giannelli, G.; Vamerali, T. Comparing Soil vs. Foliar nitrogen supply of the whole fertilizer dose in common wheat. Agronomy 2021, 11, 2138. [Google Scholar] [CrossRef]
- Horvat, D.; Šimić, G.; Dvojković, K.; Ivić, M.; Plavšin, I.; Novoselović, D. Gluten Protein Compositional Changes in Response to Nitrogen Application Rate. Agronomy 2021, 11, 325. [Google Scholar] [CrossRef]
- Aussenac, T.; Rhazi, L.; Branlard, G. Molecular Weight Distribution of Polymeric Proteins in Wheat Grains: The Rheologically Active Polymers. Foods 2020, 9, 1675. [Google Scholar] [CrossRef] [PubMed]
- Horvat, D.; Ðukić, N.; Magdić, D.; Mastilović, J.; Šimić, G.; Torbica, A.; Živančev, D. Characterization of bread wheat cultivars (Triticum aestivum L.) by glutenin proteins. Cereal Res. Commun. 2013, 41, 133–140. [Google Scholar] [CrossRef]
- Barak, S.; Mudgil, D.; Khatkar, B.S. Influence of gliadin and glutenin fractions on rheological, pasting, and textural properties of dough. Int. J. Food. Prop. 2014, 17, 1428–1438. [Google Scholar] [CrossRef]
- Marti, A.; Augst, E.; Cox, S.; Koehler, P. Correlations between gluten aggregation properties defined by the GlutoPeak test and content of quality-related protein fractions of winter wheat flour. J. Cereal Sci. 2015, 66, 89–95. [Google Scholar] [CrossRef]
- De Santis, M.A.; Giuliani, M.M.; Giuzio, L.; De Vita, P.; Lovegrove, A.; Shewry, P.R.; Flagella, Z. Differences in gluten protein composition between old and modern durum wheat genotypes in relation to 20th century breeding in Italy. Eur. J. Agron. 2017, 87, 19–29. [Google Scholar] [CrossRef]
Cultivars | Year of Registration | Pedigree |
---|---|---|
EL NINO | 2016 | Ficko/Felix |
FICKO | 2007 | Srpanjka/Rialto |
KATARINA | 2006 | Osk.5.B.4-1-94/Osk.5.140-22-91 |
VULKAN | 2009 | Osk.3.343-1-97/Osk.15.291//KRH. 44-99 |
SILVIJA | 2010 | Soissons/Hana |
KRALJICA | 2010 | Osk.5.698-4-99/Osk.4.21-7-99 |
TIKA TAKA | 2014 | Osk. 15.294/Osk.4.503-5-98 |
RENATA | 2006 | Žitarka//Osk.7.5-4-82/KBg.160/86/3/Srpanjka |
SRPANJKA | 1989 | Osk.4.50-1/Zg. 2696 |
OS OLIMPIJA | 2009 | Slavonija/KRH. 1-98 |
Location | Soil Type | Previous Crop | Season | Basic N Fertilization (kg N ha−1) | N Top-Dressing (kg N ha−1) | 15% Urea (46% N) | Total N (kg N ha−1) | ||
---|---|---|---|---|---|---|---|---|---|
NCON 1 | NUREA | NCON | NUREA | ||||||
Osijek | Eutric cambisol | Soybean | 2017 | 74 | 41 | 0 | 35 | 115 | 150 |
Soybean | 2018 | 74 | 35 | 0 | 35 | 109 | 144 |
KERRYPNX | 2016/2017 | 2017/2018 | |
---|---|---|---|
Sum rainfall (I-XII) | mm | 571 | 718 |
Sum rainfall in the growing season (X-VI) | 409 | 545 | |
Sum rainfall during grain filling (V-VI) | 86 | 181 | |
LTP 1 sum rainfall (I-XII) | mm | 694 | |
LTP sum rainfall in the growing season (X-VI) | 435 | ||
LTP sum rainfall during grain filling (V-VI) | 115 | ||
Mean temperature (I-XII) | °C | 11.9 | 12.7 |
Mean temperature in the growing season (X-VI) | 8.3 | 9.7 | |
Mean temperature during grain filling (V-VI) | 19.8 | 20.5 | |
LTP mean temperature (I-XII) | °C | 11.2 | |
LTP mean temperature in the growing season (X-VI) | 6.9 | ||
LTP Mean temperature during grain filling (V-VI) | 18.9 |
CULTIVARS | GY 1 (t ha−1) | TKW (g) | HL (kg hL−1) | P (%) | WA (%) | DDT (min) | DS (FU) | E (EU) | RMAX (EU) | R/EXT |
---|---|---|---|---|---|---|---|---|---|---|
Genotype (G) | ||||||||||
EL NINO | 6.8 b | 37 b | 80 b | 12.1 c | 55.3 b | 1.6 c | 61 c | 77 b | 435 c | 2.5 d |
FICKO | 8.2 e | 43 e | 80 c | 12.4 e | 56.4 de | 3.2 d | 73 d | 64 a | 347 a | 1.9 a |
KATARINA | 8.2 e | 40 c | 80 d | 11.9 b | 55.8 c | 1.3 ab | 73 d | 76 b | 410 b | 2.1 ab |
VULKAN | 8.1 de | 36 a | 80 ab | 12.1 c | 54.0 a | 1.4 abc | 79 de | 114 f | 597 h | 2.8 ab |
SILVIJA | 8.2 e | 46 g | 81 e | 12.7 f | 56.3 d | 1.5 bc | 77 d | 109 ef | 537 g | 2.2 bc |
KRALJICA | 8.4 f | 42 d | 81 f | 12.4 e | 56.4 de | 5.5 f | 51 b | 74 b | 414 b | 2.3 bcd |
TIKA TAKA | 8.4 f | 46 f | 79 a | 12.5 e | 56.7 e | 1.5 abc | 76 d | 95 d | 497 e | 2.5 cd |
RENATA | 7.7 c | 45 f | 81 a | 12.3 d | 56.5 de | 1.5 abc | 85 e | 104 e | 517 f | 2.2 bc |
SRPANJKA | 8.0 d | 37 b | 81 a | 11.6 a | 55.3 b | 1.3 a | 109 f | 87 c | 470 d | 2.5 d |
OS OLIMPIJA | 6.4 a | 43 e | 82 f | 13.7 | 57.0 f | 4.1 e | 38 a | 129 g | 597 h | 2.2 ab |
Mean | 7.8 | 42 | 81 | 12.4 | 56.0 | 2.3 | 73 | 93 | 482 | 2.3 |
SD | 0.9 | 4.0 | 1.8 | 1.6 | 1.4 | 1.9 | 28.7 | 29.2 | 112.5 | 0.6 |
CV % | 11.5 | 9.5 | 2.3 | 12.9 | 2.5 | 82.6 | 40.0 | 31.4 | 23.3 | 26.1 |
Year (Y) | ||||||||||
2017 | 7.3 a | 43 b | 82 b | 11.5 a | 56.4 b | 2.1 a | 81.9 b | 76 a | 443 a | 2.6 b |
2018 | 8.3 b | 40 a | 79 a | 13.2 b | 55.6 a | 2.5 b | 62.6 a | 109 b | 521 b | 2.1 a |
DIFF 2018 vs. 2017 | +13.7 | −7.0 | −3.7 | +14.8 | −1.4 | +16.0 | −23.6 | +43.4 | +17.6 | −19.2 |
Nitrogen (N) | ||||||||||
NCON | 7.8 a | 41 a | 80 a | 11.4 a | 55.3 a | 1.6 a | 81.6 b | 92.5 a | 507 b | 2.6 b |
NUREA | 7.9 b | 42 b | 81 b | 13.4 b | 56.7 b | 2.9 b | 62.9 a | 93.2 b | 457 a | 2.0 a |
DIFF NUREA vs. NCON | +1.3 | +3.2 | +0.4 | +17.5 | +2.6 | +66.2 | −22.9 | +0.8 | −9.9 | −23.1 |
Means squares | ||||||||||
G | 4 * | 114.0 * | 4.7 * | 2.7 * | 7.0 * | 16.3 * | 33,181.4 * | 3311.1 * | 55,012 * | 0.5 * |
Y | 20 * | 95.3 * | 95.4 * | 69.6 * | 12.9 * | 3.0 * | 7566.5 * | 23,367.7 * | 13,670 * | 5.0 * |
N | 0.2 * | 34.3 * | 1.7 * | 94.6 * | 42.3 * | 30.5 * | 10,736.2 * | 118.2 * | 43281 * | 7.3 * |
G × Y | 1.3 * | 5.5 * | 14.1 * | 2.2 * | 1.0 * | 0.3 * | 460.0 * | 255.3 * | 6110 * | 0.3 * |
G × N | 0.0 ns | 2.2 * | 0.1 * | 1.7 * | 0.7 * | 4.9 * | 1121.5 * | 470.4 * | 11,886 * | 0.1 * |
Y × N | 0.0 ns | 0.1 | 0.0 ns | 13.8 * | 11.8 * | 5.2 * | 1222.5 * | 43.7 * | 1373 * | 1.7 * |
G × Y × N | 0.0 ns | 0.9 * | 0.0 * | 1.1 * | 0.6 * | 4.9 * | 1087.0 * | 675.3 * | 16,694 * | 0.2 * |
CULTIVARS | AG 1 (%) | GLI (%) | GLU (%) | GLI/GLU | |||||
---|---|---|---|---|---|---|---|---|---|
T GLI | ω-GLI | α-GLI | γ-GLI | T GLU | HMW | LMW | |||
Genotype (G) | |||||||||
EL NINO | 19.1 e | 45.7 abc | 4.6 b | 26.1 | 15.0 b | 35.2 d | 10.0 b | 25.2 c | 1.32 c |
FICKO | 22.1 f | 46.7 de | 7.8 c | 24.1 b | 14.8 b | 31.2 a | 11.3 e | 19.8 a | 1.56 e |
KATARINA | 19.5 e | 47.2 e | 7.7 c | 22.9 a | 16.6 c | 33.3 c | 12.5 f | 20.8 b | 1.43 d |
VULKAN | 16.1 b | 45.0 a | 3.7 a | 24.2 b | 17.1 c | 38.9 f | 10.5 cd | 28.4 g | 1.20 a |
SILVIJA | 17.4 c | 46.5 cde | 4.7 b | 23.9 b | 17.9 d | 36.1 de | 10.7 d | 25.4 cd | 1.32 c |
KRALJICA | 21.6 f | 46.1 bcd | 7.5 c | 24.6 bc | 13.9 a | 32.3 b | 11.5 e | 20.9 b | 1.44 d |
TIKA TAKA | 16.6 b | 49.2 f | 4.7 b | 27.1 f | 17.0 c | 34.2 c | 8.6 a | 25.6 cde | 1.44 d |
RENATA | 16.5 b | 45.3 ab | 4.8 b | 25.5 de | 14.9 b | 38.2 f | 11.5 e | 26.7 f | 1.19 a |
SRPANJKA | 18.1 d | 45.7 abc | 4.9 b | 25.3 cd | 15.5 b | 36.2 e | 10.3 bc | 25.9 de | 1.27 b |
OS OLIMPIJA | 12.9 a | 50.7 g | 4.9 b | 29.0 g | 16.8 c | 36.4 e | 10.3 bcd | 26.1 e | 1.40 d |
Mean | 18.0 | 46.8 | 5.5 | 25.3 | 16.0 | 35.2 | 10.7 | 24.5 | 1.35 |
SD | 3.5 | 3.5 | 1.6 | 2.8 | 1.7 | 4.4 | 1.8 | 3.8 | 0.2 |
CV % | 19.4 | 7.5 | 29.1 | 11.1 | 10.6 | 12.5 | 16.8 | 15.5 | 14.3 |
Year (Y) | |||||||||
2017 | 17.2 a | 45.0 a | 5.4 a | 23.8 a | 15.8 a | 37.8 b | 11.6 b | 26.2 b | 1.21 a |
2018 | 18.8 b | 48.6 b | 5.7 b | 26.8 b | 16.2 b | 32.6 a | 9.9 a | 22.8 a | 1.50 b |
DIFF 2018/2017 | +9.3 | +8.0 | +5.6 | +12.6 | +2.5 | −13.8 | −14.7 | −13.0% | +24.0 |
NCON | 18.2 a | 45.7 a | 5.6 a | 24.6 a | 15.5 a | 36.1 b | 11.1 b | 25.0 b | 1.29 a |
NUREA | 17.8 a | 47.9 a | 5.5 a | 26.0 a | 16.4 b | 34.3 a | 10.3 a | 24.0 a | 1.42 b |
DIFF NCON/NUREA | −2.0 | +5.3 | −1.1 | +5.8 | +6.5 | −4.5 | −7.4 | −2.9 | +11.0 |
Mean of square | |||||||||
G | 56.6 * | 42.2 * | 17.8 * | 38.3 * | 12.2 * | 50.6 * | 8.0 * | 66.3 * | 0.1 * |
Y | 64.6 * | 209.0 * | 1.9 * | 182.3 * | 0.0 ns | 506.1 * | 54.0 * | 229.6 * | 1.6 * |
N | 3.6 * | 132.7 * | 0.0 | 44.3 * | 20.7 * | 92.4 * | 16.8 * | 30.3 * | 0.4 * |
G × Y | 25.2 * | 17.8 * | 0.3 * | 7.6 * | 6.3 * | 14.9 * | 2.4 * | 11.0 * | 0.1 * |
G × N | 4.7 * | 12.5 * | 0.8 * | 4.1 * | 4.8 * | 16.8 * | 3.1 * | 9.5 * | 0.0 * |
Y × N | 7.4 * | 24.9 * | 0.2 * | 10.8 * | 0.8 * | 5.2 * | 5.8 * | 0.0 | 0.0 * |
G × Y × N | 8.3 * | 12.2 * | 1.4 * | 1.8 * | 1.9 * | 21.7 * | 3.9 * | 10.3 * | 0.1 * |
CULTIVARS | GY 1 (tha−1) | TKW (g) | HL (kg hL−1) | P (%) | WA (%) | DDT (min) | DS (FU) | E (cm2) | RMAX (EU) | R/EXT | ||||||||||
NCON | NUREA | NCON | NUREA | NCON | NUREA | NCON | NUREA | NCON | NUREA | NCON | NUREA | NCON | NUREA | NCON | NUREA | NCON | NUREA | NCON | NUREA | |
EL NINO | 6.8 b | 6.9 b | 36.9 b | 37.1 b | 80 bc | 80 cde | 11.5 c | 12.6 f | 55.0 bc | 55.6 de | 1.5 abcd | 1.7 cd | 62 cde | 60 cde | 82 cd | 73 abc | 484 h | 386 bc | 3.0 h | 2.1 abc |
FICKO | 8.1 ef | 8.2 fgh | 41.7 e | 44.4 g | 80 edf | 80 fgh | 11.2 ab | 13.7 jk | 55.6 de | 57.4 gh | 1.6 bcd | 4.7 f | 63 cde | 83 gg | 66 a | 61 a | 370 b | 325 a | 2.1 abc | 1.8 a |
KATARINA | 8.2 fgh | 8.3 fghi | 39.5 c | 40.0 c | 80 ghi | 81 hij | 11.2 ab | 12.6 f | 55.1 c | 56.5 f | 1.2 a | 1.5 abcd | 81 fg | 66 de | 69 ab | 83 cd | 408 cd | 412 d | 2.4 cde | 1.9 ab |
VULKAN | 8.0 ef | 8.1 efg | 35.2 a | 37.3 b | 79 b | 80 bcd | 11.3 b | 12.9 g | 53.4 a | 54.6 b | 1.2 ab | 1.6 abcd | 107 j | 52 bc | 106 f | 123 h | 575 kl | 620 l | 2.9 fg | 2.6 defg |
SILVIJA | 8.3 fghi | 8.2 efg | 45.6 h | 45.6 i | 81 jkl | 81 klm | 11.8 d | 13.7 jk | 55.7 de | 57.0 g | 1.4 abc | 1.7 cd | 97 ij | 57 cd | 110 fg | 109 fg | 549 j | 524 i | 2.4 cde | 2.1 abc |
KRALJICA | 8.4 ghi | 8.5 i | 40.6 d | 43.0 g | 81 lm | 82 k | 11.3 b | 13.5 ijk | 55.3 cd | 57.6 h | 4.0 e | 7.1 h | 60 cde | 43 ab | 79 bc | 69 ab | 459 fg | 370 b | 2.6 def | 2.0 abc |
TIKA TAKA | 8.4 ghi | 8.5 hi | 45.6 h | 45.6 h | 79 a | 79 a | 11.7 cd | 13.2 h | 55.8 e | 57.5 h | 1.4 abc | 1.6 abcd | 83 fgh | 70 ef | 99 ef | 92 de | 553 kl | 441 ef | 2.9 fg | 2.0 abc |
RENATA | 7.6 c | 7.7 cd | 44.3 f | 46.4 i | 81 ijkl | 81 jkl | 11.1 a | 13.4 i | 56.0 e | 57.2 gh | 1.3 abc | 1.7 cd | 102 ij | 68 de | 106 f | 102 ef | 565 kl | 469 gh | 2.7 efg | 1.8 a |
SRPANJKA | 7.9 de | 8.0 ef | 36.9 b | 37.1 b | 81 ijkl | 81 jklm | 11.1 a | 12.2 e | 55.0 bc | 55.7 de | 1.2 a | 1.4 abc | 125 k | 94 hi | 72 abc | 103 ef | 426 de | 514 i | 2.7 efg | 2.3 bcd |
OS OLIMPIJA | 6.3 a | 6.4 a | 42.6 g | 44.0 g | 81 mn | 82 nk | 11.6 c | 15.8 l | 55.9 e | 58.2 i | 1.9 d | 6.3 g | 38 a | 38 a | 138 i | 119 gh | 683 m | 512 i | 2.5 de | 1.8 a |
CULTIVARS | AG (%) | GLI (%) | GLU (%) | GLI/GLU | ||||||||||||||||
T GLI | ω-GLI | α-GLI | γ-GLI | T GLU | HMW-GS | LMW-GS | ||||||||||||||
NCON | NUREA | NCON | NUREA | NCON | NUREA | NCON | NUREA | NCON | NUREA | NCON | NUREA | NCON | NUREA | NCON | NUREA | NCON | NUREA | |||
EL NINO | 18.5 fg | 19.6 hi | 45.3 cd | 46.1 de | 4.4 bc | 4.7 cdef | 26.2 hi | 26.1 ghi | 14.8 bcd | 15.2 bcde | 36.1 hij | 34.3 defg | 11.4 ef | 8.6 a | 24.7 c | 25.6 cdef | 1.28 cde | 1.35 efgh | ||
FICKO | 23.6 l | 20.6 ij | 46.3 de | 47.2 ef | 7.7 hi | 7.9 i | 23.4 bc | 24.7 def | 15.1 bcde | 14.5 bc | 30.1 a | 32.2 bc | 11.5 ef | 11.1 de | 18.5 a | 21.1 b | 1.55 lm | 1.58 m | ||
KATARINA | 19.6 hi | 19.3 gh | 47.2 ef | 47.2 ef | 8.3 i | 7.1 gh | 22.4 ab | 23.3 bc | 16.5 fgh | 16.8 ghi | 33.2 cde | 33.5 cdef | 12.3 gh | 12.7 h | 20.9 b | 20.7 b | 1.43 jk | 1.42 hij | ||
VULKAN | 15.7 bc | 16.5 cd | 40.9 a | 49.0 gf | 3.8 ab | 3.5 a | 21.8 a | 26.5 hi | 15.3 bcde | 19.0 k | 43.4 l | 34.4 efg | 12.2 gh | 8.8 a | 31.2 h | 25.6 cdef | 0.97 a | 1.43 ij | ||
SILVIJA | 16.7 cd | 18.1 f | 46.0 cde | 47.0 ef | 4.6 cdef | 4.7 cdef | 23.7 cd | 24.1 cde | 17.7 ij | 18.1 jk | 37.3 j | 34.9 fgh | 11.3 e | 10.2 b | 26.1 def | 24.7 c | 1.24 cd | 1.40 hij | ||
KRALJICA | 22.0 k | 21.1 jk | 44.8 c | 47.3 ef | 8.0 i | 7.0 g | 24.4 cde | 24.8 def | 12.4 a | 15.5 cdef | 33.1 cde | 31.6 ab | 12.0 fg | 10.9 cde | 21.1 b | 20.7 b | 1.37 ghij | 1.50 kl | ||
TIKA TAKA | 16.2 cd | 17.0 de | 48.2 fg | 50.2 hi | 4.6 cdf | 4.8 cdef | 27.0 hi | 27.3 ij | 16.6 fghi | 17.3 hij | 35.6 ghi | 32.9 bcd | 8.9 a | 8.3 a | 26.7 f | 24.6 c | 1.36 fghi | 1.53 lm | ||
RENATA | 18.1 ef | 15.0 b | 42.6 b | 48.0 fg | 4.5 cd | 5.1 ef | 23.9 cde | 27.2 ij | 14.2 b | 15.6 cdef | 39.4 k | 37.1 ijk | 11.4 ef | 11.5 ef | 27.9 g | 25.5 cde | 1.09 b | 1.30 cdef | ||
SRPANJKA | 18.3 fg | 17.9 ef | 44.8 c | 46.6 ef | 5.0 def | 4.7 cdef | 24.9 efg | 25.7 fgh | 14.9 bcd | 16.1 efg | 36.9 ijk | 35.6 ghi | 10.4 bc | 10.2 b | 26.5 ef | 25.4 cd | 1.23 c | 1.31 defg | ||
OS OLIMPIJA | 13.3 a | 12.5 a | 50.5 i | 50.8 i | 4.5 cde | 5.2 f | 28.3 j | 29.7 k | 17.7 hij | 15.9 defg | 36.1 hij | 36.7 ijk | 10.1 b | 10.6 bcd | 26.1 def | 26.1 def | 1.41 hij | 1.39 hij |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Horvat, D.; Dvojković, K.; Novoselović, D.; Tucak, M.; Andrić, L.; Magdić, D.; Drezner, G. Response of Wheat Yield and Protein-Related Quality on Late-Season Urea Application. Agronomy 2022, 12, 886. https://doi.org/10.3390/agronomy12040886
Horvat D, Dvojković K, Novoselović D, Tucak M, Andrić L, Magdić D, Drezner G. Response of Wheat Yield and Protein-Related Quality on Late-Season Urea Application. Agronomy. 2022; 12(4):886. https://doi.org/10.3390/agronomy12040886
Chicago/Turabian StyleHorvat, Daniela, Krešimir Dvojković, Dario Novoselović, Marijana Tucak, Luka Andrić, Damir Magdić, and Georg Drezner. 2022. "Response of Wheat Yield and Protein-Related Quality on Late-Season Urea Application" Agronomy 12, no. 4: 886. https://doi.org/10.3390/agronomy12040886