Effects of Plant-Derived Protein Hydrolysates on Yield, Quality, and Nitrogen Use Efficiency of Greenhouse Grown Lettuce and Tomato
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growth Conditions
2.2. Treatments
2.3. Plant Growth and Yield Measurements
2.4. Leaf Chlorophyll and Carotenoid Concentrations, and Leaf Gas Exchange
2.5. Use Efficiency and Uptake Efficiency of N
2.6. Determination of Antioxidant Activities, Total Phenolic and Flavonoid Compounds, and Lycopene Concentration
2.6.1. Extract Preparation for Phytochemical Analysis
2.6.2. Determination of Antioxidant Activity via DPPH Free Radical Scavenging Assay
2.6.3. Determination of Total Phenolic Compounds (TPCs)
2.6.4. Determination of Total Flavonoid Compounds (TFCs)
2.6.5. Determination of Lycopene Concentration
2.7. Experimental Design and Statistical Analysis
3. Results
3.1. Effects of N Level and PH Application on Yield and Growth of Lettuce and Tomato
3.2. Effects of N Level and PH Application on Chlorophyll, Photosynthesis, and Water Use Efficiency
3.3. Effects of N Level and PH Application on Antioxidant Activity and Bioactive Compounds
3.4. Effects of N Level and PH Application on Nutrient Use Efficiency and Uptake Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Building Climate Resilience for Food Security and Nutrition; FAO (Ed.) The State of Food Security and Nutrition in the World; FAO: Rome, Italy, 2018; ISBN 978-92-5-130571-3. [Google Scholar]
- Giacomelli, G.A. Engineering Principles Impacting High-Tunnel Environments. HortTechnology 2009, 19, 30–33. [Google Scholar] [CrossRef] [Green Version]
- Hemming, S.; de Zwart, F.; Elings, A.; Righini, I.; Petropoulou, A. Remote Control of Greenhouse Vegetable Production with Artificial Intelligence—Greenhouse Climate, Irrigation, and Crop Production. Sensors 2019, 19, 1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marcelis, L.F.M.; Heuvelink, E. Achieving Sustainable Greenhouse Cultivation; Burleigh Dodds Science Publishing Limited: Cabridge, UK, 2019; ISBN 978-1-78676-280-1. [Google Scholar]
- Dias, G.M.; Ayer, N.W.; Khosla, S.; Van Acker, R.; Young, S.B.; Whitney, S.; Hendricks, P. Life Cycle Perspectives on the Sustainability of Ontario Greenhouse Tomato Production: Benchmarking and Improvement Opportunities. J. Clean. Prod. 2017, 140, 831–839. [Google Scholar] [CrossRef]
- Ntinas, G.K.; Dannehl, D.; Schuch, I.; Rocksch, T.; Schmidt, U. Sustainable Greenhouse Production with Minimised Carbon Footprint by Energy Export. Biosyst. Eng. 2020, 189, 164–178. [Google Scholar] [CrossRef]
- Keeney, D.R.; Follett, R.F. Managing Nitrogen for Groundwater Quality and Farm Profitability: Overview and Introduction. In Managing Nitrogen for Groundwater Quality and Farm Profitability; Soil Science Society of America: Madison, WI, USA, 1991; pp. 1–7. ISBN 978-0-89118-877-3. [Google Scholar]
- Zhao, H.; Li, X.; Jiang, Y. Response of Nitrogen Losses to Excessive Nitrogen Fertilizer Application in Intensive Greenhouse Vegetable Production. Sustainability 2019, 11, 1513. [Google Scholar] [CrossRef] [Green Version]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural Uses of Plant Biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- du Jardin, P. Plant Biostimulants: Definition, Concept, Main Categories and Regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Colla, G.; Nardi, S.; Cardarelli, M.; Ertani, A.; Lucini, L.; Canaguier, R.; Rouphael, Y. Protein Hydrolysates as Biostimulants in Horticulture. Sci. Hortic. 2015, 196, 28–38. [Google Scholar] [CrossRef]
- Cavani, L.; Ter Halle, A.; Richard, C.; Ciavatta, C. Photosensitizing Properties of Protein Hydrolysate-Based Fertilizers. J. Agric. Food Chem. 2006, 54, 9160–9167. [Google Scholar] [CrossRef]
- Kauffman, G.L.; Kneivel, D.P.; Watschke, T.L. Effects of a Biostimulant on the Heat Tolerance Associated with Photosynthetic Capacity, Membrane Thermostability, and Polyphenol Production of Perennial Ryegrass. Crop Sci. 2007, 47, 261–267. [Google Scholar] [CrossRef]
- Marfà, O.; Cáceres, R.; Polo, J.; Ródenas, J. Animal Protein Hydrolysate as a Biostimulant for Transplanted Strawberry Plants Subjected to Cold Stress. Acta Hortic. 2009, 842, 315–318. [Google Scholar] [CrossRef]
- Popko, M.; Michalak, I.; Wilk, R.; Gramza, M.; Chojnacka, K.; Górecki, H. Effect of the New Plant Growth Biostimulants Based on Amino Acids on Yield and Grain Quality of Winter Wheat. Molecules 2018, 23, 470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colla, G.; Rouphael, Y.; Canaguier, R.; Svecova, E.; Cardarelli, M. Biostimulant Action of a Plant-Derived Protein Hydrolysate Produced through Enzymatic Hydrolysis. Front. Plant Sci. 2014, 5, 488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- El-Shemy, H. (Ed.) Soybean and Nutrition; IntechOpen: Rijeka, Croatia, 2011; ISBN 978-953-307-536-5. [Google Scholar]
- Ertani, A.; Schiavon, M.; Muscolo, A.; Nardi, S. Alfalfa Plant-Derived Biostimulant Stimulate Short-Term Growth of Salt Stressed Zea Mays L. Plants. Plant Soil 2013, 364, 145–158. [Google Scholar] [CrossRef]
- Bunt, B.R. Media and Mixes for Container-Grown Plants: A Manual on the Preparation and Use of Growing Media for Pot Plants; Springer Netherlands: Heidelberg, Germany, 2012; ISBN 978-94-011-7904-1. [Google Scholar]
- Nelson, P.V. Greenhouse Operation and Management, 7th ed.; Pearson: Harlow, UK, 2011. [Google Scholar]
- Argo, W.R. Root Medium Chemical Properties. HortTechnology 1998, 8, 486–494. [Google Scholar] [CrossRef]
- Carillo, P.; Colla, G.; Fusco, G.M.; Dell’Aversana, E.; El-Nakhel, C.; Giordano, M.; Pannico, A.; Cozzolino, E.; Mori, M.; Reynaud, H.; et al. Morphological and Physiological Responses Induced by Protein Hydrolysate-Based Biostimulant and Nitrogen Rates in Greenhouse Spinach. Agronomy 2019, 9, 450. [Google Scholar] [CrossRef] [Green Version]
- Di Mola, I.; Cozzolino, E.; Ottaiano, L.; Giordano, M.; Rouphael, Y.; Colla, G.; Mori, M. Effect of Vegetal- and Seaweed Extract-Based Biostimulants on Agronomical and Leaf Quality Traits of Plastic Tunnel-Grown Baby Lettuce under Four Regimes of Nitrogen Fertilization. Agronomy 2019, 9, 571. [Google Scholar] [CrossRef] [Green Version]
- Sestili, F.; Rouphael, Y.; Cardarelli, M.; Pucci, A.; Bonini, P.; Canaguier, R.; Colla, G. Protein Hydrolysate Stimulates Growth in Tomato Coupled With N-Dependent Gene Expression Involved in N Assimilation. Front. Plant Sci. 2018, 9, 1233. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Yang, T.; Lin, M.-Y.; Langenhoven, P. Plant Propagation for Successful Hydroponic Production. Acta Hortic. 2018, 1212, 109–116. [Google Scholar] [CrossRef]
- Epstein, E. Mineral Nutrition of Plants: Principles and Perspectives, 2nd ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 2004. [Google Scholar]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of Image Analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K.; Wellburn, A.R. Determinations of Total Carotenoids and Chlorophylls a and b of Leaf Extracts in Different Solvents. Biochem. Soc. Trans. 1983, 11, 591–592. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; Kim, H.-J. Effects of Hydraulic Loading Rate on Spatial and Temporal Water Quality Characteristics and Crop Growth and Yield in Aquaponic Systems. Horticulturae 2020, 6, 9. [Google Scholar] [CrossRef] [Green Version]
- Bhattacharyya, T.; Ray, S.K.; Maurya, U.K.; Chandran, P.; Pal, D.K.; Durge, S.L.; Nimkar, A.M.; Sheikh, S.M.; Kuchankar, H.W.; Telpande, B.; et al. Carbon and Nitrogen Estimation in Soils: Standardizing Methods and Internal Standards for C/N Analyzer. J. Indian Chem. Soc. 2015, 92, 8. [Google Scholar]
- Ku, K.M.; Juvik, J.A. Environmental Stress and Methyl Jasmonate-Mediated Changes in Flavonoid Concentrations and Antioxidant Activity in Broccoli Florets and Kale Leaf Tissues. HortScience 2013, 48, 996–1002. [Google Scholar] [CrossRef] [Green Version]
- Sadler, G.; Davis, J.; Dezman, D. Rapid Extraction of Lycopene and β-Carotene from Reconstituted Tomato Paste and Pink Grapefruit Homogenates. J. Food Sci. 1990, 55, 1460–1461. [Google Scholar] [CrossRef]
- Di Mola, I.; Ottaiano, L.; Cozzolino, E.; Senatore, M.; Giordano, M.; El-Nakhel, C.; Sacco, A.; Rouphael, Y.; Colla, G.; Mori, M. Plant-Based Biostimulants Influence the Agronomical, Physiological, and Qualitative Responses of Baby Rocket Leaves under Diverse Nitrogen Conditions. Plants 2019, 8, 522. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.-J.; Ku, K.-M.; Choi, S.; Cardarelli, M. Vegetal-Derived Biostimulant Enhances Adventitious Rooting in Cuttings of Basil, Tomato, and Chrysanthemum via Brassinosteroid-Mediated Processes. Agronomy 2019, 9, 74. [Google Scholar] [CrossRef] [Green Version]
- Matsumiya, Y.; Kubo, M. Soybean Peptide: Novel Plant Growth Promoting Peptide from Soybean; IntechOpen: Rijeka, Croatia, 2011; ISBN 978-953-307-536-5. [Google Scholar]
- Ryan, C.A.; Pearce, G.; Scheer, J.; Moura, D.S. Polypeptide Hormones. Plant Cell 2002, 14, S251–S264. [Google Scholar] [CrossRef] [Green Version]
- Francesca, S.; Arena, C.; Hay Mele, B.; Schettini, C.; Ambrosino, P.; Barone, A.; Rigano, M.M. The Use of a Plant-Based Biostimulant Improves Plant Performances and Fruit Quality in Tomato Plants Grown at Elevated Temperatures. Agronomy 2020, 10, 363. [Google Scholar] [CrossRef] [Green Version]
- Rouphael, Y.; Colla, G.; Giordano, M.; El-Nakhel, C.; Kyriacou, M.C.; De Pascale, S. Foliar Applications of a Legume-Derived Protein Hydrolysate Elicit Dose-Dependent Increases of Growth, Leaf Mineral Composition, Yield and Fruit Quality in Two Greenhouse Tomato Cultivars. Sci. Hortic. 2017, 226, 353–360. [Google Scholar] [CrossRef]
- Colla, G.; Cardarelli, M.; Bonini, P.; Rouphael, Y. Foliar Applications of Protein Hydrolysate, Plant and Seaweed Extracts Increase Yield but Differentially Modulate Fruit Quality of Greenhouse Tomato. HortScience 2017, 52, 1214–1220. [Google Scholar] [CrossRef]
- Xu, C.; Mou, B. Drench Application of Fish-Derived Protein Hydrolysates Affects Lettuce Growth, Chlorophyll Content, and Gas Exchange. HortTechnology 2017, 27, 539–543. [Google Scholar] [CrossRef]
- Lucini, L.; Rouphael, Y.; Cardarelli, M.; Canaguier, R.; Kumar, P.; Colla, G. The Effect of a Plant-Derived Biostimulant on Metabolic Profiling and Crop Performance of Lettuce Grown under Saline Conditions. Sci. Hortic. 2015, 182, 124–133. [Google Scholar] [CrossRef]
- Kapulnik, Y.; Koltai, H. Strigolactone Involvement in Root Development, Response to Abiotic Stress, and Interactions with the Biotic Soil Environment. Plant Physiol. 2014, 166, 560–569. [Google Scholar] [CrossRef] [Green Version]
- Kiba, T.; Krapp, A. Plant Nitrogen Acquisition Under Low Availability: Regulation of Uptake and Root Architecture. Plant Cell Physiol. 2016, 57, 707–714. [Google Scholar] [CrossRef] [Green Version]
- Sharma, U.D.; Rai, V.K. Modulation of Osmotic Closure of Stomata, Stomatal Resistance and K+ Fluxes by Exogenous Amino Acids in Vicia Faba L. Leaves. Biochem. Physiol. Pflanz. 1989, 185, 369–376. [Google Scholar] [CrossRef]
- Hermans, C.; Chen, J.; Coppens, F.; Inzé, D.; Verbruggen, N. Low Magnesium Status in Plants Enhances Tolerance to Cadmium Exposure. New Phytol. 2011, 192, 428–436. [Google Scholar] [CrossRef]
- Khanam, U.K.S.; Oba, S.; Yanase, E.; Murakami, Y. Phenolic Acids, Flavonoids and Total Antioxidant Capacity of Selected Leafy Vegetables. J. Funct. Foods 2012, 4, 979–987. [Google Scholar] [CrossRef]
- Lee, K.W.; Lee, H.J. The Roles of Polyphenols in Cancer Chemoprevention. BioFactors 2006, 26, 105–121. [Google Scholar] [CrossRef]
- Moon, Y.J.; Wang, X.; Morris, M.E. Dietary Flavonoids: Effects on Xenobiotic and Carcinogen Metabolism. Toxicol. In Vitro 2006, 20, 187–210. [Google Scholar] [CrossRef]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed Extracts as Biostimulants in Horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Castiglione, A.M.; Mannino, G.; Contartese, V.; Bertea, C.M.; Ertani, A. Microbial Biostimulants as Response to Modern Agriculture Needs: Composition, Role and Application of These Innovative Products. Plants 2021, 10, 1533. [Google Scholar] [CrossRef] [PubMed]
- Canellas, L.P.; Olivares, F.L.; Aguiar, N.O.; Jones, D.L.; Nebbioso, A.; Mazzei, P.; Piccolo, A. Humic and Fulvic Acids as Biostimulants in Horticulture. Sci. Hortic. 2015, 196, 15–27. [Google Scholar] [CrossRef]
- Mannino, G.; Campobenedetto, C.; Vigliante, I.; Contartese, V.; Gentile, C.; Bertea, C.M. The Application of a Plant Biostimulant Based on Seaweed and Yeast Extract Improved Tomato Fruit Development and Quality. Biomolecules 2020, 10, 1662. [Google Scholar] [CrossRef]
- Mozafar, A. Nitrogen Fertilizers and the Amount of Vitamins in Plants: A Review. J. Plant Nutr. 1993, 16, 2479–2506. [Google Scholar] [CrossRef]
- Lee, S.K.; Kader, A.A. Preharvest and Postharvest Factors Influencing Vitamin C Content of Horticultural Crops. Postharvest Biol. Technol. 2000, 20, 207–220. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Liang, X.; Zhang, Y.; Li, K.; Jin, B.; Lu, L.; Jin, C.; Lin, X. Reduced Nitrogen Supply Enhances the Cellular Antioxidant Potential of Phenolic Extracts through Alteration of the Phenolic Composition in Lettuce (Lactuca Sativa L.). J. Sci. Food Agric. 2019, 99, 4761–4771. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [Green Version]
- Hirel, B.; Tétu, T.; Lea, P.J.; Dubois, F. Improving Nitrogen Use Efficiency in Crops for Sustainable Agriculture. Sustainability 2011, 3, 1452–1485. [Google Scholar] [CrossRef]
- Vernieri, P.; Borghesi, E.; Tognoni, F.; Serra, G.; Ferrante, A.; Piagessi, A. Use of Biostimulants for Reducing Nutrient Solution Concentration in Floating System. Acta Hortic. 2006, 718, 477–484. [Google Scholar] [CrossRef]
N Level | Chemical Composition (mM) | ||||||
---|---|---|---|---|---|---|---|
KNO3 | Ca(NO3)2 | NH4NO3 | KH2PO4 | KCl | CaCl2 | MgSO4 | |
2 mM | 1 | 0.1 | 0.4 | 1 | 2 | 2.9 | 0.5 |
5 mM | 1 | 1 | 1 | 1 | 2 | 2 | 0.5 |
10 mM | 2 | 2 | 2 | 1 | 1 | 1 | 0.5 |
15 mM | 3 | 3 | 3 | 1 | 0 | 0 | 0.5 |
Treatments | Dry Biomass (g plant−1) | Fresh Yield (g plant−1) | Fruit Number (n plant−1) | Fruit Mean Weight (g fruit−1) | Leaf Area (cm2 plant−1) | Harvest Index (g g−1 Dry Weight Basis) | ||||
---|---|---|---|---|---|---|---|---|---|---|
Total | Shoot | Root | Fruit | |||||||
Plant Species: Tomato | (Fruit) | (Fruit/Total Biomass) | ||||||||
N level | 2 mM | 12.7 c | 4.2 c | 0.28 b | 8.2 c | 97.1 c | 46 b | 0.19 b | 405 b | 0.645 |
5 mM | 17.2 b | 5.7 b | 0.33 ab | 11.2 b | 126.5 b | 46 b | 0.26 a | 529 ab | 0.647 | |
10 mM | 20.7 a | 7.0 a | 0.39 a | 13.3 a | 146.7 a | 57 a | 0.24 a | 597 a | 0.645 | |
15 mM | 21.0 a | 6.8 ab | 0.38 a | 13.4 a | 147.2 a | 59 a | 0.25 a | 517 ab | 0.659 | |
PH | Control | 15.9 b | 5.2 b | 0.32 b | 10.3 c | 117.8 b | 42 b | 0.25 | 468 | 0.649 |
PH-F | 18.2 ab | 6.1 ab | 0.36 a | 11.8 b | 124.8 ab | 56 a | 0.22 | 502 | 0.651 | |
PH-R | 19.4 a | 6.5 a | 0.37 a | 12.6 a | 142.9 a | 58 a | 0.23 | 564 | 0.648 | |
Significance | N level | *** | *** | ** | *** | *** | * | ** | ** | - |
PH | * | * | * | * | *** | ** | - | - | - | |
N × PH | - | - | - | - | - | - | - | - | ||
Plant Species: Lettuce | (Shoot) | (Shoot/Total Biomass) | ||||||||
N level | 2 mM | 5.1 c | 4.8 c | 0.33 a | 84.2 c | 1199 c | 0.934 b | |||
5 mM | 5.7 c | 5.5 c | 0.24 c | 138.6 b | 1589 b | 0.958 a | ||||
10 mM | 6.9 b | 6.6 b | 0.25 bc | 173.6 a | 1744 ab | 0.963 a | ||||
15 mM | 8.1 a | 7.8 a | 0.31 ab | 178.8 a | 1813 a | 0.960 a | ||||
PH | Control | 5.4 b | 5.1 b | 0.29 | 118.4 b | 1418 b | 0.946 b | |||
PH-F | 6.6 a | 6.3 a | 0.27 | 150.5 ab | 1589 ab | 0.957 a | ||||
PH-R | 7.0 a | 6.7 a | 0.27 | 156.8 a | 1709 a | 0.957 a | ||||
Significance | N level | *** | *** | *** | *** | *** | *** | |||
PH | ** | ** | - | ** | * | * | ||||
N × PH | - | - | - | - | - | - |
Treatments | Total Chlorophyll (µg mg−1) | Chlorophyll a (µg mg−1) | Chlorophyll b (µg mg−1) | Carotenoid (µg mg−1) | Pn (µmol CO2 m−2 s−1) | WUE (µmol CO2 mol−1 H2O) | |
---|---|---|---|---|---|---|---|
Tomato Leaves | |||||||
N level | 2 mM | 28.1 b | 20.0 b | 7.6 b | 3.5 b | 8.9 b | 87.5 ab |
5 mM | 31.4 ab | 22.8 a | 9.3 a | 4.1 a | 6.9 c | 100.5 a | |
10 mM | 33.8 a | 24.3 a | 9.5 a | 4.2 a | 8.3 b | 87.4 ab | |
15 mM | 33.4 a | 24.2 a | 9.2 ab | 4.1 a | 10.8 a | 77.7 b | |
PH | Control | 28.6 b | 21.2 b | 7.8 b | 3.8 b | 7.7 b | 78.7 b |
PH-F | 31.9 ab | 22.9 ab | 9.0 ab | 4.0 a | 8.7 ab | 90.8 ab | |
PH-R | 34.0 a | 24.2 a | 9.8 a | 4.1 a | 9.8 a | 96.2 a | |
Significance | N level | ** | *** | * | *** | *** | * |
PH | ** | ** | ** | * | ** | * | |
N × PH | - | - | - | - | |||
Lettuce Leaves | |||||||
N level | 2 mM | 26.8 b | 20.3 b | 6.5 b | 4.1 b | 9.8 b | 27.4 |
5 mM | 32.2 a | 23.5 a | 8.7 a | 4.9 a | 10.0 b | 24.4 | |
10 mM | 34.7 a | 25.2 a | 9.5 a | 5.0 a | 11.3 ab | 26.7 | |
15 mM | 34.6 a | 25.3 a | 9.4 a | 4.8 a | 12.9 a | 28.8 | |
PH | Control | 29.7 b | 22.1 b | 7.6 b | 4.4 b | 9.9 b | 24.2 b |
PH-F | 31.9 ab | 23.5 ab | 8.4 ab | 4.8 ab | 11.0 ab | 26.7 ab | |
PH-R | 34.1 a | 24.7 a | 9.4 a | 4.9 a | 12.0 a | 29.2 a | |
Significance | N level | *** | *** | *** | *** | *** | - |
PH | ** | * | ** | * | ** | * | |
N × PH | - | - | - | - | - | - |
Treatments | DPPH Radical Scavenging Activity (%) | TPC (mg GAE g−1 DW) | TFC (mg QE g−1 DW) | Lycopene (mg 100 g−1 FW) | |
---|---|---|---|---|---|
Tomato Fruits | |||||
N level | 2 mM | 44.1 | 226.0 | 208.4 | 1.96 |
5 mM | 39.9 | 200.6 | 174.5 | 2.01 | |
10 mM | 41.1 | 216.7 | 195.6 | 2.18 | |
15 mM | 35.9 | 207.7 | 196.6 | 2.19 | |
PH | Control | 36.5 b | 193.2 b | 175.0 b | 1.83 b |
PH-F | 37.6 b | 200.4 b | 191.6 ab | 2.08 ab | |
PH-R | 46.7 a | 245.2 a | 212.6 a | 2.30 a | |
Significance | N level | - | - | - | - |
PH | *** | *** | *** | ** | |
N×PH | - | - | - | - | |
Lettuce Leaves | |||||
N level | 2 mM | 49.2 a | 194.7 a | 759.9 a | |
5 mM | 34.7 b | 168.3 ab | 593.7 ab | ||
10 mM | 28.0 b | 155.6 b | 551.7 b | ||
15 mM | 26.3 b | 139.1 b | 523.5 b | ||
PH | Control | 26.2 b | 151.5 b | 541.3 b | |
PH-F | 33.9 ab | 162.4 ab | 561.8 b | ||
PH-R | 46.5 a | 185.5 a | 737.1 a | ||
Significance | N level | *** | *** | ** | |
PH | ** | * | * | ||
N × PH | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, S.; Colla, G.; Cardarelli, M.; Kim, H.-J. Effects of Plant-Derived Protein Hydrolysates on Yield, Quality, and Nitrogen Use Efficiency of Greenhouse Grown Lettuce and Tomato. Agronomy 2022, 12, 1018. https://doi.org/10.3390/agronomy12051018
Choi S, Colla G, Cardarelli M, Kim H-J. Effects of Plant-Derived Protein Hydrolysates on Yield, Quality, and Nitrogen Use Efficiency of Greenhouse Grown Lettuce and Tomato. Agronomy. 2022; 12(5):1018. https://doi.org/10.3390/agronomy12051018
Chicago/Turabian StyleChoi, Seunghyun, Giuseppe Colla, Mariateresa Cardarelli, and Hye-Ji Kim. 2022. "Effects of Plant-Derived Protein Hydrolysates on Yield, Quality, and Nitrogen Use Efficiency of Greenhouse Grown Lettuce and Tomato" Agronomy 12, no. 5: 1018. https://doi.org/10.3390/agronomy12051018