Optimal Irrigation Scheduling for Greenhouse Tomato Crop (Solanum Lycopersicum L.) in Ecuador
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Crop Management
2.3. Experimental Design
2.4. Crop Water Requirement Determination
2.5. Irrigation System
2.6. Measurements
2.6.1. Greenhouse Weather Data
2.6.2. Soil Moisture Content
2.6.3. Agronomic Variables
2.6.4. Quality Parameters
2.6.5. Water Use Efficiency
2.6.6. Statistical Analysis
3. Results
3.1. Greenhouse Weather Data
3.2. Crop Water Requirements
3.3. Soil Moisture
3.4. Tomato Production and Quality
3.4.1. Plant Growth
3.4.2. Number of Fruits per Plant
3.4.3. Yield
3.5. Tomato Quality
3.6. Water Use Efficiency
4. Discussion
4.1. Soil Moisture on Tomato Growth and Yield
4.2. Water Doses and Irrigation Frequency on Crop Production, Crop Quality and WUE
5. Application to Local Farmers
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Agbemafle, R.; Owusu-Sekyere, J.; Bart-Plange, A.; Otchere, J. Effect of deficit irrigation and storage on Physicochemical quality of tomato (Lycopersicon esculentum Mill. var. Pechtomech). Food Sci. Qual. Manag. 2014, 34, 113–118. [Google Scholar]
- Liu, J.; Hu, T.; Feng, P.; Yao, D.; Gao, F.; Hong, X. Effect of potassium fertilization during fruit development on tomato quality, potassium uptake, water and potassium use efficiency under deficit irrigation regime. Agric. Water Manag. 2021, 250, 106831. [Google Scholar] [CrossRef]
- Xiukang, W.; Yingying, X. Evaluation of the effect of irrigation and fertilization by drip fertigation on tomato yield and water use efficiency in greenhouse. Int. J. Agron. 2016, 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- FAOSTAT. Food and Agriculture Data. Available online: http://www.fao.org/faostat/es/ (accessed on 18 April 2022).
- INEC (Instituto Nacional de Estadística y Censos). Available online: https://www.ecuadorencifras.gob.ec/estadisticas-agropecuarias-2/ (accessed on 18 April 2022). (In Spanish).
- Hernández, M.; Ponce, M.; Álvarez, S.; Armas, M. Depth, Weight, and Volume of Tomato Roots (Solanum lycopersicon) cv. Piedro in Greenhouse Conditions. Agrisost 2018, 24, 110–114. [Google Scholar]
- Melgarejo, T.A.; Kon, T.; Rojas, M.R.; Paz-Carrasco, L.; Zerbini, F.M.; Gilbertson, R.L. Characterization of a New World Monopartite Begomovirus Causing Leaf Curl Disease of Tomato in Ecuador and Peru Reveals a New Direction in Geminivirus Evolution. J. Virol. 2013, 87, 5397–5413. [Google Scholar] [CrossRef] [Green Version]
- Paz-Carrasco, L.C.; Castillo-Urquiza, G.P.; Lima, A.T.M.; Xavier, C.A.D.; Vivas-Vivas, L.M.; Mizubuti, E.; Zerbini, F.M. Begomovirus diversity in tomato crops and weeds in Ecuador and the detection of a recombinant isolate of rhynchosia golden mosaic Yucatan virus infecting tomato. Arch. Virol. 2014, 159, 2127–2132. [Google Scholar] [CrossRef]
- Kutinkova, H.; Caicedo, F.; Lingren, B. The main pests on solanacea crops in Zona 1 of Ecuador. New Knowl. J. Sci. 2016, 5, 72–78. [Google Scholar]
- Satama, M. Assesment of Farmers’ Perceptions of the Sustainable Agricultural Practices in the “Biocorridors for Living Well” Program in Ecuador: Pisque Mojanda San Pablo and Cayambe Coca. Ph.D. Thesis, Universidad Politécnica de Madrid, Madrid, Spain, 2021. [Google Scholar]
- Cuartero, J.; Fernández-Muñoz, R. Tomato and salinity. Sci. Hortic. 1998, 78, 83–125. [Google Scholar] [CrossRef]
- Giuliani, M.M.; Nardella, E.; Gatta, G.; De Caro, A.; Quitadamo, M. Processing tomato cultivated under water deficit conditions: The effect of azoxystrobin. Acta Hortic. 2011, 914, 287–294. [Google Scholar] [CrossRef]
- Wang, C.; Gu, F.; Chen, J.; Yang, H.; Jiang, J.; Du, T.; Zhang, J. Assessing the response of yield and comprehensive fruit quality of tomato grown in greenhouse to deficit irrigation and nitrogen application strategies. Agric. Water Manag. 2015, 161, 9–19. [Google Scholar] [CrossRef]
- DU, Y.-D.; Cao, H.-X.; Liu, S.-Q.; Gu, X.; Cao, Y.-X. Response of yield, quality, water and nitrogen use efficiency of tomato to different levels of water and nitrogen under drip irrigation in Northwestern China. J. Integr. Agric. 2017, 16, 1153–1161. [Google Scholar] [CrossRef] [Green Version]
- Merah, O. Potential importance of water status traits for durum wheat improvement under Mediterranean conditions. J. Agric. Sci. 2001, 137, 139–145. [Google Scholar] [CrossRef]
- Solomon, A.M.; Cramer, W. Biospheric Implications of Global Environmental Change; Springer Science and Business Media LLC.: Berlin/Heidelberg, Germany, 1993; pp. 25–52. [Google Scholar]
- Buttaro, D.; Santamaria, P.; Signore, A.; Cantore, V.; Boari, F.; Montesano, F.F.; Parente, A. Irrigation Management of Greenhouse Tomato and Cucumber Using Tensiometer: Effects on Yield, Quality and Water Use. Agric. Agric. Sci. Procedia 2015, 4, 440–444. [Google Scholar] [CrossRef] [Green Version]
- WWAP (United Nations World Water Assessment Programme)/UN-Water. The United Nations World Water Development Report 2018: Nature-Based Solutions for Water; UNESCO: Paris, France, 2018; pp. 1–134. [Google Scholar]
- Galárraga-Sanchez, R. Informe Nacional Sobre La Gestión del Agua En El Ecuador; Global Water Partnership: Stockholm, Sweden, 2000; pp. 1–120. (In Spanish) [Google Scholar]
- SENAGUA (Secretaría del Agua). Plan Nacional de Riego y Drenaje 2019–2027; SENAGUA: Quito, Ecuador, 2019; pp. 1–160. Available online: http://prefecturadeesmeraldas.gob.ec/docs/8_plan_nacional_de_riego_y_drenaje.pdf (accessed on 17 September 2021). (In Spanish)
- Wu, Y.; Yan, S.; Fan, J.; Zhang, F.; Xiang, Y.; Zheng, J.; Guo, J. Responses of growth, fruit yield, quality and water productivity of greenhouse tomato to deficit drip irrigation. Sci. Hortic. 2021, 275, 109710. [Google Scholar] [CrossRef]
- Ullah, I.; Mao, H.; Rasool, G.; Gao, H.; Javed, Q.; Sarwar, A.; Khan, M.I. Effect of Deficit Irrigation and Reduced N Fertilization on Plant Growth, Root Morphology, and Water Use Efficiency of Tomato Grown in Soilless Culture. Agronomy 2021, 11, 228. [Google Scholar] [CrossRef]
- Li, Y.; Sun, Y.; Liao, S.; Zou, G.; Zhao, T.; Chen, Y.; Yang, J.; Zhang, L. Effects of two slow-release nitrogen fertilizers and irrigation on yield, quality, and water-fertilizer productivity of greenhouse tomato. Agric. Water Manag. 2017, 186, 139–146. [Google Scholar] [CrossRef]
- Kuscu, H.; Turhan, A.; Ozmen, N.; Aydinol, P.; Demir, A.O. Optimizing levels of water and nitrogen applied through drip irrigation for yield, quality, and water productivity of processing tomato (Lycopersicon esculentum Mill.). Hortic. Environ. Biotechnol. 2014, 55, 103–114. [Google Scholar] [CrossRef]
- Norse, D.; Ju, X. Environmental costs of China’s food security. Agric. Ecosyst. Environ. 2015, 209, 5–14. [Google Scholar] [CrossRef]
- Liu, H.; Duan, A.-W.; Li, F.-S.; Sun, J.-S.; Wang, Y.-C.; Sun, C.-T. Drip Irrigation Scheduling for Tomato Grown in Solar Greenhouse Based on Pan Evaporation in North China Plain. J. Integr. Agric. 2013, 12, 520–531. [Google Scholar] [CrossRef]
- Patanè, C.; Tringali, S.; Sortino, O. Effects of deficit irrigation on biomass, yield, water productivity and fruit quality of processing tomato under semi-arid Mediterranean climate conditions. Sci. Hortic. 2011, 129, 590–596. [Google Scholar] [CrossRef]
- Kang, S.; Zhang, J. Controlled alternate partial root-zone irrigation: Its physiological consequences and impact on water use efficiency. J. Exp. Bot. 2004, 55, 2437–2446. [Google Scholar] [CrossRef] [PubMed]
- Agbna, G.H.; Dongli, S.; Zhipeng, L.; Elshaikh, N.A.; Guangcheng, S.; Timm, L.C. Effects of deficit irrigation and biochar addition on the growth, yield, and quality of tomato. Sci. Hortic. 2017, 222, 90–101. [Google Scholar] [CrossRef]
- Puértolas, J.; Albacete, A.; Dodd, I.C. Irrigation frequency transiently alters whole plant gas exchange, water and hormone status, but irrigation volume determines cumulative growth in two herbaceous crops. Environ. Exp. Bot. 2020, 176, 104101. [Google Scholar] [CrossRef]
- Irmak, S.; Djaman, K.; Rudnick, D.R. Effect of full and limited irrigation amount and frequency on subsurface drip-irrigated maize evapotranspiration, yield, water use efficiency and yield response factors. Irrig. Sci. 2016, 34, 271–286. [Google Scholar] [CrossRef]
- Wang, F.-X.; Kang, Y.; Liu, S.-P. Effects of drip irrigation frequency on soil wetting pattern and potato growth in North China Plain. Agric. Water Manag. 2006, 79, 248–264. [Google Scholar] [CrossRef]
- Wan, S.; Kang, Y. Effect of drip irrigation frequency on radish (Raphanus sativus L.) growth and water use. Irrig. Sci. 2006, 24, 161–174. [Google Scholar] [CrossRef]
- Oke, A.M.; Osilaechuu, A.P.; Aremu, T.E.; Ojediran, J.O. Effect of drip irrigation regime on plant height and stem girth of tomato (Lycopersicon esculentum Mill). In IOP Conference Series: Earth and Environmental Science, Proceedings of the Southeast Asia Plant Protection Conference, Bogor, Indonesia, 14 August 2019; IOP Publishing: Bristol, UK, 2020; Volume 445. [Google Scholar] [CrossRef]
- Freeman, B.; Blackwell, J.; Garzoli, K. Irrigation frequency and total water application with trickle and furrow systems. Agric. Water Manag. 1976, 1, 21–31. [Google Scholar] [CrossRef]
- Neto, M.D.O.R.; De Azevedo, B.M.; De Araújo, T.V.V.; De Vasconcelos, D.V.; Fernandes, C.N.V. Irrigation frequency on economic performance and productivity of tomato in the coast of Ceará, Brazil. Rev. Caatinga 2017, 30, 971–979. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Li, H.H.; Ning, H.F.; Zhang, X.X.; Li, S.; Pang, J.; Wang, G.S.; Sun, J.S. Optimizing irrigation frequency and amount to balance yield, fruit quality and water use efficiency of greenhouse tomato. Agric. Water Manag. 2019, 226, 105787. [Google Scholar] [CrossRef]
- Meshkat, M.; Warner, R.C.; Workman, S.R. Evaporation reduction potential in an undisturbed soil irrigated with surface drip and sand tube irrigation. Trans. ASAE 2000, 43, 79–86. [Google Scholar] [CrossRef]
- Cavero, J.; Medina, E.T.; Montoya, F. Sprinkler Irrigation Frequency Affects Maize Yield Depending on Irrigation Time. Agron. J. 2018, 110, 1862–1873. [Google Scholar] [CrossRef] [Green Version]
- Fara, S.J.; Delazari, F.T.; Gomes, R.S.; Araújo, W.L.; da Silva, D.J.H. Stomata opening and productiveness response of fresh market tomato under different irrigation intervals. Sci. Hortic. 2019, 255, 86–95. [Google Scholar] [CrossRef]
- Padilla, W. Guía de Recomendaciones de Fertilización Para Los Principales Cultivos del Ecuador; Instituto Nacional de Investi-Gaciones Agropecuarias: Quito, Ecuador, 1979; pp. 1–36. (In Spanish) [Google Scholar]
- Allende, M.; Salinas, L.; Rodríguez, F.; Olivares, N.; Riquelme, J.; Antúnez, A. Manual de Cultivo del Tomate Bajo Invernadero; INIA: Santiago, Chile, 2017; pp. 1–114. (In Spanish) [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration: Guidelines for computing crop water requirements. FAO Irrig. Drain. Pap. 1998, 56, 300. [Google Scholar]
- Llumiluisa, D. Determinación del Coeficiente del Cultivo (Kc) Para Tomate (Lycopersicon esculentum L.), Bajo Invernadero en la Granja Santa Inés. Engineering Thesis, Universidad Técnica de Machala, Machala, Ecuador, 2017. (In Spanish). [Google Scholar]
- Sivisaca, J. Efecto de Tres Frecuencias de Riego por Goteo en la Producción del Cultivo de Fréjol (Phaseolus vulgaris L.), Según la Evaporación del Tanque Evaporímetro Clase A. Master’s Thesis, Universidad Nacional de Loja, Loja, Ecuador, 2013. (In Spanish). [Google Scholar]
- Blanco, F.F.; Folegatti, M.V. Evapotranspiration and crop coefficient of cucumber in greenhouse. Rev. Bras. De Eng. Agrícola E Ambient. 2003, 7, 285–291. [Google Scholar] [CrossRef] [Green Version]
- Keller, J.; Karmeli, D. Trickle Irrigation Design Parameters. Trans. ASAE 1974, 17, 0678–0684. [Google Scholar] [CrossRef]
- Rivera, J. Parámetros Fisicoquímicos Para la Obtención de Modelos de Predicción en la Calidad Poscosecha del Tomate (Solanum lycopersicum L.). Master’s Thesis, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Mexico, 2011. (In Spanish). [Google Scholar]
- Lovelli, S.; Perniola, M.; Ferrara, A.; Di Tommaso, T. Yield response factor to water (Ky) and water use efficiency of Carthamus tinctorius L. and Solanum melongena L. Agric. Water Manag. 2007, 92, 73–80. [Google Scholar] [CrossRef]
- Di Rienzo, J.A.; Casanoves, F.; Balzarini, M.G.; Gonzales, L.; Tablada, M.; Robledo, C.W. InfoStat Student Version 2018; Grupo InfoStat, FCA, Universidad Nacional de Córdov: Córdoba, Argentina, 2018. [Google Scholar]
- Calciu, I.; Simota, C.; Vizitiu, O.; Panoiu, I. Modelling of soil water retention properties for soil physical quality assessment. Res. J. Agric. Sci. 2011, 43, 35–43. [Google Scholar]
- Li, Q.; Wei, M.; Li, Y.; Feng, G.; Wang, Y.; Li, S.; Zhang, D. Effects of soil moisture on water transport, photosynthetic carbon gain and water use efficiency in tomato are influenced by evaporative demand. Agric. Water Manag. 2019, 226, 105818. [Google Scholar] [CrossRef]
- Chand, J.; Hewa, G.; Hassanli, A.; Myers, B. Evaluation of Deficit Irrigation and Water Quality on Production and Water Productivity of Tomato in Greenhouse. Agriculture 2020, 10, 297. [Google Scholar] [CrossRef]
- Shabbir, A.; Mao, H.; Ullah, I.; Buttar, N.A.; Ajmal, M.; Lakhiar, I.A. Effects of Drip Irrigation Emitter Density with Various Irrigation Levels on Physiological Parameters, Root, Yield, and Quality of Cherry Tomato. Agronomy 2020, 10, 1685. [Google Scholar] [CrossRef]
- Biel, C.; Camprubí, A.; Lovato, P.E.; Calvet, C. On-farm reduced irrigation and fertilizer doses, and arbuscular mycorrhizal fungal inoculation improve water productivity in tomato production. Sci. Hortic. 2021, 288, 110337. [Google Scholar] [CrossRef]
- Zegbe, J.A.; Behboudian, M.H.; Clothier, B.E. Responses of ‘Petopride’ processing tomato to partial rootzone drying at different phenological stages. Irrig. Sci. 2006, 24, 203–210. [Google Scholar] [CrossRef]
- Giuliani, M.M.; Nardella, E.; Gagliardi, A.; Gatta, G. Deficit Irrigation and Partial Root-Zone Drying Techniques in Processing Tomato Cultivated under Mediterranean Climate Conditions. Sustainability 2017, 9, 2197. [Google Scholar] [CrossRef] [Green Version]
- Sezen, S.M.; Yazar, A.; Tekin, S.; Kapur, B. Effect of irrigation management on yield and quality of tomatoes grown in different soilless media in a glasshouse. Sci. Res. Essays 2010, 5, 41–48. [Google Scholar]
- Machado, R.M.A.; Oliveira, M.D.R.G. Tomato root distribution, yield and fruit quality under different subsurface drip irrigation regimes and depths. Irrig. Sci. 2005, 24, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Abdel-Razzak, H.; Wahb-Allah, M.; Ibrahim, A.; Alenazi, M.; Alsadon, A. Response of cherry tomato to irrigation levels and fruit pruning under greenhouse conditions. J. Agric. Sci. Technol. 2016, 18, 1091–1103. [Google Scholar]
- Lahoz, I.; Pérez-De-Castro, A.; Valcárcel, M.; Macua, J.I.; Beltrán, J.; Roselló, S.; Cebolla-Cornejo, J. Effect of water deficit on the agronomical performance and quality of processing tomato. Sci. Hortic. 2016, 200, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.; Xiong, Y.; Huang, G.; Xu, X.; Huang, Q. Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District. Agric. Water Manag. 2017, 179, 205–214. [Google Scholar] [CrossRef]
- Mitchell, J.; Shennan, C.; Grattan, S.; May, D. Tomato Fruit Yields and Quality under Water Deficit and Salinity. J. Am. Soc. Hortic. Sci. 1991, 116, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Guichard, S.; Bertin, N.; Leonardi, C.; Gary, C. Tomato fruit quality in relation to water and carbon fluxes. Agronomie 2001, 21, 385–392. [Google Scholar] [CrossRef]
- Chen, J.; Kang, S.; Du, T.; Guo, P.; Qiu, R.; Chen, R.; Gu, F. Modeling relations of tomato yield and fruit quality with water deficit at different growth stages under greenhouse condition. Agric. Water Manag. 2014, 146, 131–148. [Google Scholar] [CrossRef]
- Hossain, F. Effect of Organic Fertilizer and Irrigation Intervals on the Yield and Quality of Cherry Tomato (Solanum lycopersicon var. cerasiforme). Int. J. Hortic. Sci. Technol. 2020, 7, 327–334. [Google Scholar] [CrossRef]
- Wang, X.; Xing, Y. Evaluation of the effects of irrigation and fertilization on tomato fruit yield and quality: A principal component analysis. Sci. Rep. 2017, 7, 350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- da Silva, C.J.; Frizzone, J.A.; da Silva, C.A.; Golynski, A.; da Silva, L.F.M.; Megguer, C.A. Tomato yield as a function of water depths and irrigation suspension periods. Rev. Bras. De Eng. Agrícola E Ambient. 2019, 23, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Mendonça, T.G.; Da Silva, M.B.; Pires, R.C.D.M.; Souza, C.F. Deficit irrigation of subsurface drip-irrigated grape tomato. Eng. Agrícola 2020, 40, 453–461. [Google Scholar] [CrossRef]
- Abdelhakim, A.I.; Elmeadawy, M.I.; El-Sybaee, I.M.; Egela, M.I. Effect Use of Pulsed Deficit Drip Irrigation for Tomato Crop in Greenhouse powered by solar energy. Misr J. Agric. Eng. 2020, 38, 1–14. [Google Scholar] [CrossRef]
- Abdelhady, S.A.; El-Azm, N.A.; El-Kafafi, E.S.H. Effect of deficit irrigation levels and NPK fertilization rates on tomato growth, yield and fruits quality. Middle East J. Agric. Res. 2017, 6, 587–604. [Google Scholar]
- Sistema de Información Agropecuaria del Ecuador. Available online: http://sinagap.mag.gob.ec/sina/PaginasCGSIN/Rep_Pre_Prod_X_MercCGSIN.aspx (accessed on 18 April 2022). (In Spanish).
Phenological Stages | Kc First Experiment | Kc Second Experiment | Phase Duration (Days) |
---|---|---|---|
Initial | 0.55 | 0.55 | 35 |
Development | 1.05 | 1.05 | 45 |
Production | 1.15 | 1.15 | 70 |
Final | 0.90 | 0.75 | 30 |
Model | Nominal Flow Rate (L/h) at 0.1 MPa | Q = KHx (H in MPa) | Manufacturer Coefficient of Variation (%) | |
---|---|---|---|---|
K | x | |||
DP Line 35MIL | 2.10 | 21.196 | 0.4754 | 2.52 |
Factor | Plant Height | Stem Diameter | Fruits per Plant | Total Yield | Marketable Yield | Total WUE | Marketable WUE |
---|---|---|---|---|---|---|---|
(cm) | (mm) | (-) | (kg Plant−1) | (kg Plant−1) | (kg m−3) | (kg m−3) | |
Irrigation frequency | |||||||
F1 | 176.04 a | 11.66 a | 47.63 a | 11.01 a | 10.08 a | 49.83 a | 45.50 a |
F2 | 175.33 a | 12.63 a | 47.50 a | 11.91 a | 11.08 a | 54.39 a | 50.48 a |
Water doses | |||||||
L1 | 172.45 c | 10.41 c | 46.38 a | 9.62 d | 8.69 d | 58.32 a | 52.68 a |
L2 | 174.06 bc | 11.62 b | 47.63 a | 11.00 c | 10.12 c | 54.26 ab | 49.92 ab |
L3 | 176.33 ab | 13.18 a | 47.50 a | 11.95 b | 11.15 b | 49.89 bc | 46.56 bc |
L4 | 179.90 a | 13.35 a | 48.75 a | 13.27 a | 12.36 a | 45.97 c | 42.81 c |
ANOVA | |||||||
F | ns | ns | ns | ns | ns | ns | ns |
L | ** | *** | ns | *** | *** | *** | * |
F × L | ns | ns | ns | ns | ns | ns | ns |
Factor | Plant Height (60 DAT) | Plant Height (90 DAT) | Stem Diameter | Fruits per Plant | Total Yield | Marketable Yield | Total WUE | Marketable WUE |
---|---|---|---|---|---|---|---|---|
(cm) | (cm) | (mm) | (-) | (kg Plant−1) | (kg Plant−1) | (kg m−3) | (kg m−3) | |
Water doses | ||||||||
L1 | 118.19 a | 180.40 a | 9.93 b | 85.44 a | 6.99 b | 5.36 b | 34.59 a | 26.51 a |
L2 | 118.82 a | 182.29 a | 11.44 a | 87.31 a | 8.25 a | 6.68 a | 34.46 a | 27.92 a |
Irrigation frequency | ||||||||
F1 | 117.83 a | 184.55 a | 11.56 a | 87.00 a | 8.32 a | 6.77 a | 37.69 a | 30.55 a |
F2 | 119.00 a | 183.05 a | 11.16 ab | 85.75 a | 7.68 ab | 6.13 ab | 34.73 ab | 27.71 ab |
F3 | 117.95 a | 178.74 a | 10.37 bc | 87.25 a | 7.08 b | 5.34 b | 32.22 b | 24.26 b |
F4 | 119.23 a | 179.04 a | 9.63 c | 85.50 a | 7.39 b | 5.84 ab | 33.45 b | 26.34 ab |
ANOVA | ||||||||
L | ns | ns | *** | ns | *** | *** | ns | ns |
F | ns | ns | ** | ns | * | * | * | * |
L × F | ns | ns | ns | ns | ns | ns | ns | ns |
Factors | pH | Total Soluble Solids | Titratable Acidity |
---|---|---|---|
(-) | (° Brix) | (%) | |
Irrigation frequency | |||
F1 | 4.33 a | 4.09 a | 0.27 a |
F2 | 4.33 a | 3.93 a | 0.25 a |
Water doses | |||
L1 | 4.33 a | 4.32 a | 0.27 ab |
L2 | 4.33 a | 4.11 b | 0.28 a |
L3 | 4.35 a | 3.88 c | 0.25 b |
L4 | 4.30 a | 3.71 d | 0.23 c |
ANOVA | |||
N | ns | ns | ns |
L | ns | *** | *** |
F × L | ns | ns | ns |
Factor | pH | Total Soluble Solids | Titratable Acidity |
---|---|---|---|
(-) | (° Brix) | (%) | |
Water doses | |||
L1 | 4.20 a | 5.36 a | 0.28 a |
L2 | 4.22 a | 5.12 b | 0.26 b |
Irrigation frequency | |||
F1 | 4.25 a | 5.22 a | 0.28 a |
F2 | 4.22 a | 5.24 a | 0.28 a |
F3 | 4.19 a | 5.30 a | 0.28 a |
F4 | 4.20 a | 5.20 a | 0.26 a |
ANOVA | |||
L | ns | * | * |
F | ns | ns | ns |
L × F | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Colimba-Limaico, J.E.; Zubelzu-Minguez, S.; Rodríguez-Sinobas, L. Optimal Irrigation Scheduling for Greenhouse Tomato Crop (Solanum Lycopersicum L.) in Ecuador. Agronomy 2022, 12, 1020. https://doi.org/10.3390/agronomy12051020
Colimba-Limaico JE, Zubelzu-Minguez S, Rodríguez-Sinobas L. Optimal Irrigation Scheduling for Greenhouse Tomato Crop (Solanum Lycopersicum L.) in Ecuador. Agronomy. 2022; 12(5):1020. https://doi.org/10.3390/agronomy12051020
Chicago/Turabian StyleColimba-Limaico, Javier Ezcequiel, Sergio Zubelzu-Minguez, and Leonor Rodríguez-Sinobas. 2022. "Optimal Irrigation Scheduling for Greenhouse Tomato Crop (Solanum Lycopersicum L.) in Ecuador" Agronomy 12, no. 5: 1020. https://doi.org/10.3390/agronomy12051020
APA StyleColimba-Limaico, J. E., Zubelzu-Minguez, S., & Rodríguez-Sinobas, L. (2022). Optimal Irrigation Scheduling for Greenhouse Tomato Crop (Solanum Lycopersicum L.) in Ecuador. Agronomy, 12(5), 1020. https://doi.org/10.3390/agronomy12051020