Effects of Organic Fertilizer Application on Strawberry (Fragaria vesca L.) Cultivation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Material and Method
3. Results
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.Y. Antioxidants and Health Benefits of Strawberries. Acta Hortic. 2014, 1049, 49–62. [Google Scholar] [CrossRef]
- Giampieri, F.; Alvarez-Suarez, J.M.; Battino, M. Strawberry and human health: Effects beyond antioxidant activity. J. Agric. Food Chem. 2014, 62, 3867–3876. [Google Scholar] [CrossRef] [PubMed]
- FAO. 2020. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 12 December 2020).
- Kays, S.J. Preharvest factors affecting appearance. Postharvest Biol. Technol. 1999, 15, 233–247. [Google Scholar] [CrossRef]
- Wang, X.X.; Zhao, F.; Zhang, G.; Zhang, Y.; Yang, L. Vermicompost Improves Tomato Yield and Quality and the Biochemical Properties of Soils with Different Tomato Planting History in a Greenhouse Study. Front. Plant Sci. 2017, 21, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Sönmez, İ.; Maltaş, A.Ş.; Sarikaya, H.Ş.; Doğan, A.; Kaplan, M. Tavuk gübresi uygulamalarinin domates (Solanum lycopersicum L.) gelişimi ve verim üzerine etkilerinin belirlenmesi. Mediterr. Agric. Sci. 2019, 32, 101–107. [Google Scholar] [CrossRef]
- Upenji, R.; Umirambe, E.; Lobo, E.; Abineno, E.; Zamukulu, P.; Mushagalusa, P.; Katunga, D. Improve Common Bean (Phaseolus vulgaris L.) Yield through Cattle Manure in Nioka Region, Ituri Province, DRC. Open Access Libr. J. 2020, 7, 1–9. [Google Scholar] [CrossRef]
- Kiliç, B.; Sönmez, İ. Determination of the effects of different organic fertilizers and doses on soil properties. Mediterr. Agric. Sci. 2019, 32, 91–96. [Google Scholar] [CrossRef]
- Negi, Y.K.; Sajwan, P.; Uniyal, S.; Mishra, A.C. Enhancement in yield and nutritive qualities of strawberry fruits by the application of organic manures and biofertilizers. Sci. Hortic. 2021, 283, 110038. [Google Scholar] [CrossRef]
- Orozco, F.H.; Cegarra, J.; Trujillo, L.M.; Roig, A. Vermicomposting of coffee pulp using the earthworm Eisenia fetida: Effects on C and N contents and the availability of nutrients. Bio. Fertil. Soil. 1996, 22, 162–166. [Google Scholar] [CrossRef]
- Shang, L.; Wan, L.; Zhou, X.; Li, S.; Li, X. Effects of organic fertilizer on soil nutrient status, enzyme activity, and bacterial community diversity in Leymus chinensis steppe in Inner Mongolia, China. PLoS ONE 2020, 15, e0240559. [Google Scholar] [CrossRef]
- Ai, C.; Liang, G.Q.; Sun, J.W.; Wang, X.B.; Zhou, W. Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil. Geoderma 2021, 173, 330–338. [Google Scholar] [CrossRef]
- Li, B.Y.; Zhou, D.M.; Cang, L.; Zhang, H.L.; Fan, X.H.; Qin, S.W. Soil micronutrient availability to crops as affected by long-term inorganic and organic fertilizer applications. Soil Tillage Res. 2007, 96, 166–173. [Google Scholar] [CrossRef]
- Sayği, H. Effects of green manure and poultry manure on strawberry production and soil fertility. Int. J. Recycl. Org. Waste Agricult. 2021, 10, 439–448. [Google Scholar] [CrossRef]
- Reganold, J.P.; Andrews, P.K.; Reeve, J.R.; Carpenter-Boggs, L.; Schadt, C.W.; Alldredge, J.R.; Ross, C.F.; Davies, N.M.; Zhou, J. Fruit and Soil Quality of Organic and Conventional Strawberry Agroecosystems. PLoS ONE 2010, 5, e12346. [Google Scholar] [CrossRef]
- Cayuela, A.; Vidueira, M.; Albi, M.A.; Gutie, F. Influence of the ecological cultivation of strawberries (Fragaria × ananassa cv. Chandler) on the quality of the fruit and on their capacity for conservation. J. Agric. Food Chem. 1997, 45, 1736–1740. [Google Scholar] [CrossRef]
- Abu-Zahra, T.R.; Al-Ismail, K.; Shatat, F. Effect of Organic and Conventional Systems on Fruit Quality of Strawberry (Fragaria x ananassa duch) Grown under plastic house conditions in the Jordan Valley. Acta Hort. 2006, 741, 159–171. [Google Scholar] [CrossRef]
- Kai, T.; Adhikari, D. Effect of Organic and Chemical Fertilizer Application on Apple Nutrient Content and Orchard Soil Condition. Agriculture 2021, 11, 340. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, D.; Niu, Z.; Yan, J.; Zhou, X.; Kang, X. Effects of combined organic/inorganic fertilizer application on growth, photosynthetic characteristics, yield and fruit quality of Actinidia chinesis cv ‘Hongyang’. Glob. Ecol. Conserv. 2020, 22, e00997. [Google Scholar] [CrossRef]
- Ganeshnauth, V.; Jaikishun, S.; Ansari, A.A.; Homenauth, O. The Effect of Vermicompost and Other Fertilizers on the Growth and Productivity of Pepper Plants in Guyana. In Automation in Agriculture—Securing Food Supplies for Future Generations; Hussmann, S., Ed.; IntechOpen: London, UK, 2018. [Google Scholar] [CrossRef] [Green Version]
- Pierre-Louis, R.C.; Kader, M.A.; Desai, N.M.; John, E.H. Potentiality of Vermicomposting in the South Pacific Island Countries: A Review. Agriculture 2021, 11, 876. [Google Scholar] [CrossRef]
- Hoover, N.L.; Law, J.Y.; Long, L.A.M.; Kanwar, R.S.; Soupir, M.L. Long-term impact of poultry manure on crop yield, soil and water quality, and crop revenue. J. Environ. Manag. 2019, 15, 109582. [Google Scholar] [CrossRef]
- Apriyani, S.; Wahyuni, S.; Harsanti, E.S.; Zu’amah, H.; Kartikawati, R.; Sutriadi, M.T. Effect of inorganic fertilizer and farmyard manure to available P, growth and rice yield in rainfed lowland Central Java. IOP Conf. Ser. Earth Environ. Sci. 2021, 648, 1–7. [Google Scholar] [CrossRef]
- Zhang, Z.; Dong, X.; Wang, S.; Pu, X. Benefits of organic manure combined with biochar amendments to cotton root growth and yield under continuous cropping systems in Xinjiang, China. Sci. Rep. 2020, 10, 4718. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaw, D.V.; Larson, K.D. Strawberry Plant Named ‘Albion’. U.S. Plant Patent 16,228 P3, 31 January 2006. Available online: https://patentimages.storage.googleapis.com/61/ce/e7/aca66ac422372b/USPP16228.pdf (accessed on 16 March 2022).
- Pirlak, L.; Güleryüz, M.; Aslantaş, R.; Eşitken, A. Promising Native Summer Apple (Malus domestica) Cultivars from North-Eastern Anatolia, Turkey. New Zealand. J. Crop. Hortic. Sci. 2003, 31, 311–314. [Google Scholar] [CrossRef] [Green Version]
- Haghani, S.; Hadidi, M.; Pouramin, S.; Adinepour, F.; Hasiri, Z.; Moreno, A.; Munekata, P.E.S.; Lorenzo, J.M. Application of Cornelian Cherry (Cornus mas L.) Peel in Probiotic Ice Cream: Functionality and Viability during Storage. Antioxidants 2021, 10, 1777. [Google Scholar] [CrossRef] [PubMed]
- Jones, J.B.; Wolf, B.; Mills, H.A. Plant Analysis Handbook; MicroMacro Publishing: Athens, GA, USA, 1991. [Google Scholar]
- Tagliavini, M.; Baldi, E.; Nestby, R.; Raynal, L.C.; Lieten, P.; Salo, T.; Faedi, W. Uptake and partitioning of major nutrients by strawberry plants. Acta Hortic. 2004, 649, 197–200. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemist: Washington, DC, USA, 1990; Available online: https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf (accessed on 18 February 2022).
- Barton, C.J. Photometric analysis of phosphate rock. Anal. Chem. 1948, 20, 1068–1073. [Google Scholar] [CrossRef]
- Kirk, P.L. Kjeldahl Method for Total Nitrogen. Anal. Chem. 1950, 22, 354–358. [Google Scholar] [CrossRef]
- Bottoms, T.G.; Bolda, M.P.; Gaskell, M.L.; Hartz, T.K. Determination of Strawberry Nutrient Optimum Ranges through Diagnosis and Recommendation Integrated System Analysis. J. Amer. Soc. Hort. Sci. 2013, 23, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Pritts, M.P. Nutrient Management Practices in Perennial Strawberry are Informed by Understanding the Relationships among Carbohydrate Status, Nitrogen Availability, and Soil Composition. J. Amer. Soc. Hort. Sci. 2015, 25, 447–451. [Google Scholar] [CrossRef] [Green Version]
- NCDA&CS. 2017. Available online: https://www.ncagr.gov/agronomi/documents/StrawberryInterpretationArticle2017.pdf (accessed on 15 December 2021).
- Barrett, D.M.; Beaulieu, J.C.; Shewfelt, R. Color, Flavor, Texture, and Nutritional Quality of Fresh-Cut Fruits and Vegetables: Desirable Levels, Instrumental and Sensory Measurement, and the Effects of Processing. Crit. Rev. Food Sci. Nutr. 2010, 50, 369–389. [Google Scholar] [CrossRef]
- Mufty, R.K.; Taha, S.M. Response Two Strawberry Cultivars (Fragaria X Ananassa Duch.) for Foliar Application of Two Organic Fertilizers. IOP Conf. Ser. Earth Environ. Sci. IOP Publ. 2021, 910, 012033. [Google Scholar] [CrossRef]
- Balci, G.; Demirsoy, H. Effect of Organic and Conventional Growing Systems with Different Mulching on Yield and Fruit Quality in Strawberry cvs. Sweet Charlie and Camarosa. Bio. Agric. Hortic. 2008, 26, 121–129. [Google Scholar] [CrossRef]
- Balci, G.; Demirsoy, H.; Demirsoy, L. Evaluation of Performances of Some Organic Waste in Organic Strawberry Cultivation. Waste Biomass Valorization 2019, 10, 1151–1157. [Google Scholar] [CrossRef]
- Geçer, M.K.; Gündoğdu, M.; Başar, G. Bazi Çilek Çeşitlerinin Merzifon (Amasya) Ekolojisindeki Verim Durumlarinin Tespiti. Iğdir Univ. J. Inst. Sci. Tech. 2018, 8, 11–15. [Google Scholar] [CrossRef]
- Preciado-Rangel, P.; Troyo-Diéguez, E.; Valdez-Aguilar, L.A.; García-Hernández, J.L.; Luna-Ortega, J.G. Interactive Effects of the Potassium and Nitrogen Relationship on Yield and Quality of Strawberry Grown Under Soilless Conditions. Plants 2020, 9, 441. [Google Scholar] [CrossRef] [Green Version]
- Çolak, A.M.; Şahinler, N.; İslamoğlu, M. The Effect of Honeybee Pollination on Productivity and Quality of Strawberry. Alinteri. J. Agric. Sci. 2017, 32, 87–90. [Google Scholar] [CrossRef]
- Pakyürek, M.; Al-Shatri, A.H.N.; Yaviç, A. Effect of Seaweed Application on The Vegetative Growth of Strawberry Cv. Albion Grown Under Iraq Ecological Conditions. Appl. Ecol. Environ. Res. 2020, 18, 1211–1225. [Google Scholar] [CrossRef]
- Wójcik, P.; Lewandowski, M. Effect of Calcium and Boron Sprays on Yield and Quality of “Elsanta” Strawberry. J. Plant Nutr. 2003, 26, 671–682. [Google Scholar] [CrossRef]
- Gunness, P.; Kravchuk, O.; Nottingham, S.M.; D’Arcy, B.R.; Gidley, M.J. Sensory analysis of individual strawberry fruit and comparison with instrumental analysis. Postharvest Biol. Technol. 2009, 52, 164–172. [Google Scholar] [CrossRef]
- Akbaş, F.C.; Saridaş, M.A.; Ağçam, E.; Keskinaslan, G.S.; Kamar, R.; Kargi, S.P. Evaluation of Important Strawberry Genotypes in Terms of Taste Parameters. Turk. J. Agric. Food Sci. Technol. 2021, 9, 241–248. [Google Scholar] [CrossRef]
- Antunes, M.C.; Cuquel, F.L.; Zawadneak, M.A.C.; Mogor, Á.F.; Resende, J.T.V. Postharvest quality of strawberry produced during two consecutive seasons. Hortic. Bras. 2014, 32, 168–173. [Google Scholar] [CrossRef] [Green Version]
- Pinheiro, D.; de Resende, J.T.V.; Constantino, L.V.; Hata, F.T.; Hata, N.N.Y.; Lustosa, S.B.C. Physical, biochemical, and sensory properties of strawberries grown in high-altitude tropical climate. Ciênc. Agrotec. 2021, 45, e008221. [Google Scholar] [CrossRef]
- Døving, A.; Måge, F.; Vestrheim, S. Methods for Testing Strawberry Fruit Firmness. Small Fruits Rev. 2005, 4, 11–34. [Google Scholar] [CrossRef]
- Estrada-Ortiz, E.; Trejo-Téllez, L.I.; Gómez-Merino, F.C.; Núñez-Escobar, R.; Sandoval-Villa, M. The effects of phosphite on strawberry yield and fruit quality. J. Soil Sci. Plant Nutr. 2013, 13, 612–620. [Google Scholar] [CrossRef] [Green Version]
- Ornelas-Paz, J.d.e.J.; Yahia, E.M.; Ramírez-Bustamante, N.; Pérez-Martínez, J.D.; Escalante-Minakata Mdel, P.; Ibarra-Junquera, V.; Acosta-Muñiz, C.; Guerrero-Prieto, V.; Ochoa-Reyes, E. Physical attributes and chemical composition of organic strawberry fruit (Fragaria x ananassa Duch, Cv. Albion) at six stages of ripening. Food Chem. 2013, 138, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Akhatou, I.; Recamales, Á.F. Influence of cultivar and culture system on nutritional and organoleptic quality of strawberry. J. Sci. Food Agric. 2014, 94, 866–875. [Google Scholar] [CrossRef]
- Perkins-Veazie, P. 1995 Growth and ripening of strawberry fruit. Hort. Rev. 1995, 17, 267–297. [Google Scholar] [CrossRef]
- Cervantes, L.; Ariza, M.T.; Miranda, L.; Lozano, D.; Medina, J.J.; Soria, C.; Martínez-Ferri, E. Stability of Fruit Quality Traits of Different Strawberry Varieties under Variable Environmental Conditions. Agronomy 2020, 10, 1242. [Google Scholar] [CrossRef]
- Temocico, G.; Sturzeanu, M.; Ion, V.; Cristea, S. Evaluation of strawberry fruit quality for new selections and cultivars. Rom. Biotechnol. Lett. 2019, 24, 742–748. [Google Scholar] [CrossRef]
- Hezron, E.; Nonga, H.E.; Simforian, E.A.; Ndabikunze, B.K. Assessment of physicochemical characteristics and hygienic practices along the value chain of raw fruit juice vended in Dar es Salaam City, Tanzania. Tanzan. J. Health Res. 2014, 16, 1–9. [Google Scholar] [CrossRef]
- Gündüz, K.; Özbay, H. The effects of genotype and altitude of the growing location on physical, chemical, and phytochemical properties of strawberry. Turk. J. Agric. For. 2018, 42, 145–153. [Google Scholar] [CrossRef]
- Paparozzi, E.T.; Meyer, G.E.; Schlegel, V.; Blankenship, E.E.; Stacy, A.; Adams, S.A.; Conley, M.E.; Loseke, B.; Read, P.E. Strawberry cultivars vary in productivity, sugars and phytonutrient content when grown in a greenhouse during the winter. Sci. Hortic. 2018, 227, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mahmood, T.; Anwar, F.; Abbas, M.; Boyce, M.C.; Saari, N. Compositional variation in sugars and organic acids at different maturity stages in selected small fruits from pakistan. Int. J. Mol. Sci. 2012, 13, 1380–1392. [Google Scholar] [CrossRef] [PubMed]
- Souri, M.K.; Tohidloo, G.; Eskandarpour, S. Growth and Fruit Biochemical Characteristics of Three Strawberry Genotypes under Different Potassium Concentrations of Nutrient Solution. Open Agric. 2018, 3, 356–362. [Google Scholar] [CrossRef]
- Sapei, L.; Hwa, L. Study on the Kinetics of Vitamin C Degradation in Fresh Strawberry Juices. Procedia Chem. 2014, 9, 62–68. [Google Scholar] [CrossRef] [Green Version]
- Yommi, A.K.; Borquez, A.M.; Quipildor, S.L.; Kirschbaum, D.S. Fruit Quality Evaluation of Strawberry Cultivars Grown in Argentina. Acta Hortic. 2003, 628, 871–878. [Google Scholar] [CrossRef]
- Lee, J.; Nohi, Y.-H.; Park, K.-H.; Kim, D.-S.; Jeong, H.T.; Lee, H.-S.; Min, S.R.; Kim, H. Environmentally friendly fertilizers can enhance yield and bioactive compounds in Chinese cabbage (Brassica rapa ssp. pekinensis). Turk. J. Agric. For. 2019, 43, 138–150. [Google Scholar] [CrossRef]
- López-Valencia, D.; Sánchez-Gómez, M.; Acuña-Caita, J.F.; Fischer, G. Physicochemical properties of seven outstanding strawberry (Fragaria x ananassa Duch.) varieties cultivated in Cundinamarca (Colombia) during maturation. Cienc. Y Tecnol. Agropecuaria. 2018, 19, 147–162. [Google Scholar] [CrossRef]
- Bosa, P.C.; Vargas-Cruz, J.A.; Quintero-Arias, G.; Caita, J. Effect of Protected Environments on the Postharvest Quality of Strawberry (Fragaria X Ananassa) Produced in the Tropical Mountain Areas. Int. J. Biol. Instrum. 2019, 2, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Janurianti, N.M.D.; Utama, I.M.S.; Gunam, I.B.W. Colour and Quality of Strawberry Fruit (Fragaria x ananassa Duch.) at Different Levels of Maturity. Sustain. Environ. Agric. Sci. 2021, 05, 22–28. [Google Scholar] [CrossRef]
- Ruiz, A.; Sanhueza, M.; Gómez, F.; Tereucán, G.; Valenzuela, T.; García, S.; Cornejo, P.; Hermosín-Gutiérrez, I. Changes in the content of anthocyanins, flavonols, and antioxidant activity in Fragaria ananassa var. Camarosa fruits under traditional and organic fertilization. J. Sci Food Agric. 2019, 99, 2404–2410. [Google Scholar] [CrossRef] [PubMed]
- Bai, Q.; Shen, Y.; Huang, Y. Advances in Mineral Nutrition Transport and Signal Transduction in Rosaceae Fruit Quality and Postharvest Storage. Front. Plant Sci. 2021, 12, 620018. [Google Scholar] [CrossRef] [PubMed]
- Karwowska, M.; Kononiuk, A. Nitrates/Nitrites in Food-Risk for Nitrosative Stress and Benefits. Antioxidants 2020, 9, 241. [Google Scholar] [CrossRef] [Green Version]
- ASTDR. ATSDR Case Studies in Environmental Medicine Nitrate/Nitrite Toxicity. In Agency for Toxic Substances and Disease Registry; 2017. Available online: https://www.atsdr.cdc.gov/csem/nitrate_2013/docs/nitrite.pdf (accessed on 20 March 2022).
- Bahadoran, Z.; Mirmiran, P.; Jeddi, S.; Azizi, F.; Ghasemi, A. Nitrate and nitrite content of vegetables, fruits, grains, legumes, dairy products, meats and processed meats. J. Food Compos. Anal. 2016, 51, 93–105. [Google Scholar] [CrossRef]
- Menard, F.; Heraud, J.; Volatier, L.; Leblanc, J.C. Assessment of dietary exposure of nitrate and nitrite in France. Food Addit. Contam. 2008, 25, 971–988. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sprogis, K.; Kince, T.; Muizniece-Brasava, S. Investigation of Fertilisation Impact on Fresh Strawberries Yield and Quality Parameters. Foodbalt 2017, 11, 126–129. [Google Scholar] [CrossRef]
- Sabolová, M.M.; Kouřimská, L. Vitamin C and Nitrates Contents in Fruit and Vegetables From Farmers’ Markets Additionally, Supermarkets. Potravin. Slovak J. Food Sci. 2020, 14, 1124–1130. [Google Scholar] [CrossRef]
- Ramnarain, Y.I.; Ansari, A.A.; Ori, L. Vermicomposting of different organic materials using the epigeic earthworm Eisenia foetida. Int. J. Recycl. Org. Waste Agric. 2019, 8, 23–36. [Google Scholar] [CrossRef] [Green Version]
- Dede, Ö.H.; Ozer, H. Enrichment of poultry manure with biomass ash to produce organomineral fertiliser. Environ. Eng. Res. 2018, 23, 449–455. [Google Scholar] [CrossRef]
- Mbatha, K.C.; Mchunu, C.N.; Mavengahama, S.; Ntuli, N.R. Effect of Poultry and Goat Manures on the Nutrient Content of Sesamum alatum Leafy Vegetables. Appl. Sci. 2021, 11, 11933. [Google Scholar] [CrossRef]
- Adekiya, A.O.; Agbede, T.M. Growth and Yield of Tomato (Lycopersicon esculentum Mill) as Influenced by Poultry Manure and NPK Fertilizer. Emir J. Food Agric. 2009, 21, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Mormina, M. Science, Technology and Innovation as Social Goods for Development: Rethinking Research Capacity Building from Sen’s Capabilities Approach. Sci. Eng. Ethics 2019, 25, 671–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Years | pH | N (%) | P (mg kg−1) | K (mg kg−1) | Ca (mg kg−1) | Mg (mg kg−1) | Mn (mg kg−1) | Cu (mg kg−1) | Fe (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|
2019–2020 | 7.65 | 0.13 | 1.38 | 160 | 3298 | 568 | 1.82 | 0.80 | 1.30 |
Organic Fertilizers | mg kg−1 | mg kg−1 | |||||||
---|---|---|---|---|---|---|---|---|---|
N | P | K | Ca | Mg | Fe | Mn | Zn | Cu | |
Vermicompost | 1.35 | 0.12 | 0.25 | 0.96 | 0.19 | 2346.0 | 110.3 | 36.2 | 10.6 |
Farm manure | 1.68 | 0.15 | 0.60 | 2.80 | 0.28 | 2855.0 | 72.8 | 32.5 | 26.6 |
Chicken manure | 1.80 | 0.19 | 0.66 | 2.86 | 0.30 | 3452.0 | 60.23 | 37.6 | 30.2 |
Applications | Abbreviations | Application Doses |
---|---|---|
Control | T0 | - |
Vermicompost | T1 | 250 kg da−1 |
Chicken manure | T2 | 250 kg da−1 |
Farm manure | T3 | 250 kg da−1 |
Chemical fertilizers | T4 | 20 kg da−1 N, 10 kg da−1 P2O5, 40 kg da−1 K2O |
Applications | Yield per Plant (g Plant−1) | Fruit Weight (g) | Fruit Firmness (kg) | Aroma |
---|---|---|---|---|
Control | 272.22 c | 11.99 c | 13.97 b | 3.50 |
Vermicompost | 408.04 a | 18.50 a | 16.99 a | 3.73 |
Chicken manure | 383.00 a | 17.70 ab | 18.25 a | 3.80 |
Farm manure | 367.50 ab | 17.47 ab | 16.99 ab | 3.85 |
Chemical fertilizers | 309.46 bc | 15.50 b | 15.91 ab | 4.40 |
Applications | pH (%) | TSS (%) | TA (%) | Total Sugar (mg 100 g−1) (Glucose + Fructose) | Vitamin C (mg 100 g−1) |
---|---|---|---|---|---|
Control | 2.82 b | 7.38 b | 0.55 b | 6.38 c | 34.40 c |
Vermicompost | 3.95 a | 8.38 a | 0.75 ab | 8.39 a | 36.23 bc |
Chicken manure | 3.56 ab | 8.88 a | 1.08 a | 8.19 a | 39.40 a |
Farm manure | 3.80 a | 8.63 a | 1.12 a | 7.56 ab | 37.78 ab |
Chemical fertilizers | 3.35 ab | 7.25 a | 0.71 ab | 6.96 bc | 36.47 bc |
Applications | Fruit Color | Nitrate Accumulation in Fruit (mg kg−1) | Nitrite Accumulation in Fruit (mg kg−1) | ||
---|---|---|---|---|---|
L | a | b | |||
Control | 23.76 b | 33.84 | 38.88 | 13.51 c | 0.14 c |
Vermicompost | 30.31 a | 31.83 | 38.03 | 15.50 b | 0.16 abc |
Chicken manure | 26.12 ab | 31.54 | 37.75 | 16.02 b | 0.17 ab |
Farm manure | 28.09 ab | 33.73 | 38.24 | 16.37 ab | 0.16 bc |
Chemical fertilizers | 27.47 ab | 32.93 | 38.20 | 17.46 a | 0.18 a |
Applications | Macro Plant Nutrient Contents (mg kg−1) | |||
---|---|---|---|---|
N | P | K | Ca | |
Reference values * | 2.0–4.0 | 0.15–0.4 | 1.0–2.5 | 0.7–2.0 |
Control | 1.93 d | 0.27 c | 1.71 b | 1.00 c |
Vermicompost | 2.55 c | 0.34 abc | 2.22 a | 2.17 a |
Chicken manure | 3.67 a | 0.38 a | 2.44 a | 2.41 a |
Farm manure | 3.16 b | 0.36 ab | 2.43 a | 1.54 b |
Chemical fertilizers | 2.87 bc | 0.29 bc | 2.05 b | 1.49 bc |
Applications | Micro Plant Nutrient Contents (mg kg−1) | |||
---|---|---|---|---|
Fe | Zn | Mn | Cu | |
Reference values * | 60–250 ppm | 20–50 ppm | 50–650 ppm | 3–50 ppm |
Control | 134.50 c | 21.50 c | 60.50 c | 15.25 c |
Vermicompost | 172.25 ab | 46.25 a | 130.25 ab | 30.00 ab |
Chicken manure | 192.75 a | 35.00 b | 141.00 ab | 35.75 a |
Farm manure | 158.75 bc | 34.75 b | 99.50 bc | 31.50 a |
Chemical fertilizers | 144.50 bc | 28.73 bc | 149.00 a | 25.25 b |
Income–Cost Accounts (TRY *) | |||||
---|---|---|---|---|---|
Control | Vermi-Kompost | Chicken Manure | Farm Manure | Chemical Fertilizer | |
I Yield per Plant (g plant −1) | 272.22 | 408.04 | 383.00 | 367.5 | 309.46 |
II Total production (kg) = (Yield per plant × 6000 plant da−1)/1000 = 6000 plant da−1 × Product yield per plant | 1633.32 | 2448.24 | 2298.00 | 2205.00 | 1856.76 |
Total Income = II × 7 TRY (average price 7 ** TRY) | 11,433.24 | 17,137.68 | 16,086.00 | 15,435.00 | 12,997.32 |
I. Equipment and tractor rental cost (TRY da−1) | 400.00 | 400.00 | 400.00 | 400.00 | 400.00 |
II. Labor Costs (TRY da−1) | 2672.00 | 2672.00 | 2672.00 | 2672.00 | 2672.00 |
III. Material Costs (TRY da−1) | 4980.00 | 6170.00 | 5570.00 | 5670.00 | 5778.00 |
IV. Fixed Costs (TRY da−1) | 1000.00 | 1000.00 | 1000.00 | 1000.00 | 1000.00 |
Total Costs (TRY da−1) = I + II + III + IV | 9052.00 | 10,242.00 | 9642.00 | 9742.00 | 9850.00 |
Net Profit (TRY da−1) = Total Income − Total Costs | 2381.24 | 6895.68 | 6444.00 | 5693.00 | 3147.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayğı, H. Effects of Organic Fertilizer Application on Strawberry (Fragaria vesca L.) Cultivation. Agronomy 2022, 12, 1233. https://doi.org/10.3390/agronomy12051233
Sayğı H. Effects of Organic Fertilizer Application on Strawberry (Fragaria vesca L.) Cultivation. Agronomy. 2022; 12(5):1233. https://doi.org/10.3390/agronomy12051233
Chicago/Turabian StyleSayğı, Hülya. 2022. "Effects of Organic Fertilizer Application on Strawberry (Fragaria vesca L.) Cultivation" Agronomy 12, no. 5: 1233. https://doi.org/10.3390/agronomy12051233
APA StyleSayğı, H. (2022). Effects of Organic Fertilizer Application on Strawberry (Fragaria vesca L.) Cultivation. Agronomy, 12(5), 1233. https://doi.org/10.3390/agronomy12051233