Effects of Biostimulants in Horticulture, with Emphasis on Ornamental Plant Production
Abstract
:1. Introduction
2. Groups of Biostimulants
2.1. Industrial By-Products: Protein Hydrolysates and Chitosans
2.2. Humic and Fulvic Acids
2.3. Algae Extracts
2.4. PGPR and PGPB
2.5. Fungal Inoculants
3. Abiotic and Biotic Stress and the Response of Ornamental Plants to Biostimulant Treatment
4. (Effects and) Application of Biostimulants in Ornamental Horticulture
4.1. The Role of Biostimulants in Ornamental Plant Production
4.2. The Role of Biostimulants in the Propagation of Ornamental Plants
4.3. Effect of Biostimulants on Plant Growth and Development
4.4. Post-Harvest Treatment of Ornamental Plants with the Use of Biostimulants
5. Conclusions and New Possibilities in the Use of Biostimulants
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Schmidt, R.E. Questions and Answers about Biostimulants; Hi Tech Ag Solutions: Davenport, WA, USA, 2003; p. 4. [Google Scholar]
- Zhang, X.; Schmidt, R.E. The impact of growth regulators on alpha-tocopherol status of water-stressed Poa pratensis L. Int. Turfgrass Soc. Res. J. 1997, 8, 1364–1373. [Google Scholar] [CrossRef]
- Calvo, P.; Nelson, L.; Kloepper, J.W. Agricultural uses of plant biostimulants. Plant Soil 2014, 383, 3–41. [Google Scholar] [CrossRef] [Green Version]
- Du Jardin, P. Plant biostimulants: Definition, concept, main categories and regulation. Sci. Hortic. 2015, 196, 3–14. [Google Scholar] [CrossRef] [Green Version]
- Biostimulant Coalition. What Are Biostimulants? 2013. Available online: http://www.biostimulantcoalition.org/about/ (accessed on 9 February 2022).
- European Commission. Proposal for a Regulation Laying Down Rules on the Making Available on the Market of CE Marked Fertilizing Products and Amending Regulations (EC)1069/2009 and (EC)1107/2009.COM 2016; European Commission: Brussels, Belgium, 2016; p. 157. [Google Scholar]
- Council of the European Union. Proposal for a Regulation of the European Parliament and of the Council Laying Down Rules on the Making Available on the Market of CE Marked Fertilizing Products and Amending Regulations (EC) No 1069/2009 and (EC) No 1107/2009-Analysis of the Final Compromise Text with a View to Agreement. 2018. Available online: http://data.consilium.europa.eu/doc/document/ST-15103-2018-INIT/en/pdf (accessed on 20 December 2018).
- Rouphael, Y.; Colla, G. Biostimulants in agriculture. Front. Plant Sci. 2020, 11, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zulfiqar, F.; Younis, A.; Finnegan, P.M.; Ferrante, A. Comparison of Soaking Corms with Moringa Leaf Extract Alone or in Combination with Synthetic Plant Growth Regulators on the Growth, Physiology and Vase Life of Sword Lily. Plants 2020, 9, 1590. [Google Scholar] [CrossRef]
- Van Oosten, M.J.; Pepe, O.; De Pascale, S.; Silletti, S.; Maggio, A. The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem. Biol. Technol. 2017, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Toscano, S.; Romano, D.; Massa, D.; Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulant applications in low input horticultural cultivation systems. Italus Hortus 2018, 25, 27–36. [Google Scholar] [CrossRef]
- Halpern, M.; Bar-Tal, A.; Ofek, M.; Minz, D.; Muller, T.; Yermiyahu, U. Chapter Two—The Use of Biostimulants for Enhancing Nutrient Uptake. In Advances in Agronomy; Sparks, D.L., Ed.; Academic Press: New York, NY, USA, 2015; pp. 141–174. [Google Scholar] [CrossRef]
- Drobek, M.; Frąc, M.; Cybulska, J. Plant Biostimulants: Importance of the Quality and Yield of Horticultural Crops and the Improvement of Plant Tolerance to Abiotic Stress—A Review. Agronomy 2019, 9, 335. [Google Scholar] [CrossRef] [Green Version]
- Kocira, A.; Świeca, M.; Kocira, S.; Złotek, U.; Jakubczyk, A. Enhancement of yield, nutritional and nutraceutical properties of two common bean cultivars following the application of seaweed extract (Ecklonia maxima). Saudi J. Biol. Sci. 2018, 25, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Abbott, L.K.; Macdonald, L.M.; Wong, M.T.F.; Webb, M.J.; Jenkins, S.N.; Farrell, M. Potential roles of biological amendments for profitable grain production—A review. Agric. Ecosyst. Environ. 2018, 256, 34–50. [Google Scholar] [CrossRef]
- Yakhin, O.I.; Lubyanov, A.A.; Yakhin, I.A.; Brown, P.H. Biostimulants in Plant Science: A Global Perspective. Front. Plant Sci. 2017, 7, 2049. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caradonia, F.; Battaglia, V.; Righi, L.; Pascali, G.; La Torre, A. Plant Biostimulant Regulatory Framework: Prospects in Europe and Current Situation at International Level. J. Plant Growth Regul. 2019, 38, 438–448. [Google Scholar] [CrossRef]
- Ertani, A.; Sambo, P.; Nicoletto, C.; Santagata, S.; Schiavon, M.; Nardi, S. The Use of Organic Biostimulants in Hot Pepper Plants to Help Low Input Sustainable Agriculture. Chem. Biol. Technol. Agric. 2015, 2, 11. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.K.; Subler, S.; Edwards, C.A. Effects of Agricultural Biostimulants on Soil Microbial Activity and Nitrogen Dynamics. Agric. Ecosyst. Environ. Appl. Soil Ecol. 2002, 19, 249–259. [Google Scholar] [CrossRef]
- Lau, S.E.; Teo, W.F.A.; Teoh, E.Y.; Tan, B.C. Microbiome Engineering and Plant Biostimulants for Sustainable Crop Improvement and Mitigation of Biotic and Abiotic Stresses. Discover Food 2022, 2, 9. [Google Scholar] [CrossRef]
- Dmytryk, A.; Chojnacka, K. Algae as fertilizers, biostimulants, and regulators of plant growth. In Algae Biomass: Characteristics and Applications; Springer: Cham, Switzerland, 2018; pp. 115–122. [Google Scholar]
- Wiszniewska, A.; Nowak, B.; Kołton, A.; Sitek, E.; Grabski, K.; Dziurka, M.; Długosz-Grochowska, O.; Dziurka, K.; Tukaj, Z. Rooting Response of Prunus domestica L. Microshoots in the Presence of Phytoactive Medium Supplements. Plant Cell Tissue Organ Cult. 2016, 125, 163–176. [Google Scholar] [CrossRef] [Green Version]
- da Silva, J.A.T.; Pacholczak, A.; Ilczuk, A. Smoke Tree (Cotinus coggygria Scop.) Propagation and Biotechnology: A Mini-review. S. Afr. J. Bot. 2018, 114, 232–240. [Google Scholar] [CrossRef]
- de Saeger, J.; Van Praet, S.; Vereecke, D.; Park, J.; Jacques, S.; Han, T.; Depuydt, S. Toward the Molecular Understanding of the Action Mechanism of Ascophyllum nodosum Extracts on Plants. J. Appl. Phycol. 2020, 32, 573–597. [Google Scholar] [CrossRef] [Green Version]
- EUR-Lex. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=OJ:L:2019:170:TOC (accessed on 21 January 2021).
- Al-Juthery, H.W.A.; Abbas Drebee, H.; Al-Khafaji, B.M.K.; Hadi, R.F. Plant Biostimulants, Seaweeds Extract as a Model (Article Review). IOP Conf. Ser. Earth Environ. Sci. 2020, 553, 012015. [Google Scholar] [CrossRef]
- Sible, C.N.; Seebauer, J.R.; Below, F.E. Plant Biostimulants: A Categorical Review, Their Implications for Row Crop Production, and Relation to Soil Health Indicators. Agronomy 2021, 11, 1297. [Google Scholar] [CrossRef]
- Parađiković, N.; Teklić, T.; Zeljković, S.; Lisjak, M.; Špoljarević, M. Biostimulants research in some horticultural plant species—A review. Food Energy Secur. 2019, 8, e00162. [Google Scholar] [CrossRef]
- Colla, G.; Rouphael, Y. Biostimulants in Horticulture. Sci. Hortic. 2015, 196, 1–134. [Google Scholar] [CrossRef]
- Bulgari, R.; Franzoni, G.; Ferrante, A. Biostimulants application in horticultural crops under abiotic stress conditions. Agronomy 2019, 9, 306. [Google Scholar] [CrossRef] [Green Version]
- Bhupenchandra, I.; Devi, S.H.; Basumatary, A.; Dutta, S.; Singh, L.K.; Kalita, P.; Bora, S.S.; Devi, S.R.; Saikia, A.; Sharma, P.; et al. Biostimulants: Potential and Prospects in Agriculture. Int. Res. J. Pure Appl. Chem. 2020, 21, 20–35. [Google Scholar] [CrossRef]
- Nephali, L.; Piater, L.A.; Dubery, I.A.; Patterson, V.; Huyser, J.; Burgess, K.; Tugizimana, F. Biostimulants for Plant Growth and Mitigation of Abiotic Stresses: A Metabolomics Perspective. Metabolites 2020, 10, 505. [Google Scholar] [CrossRef]
- Xu, L.; Geelen, D. Developing Biostimulants From Agro-Food and Industrial By-Products. Front Plant Sci. 2018, 9, 1567. [Google Scholar] [CrossRef] [Green Version]
- El Boukhari, M.E.M.; Barakate, M.; Bouhia, Y.; Lyamlouli, K. Trends in Seaweed Extract Based Biostimulants: Manufacturing Process and Beneficial Effect on Soil-Plant Systems. Plants 2020, 9, 359. [Google Scholar] [CrossRef] [Green Version]
- Critchley, A.T.; Critchley, J.S.C.; Norrie, J.; Gupta, S.; Van Staden, J. Chapter 13—Perspectives on the global biostimulant market: Applications, volumes, and values, 2016 data and projections to 2022. In Biostimulants for Crops from Seed Germination to Plant Development; Gupta, S., Van Staden, J., Eds.; Academic Press: New York, NY, USA, 2021; pp. 289–296. [Google Scholar] [CrossRef]
- Marketsandmarkets.com. Biostimulants Market by Active Ingredient (Humic Substances, Seaweed, Microbials, Trace Minerals, Vitamins & Amino Acids), Crop Type (Row Crops, Fruits & Vegetables, Turf & Ornamentals), Formulation, Application Method, and Region—Global Forecast to 2022; MarketsandMarkets Inc.: Pune, India, 2017. [Google Scholar]
- Karagöz, F.P.; Dursun, A.; Tekiner, N.; Kul, R.; Kotan, R. Efficacy of Vermicompost and/or Plant Growth Promoting Bacteria on the Plant Growth and Development in Gladiolus. J. Ornam. Hortic. 2019, 25, 180–188. [Google Scholar] [CrossRef]
- Allardice, R.P.; Kapp, C.; Botha, A.; és Valentine, A. A vermikomposzt koncentrációjának optimalizálása a hüvelyes lupinus angustifolius nitrogén táplálására és termelésére. Compos. Sci. Util. 2015, 23, 217–236. [Google Scholar] [CrossRef]
- Ngoroyemoto, N.; Gupta, S.; Kulkarni, M.G.; Finnie, J.F.; Van Staden, J. Effect of organic biostimulants on the growth and biochemical composition of Amaranthus hybridus L. S. Afr. J. Bot. 2019, 124, 87–93. [Google Scholar] [CrossRef]
- Moyo, M.; Aremu, A.O.; Amoo, S.O. Potential of seaweed extracts and humate-containing biostimulants in mitigating abiotic stress in plants. In Biostimulants for Crops from Seed Germination to Plant Development; Gupta, S., Van Staden, J., Eds.; Academic Press: New York, NY, USA, 2021; Chapter 14; pp. 297–332. [Google Scholar] [CrossRef]
- Petropoulos, S.A. Practical applications of plant biostimulants in greenhouse vegetable crop production. Agronomy 2020, 10, 1569. [Google Scholar] [CrossRef]
- Colla, G.; Hoagland, L.; Ruzzi, M.; Cardarelli, M.; Bonini, P.; Canaguier, R.; Rouphael, Y. Biostimulant Action of Protein Hydrolysates: Unraveling Their Effects on Plant Physiology and Microbiome. Front. Plant Sci. 2017, 8, 2202. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Xing, R.; Liu, S.; Li, P. Chitin and Chitosan Fragments Responsible for Plant Elicitor and Growth Stimulator. J. Agric. Food Chem. 2020, 68, 12203–12211. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Boonyaritthongchai, P.; Buanong, M.; Supapvanich, S.; Wongs-Aree, C. Chitosan- and κ-carrageenan-based composite coating on dragon fruit (Hylocereus undatus) pretreated with plant growth regulators maintains bract chlorophyll and fruit edibility. Sci. Hortic. 2021, 281, 109916. [Google Scholar] [CrossRef]
- Shahrajabian, M.H.; Chaski, C.; Polyzos, N.; Tzortzakis, N.; Petropoulos, S.A. Sustainable agriculture systems in vegetable production using chitin and chitosan as plant biostimulants. Biomolecules 2021, 11, 819. [Google Scholar] [CrossRef]
- El Hadrami, A.; Adam, L.R.; El Hadrami, I.; Daayf, F. Chitosan in plant protection. Mar. Drugs 2010, 8, 968–987. [Google Scholar] [CrossRef]
- Hidangmayum, A.; Dwivedi, P.; Katiyar, D.; Hemantaranjan, A. Application of chitosan on plant responses with special reference to abiotic stress. Physiol. Mol. Biol. Plants 2019, 25, 313–326. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, K.; Xing, R.; Liu, S.; Chen, X.; Yang, H.; Li, P. miRNA and mRNA Expression Profiles Reveal Insight into Chitosan-Mediated Regulation of Plant Growth. J. Agric. Food Chem. 2018, 66, 3810–3822. [Google Scholar] [CrossRef] [PubMed]
- Akter, J.; Jannat, R.; Hossain, M.M.; Ahmed, J.U.; Rubayet, M.T. Chitosan for plant growth promotion and disease suppression against anthracnose in Chilli. IJEAB 2018, 3, 806–817. [Google Scholar] [CrossRef] [Green Version]
- Acemi, A.; Bayrak, B.; Çakır, M.; Demiryürek, E.; Gün, E.; El Gueddari, N.E.; Özen, F. Comparative analysis of the effects of chitosan and common plant growth regulators on in vitro propagation of Ipomoea purpurea (L.) roth from nodal explants. In Vitro Cell. Dev. Biol.-Plant 2018, 54, 537–544. [Google Scholar] [CrossRef]
- Kumaraswamy, R.V.; Kumari, S.; Choudhary, R.C.; Pal, A.; Raliya, R.; Biswas, P.; Saharan, V. Engineered chitosan based nanomaterials: Bioactivities, mechanisms and perspectives in plant protection and growth. Int. J. Biol. Macromol. 2018, 113, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.M.; Zeng, X.; Wang, Y.; Su, S.; Soothar, P.; Bai, L.; Kumar, M.; Zhang, Y.; Mustafa, A.; Ye, N. The Short-Term Effects of Mineral- and Plant-Derived Fulvic Acids on Some Selected Soil Properties: Improvement in the Growth, Yield, and Mineral Nutritional Status of Wheat (Triticum aestivum L.) under Soils of Contrasting Textures. Plants 2020, 9, 205. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, H.D.; Aloke, P. Role of biostimulant formulations in crop production: An overview. Int. J. Appl. Res. Vet. Med. 2020, 8, 38–46. [Google Scholar]
- Vujinović, T.; Zanin, L.; Venuti, S.; Contin, M.; Ceccon, P.; Tomasi, N.; Pinton, R.; Cesco, S.; De Nobili, M. Biostimulant action of dissolved humic substances from a conventionally and an organically managed soil on nitrate acquisition in maize plants. Front. Plant Sci. 2020, 10, 1652. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, R.; Zheng, J.; Shen, Z.; Xu, X. Exogenous foliar application of fulvic acid alleviate cadmium toxicity in lettuce (Lactuca sativa L.). Ecotoxic. Environ. Saf. 2019, 167, 10–19. [Google Scholar] [CrossRef]
- Elansary, H.O.; Mahmoud, E.A.; El-Ansary, D.O.; Mattar, M.A. Effects of Water Stress and Modern Biostimulants on Growth and Quality Characteristics of Mint. Agronomy 2020, 10, 6. [Google Scholar] [CrossRef] [Green Version]
- Ali, S.; Rizwan, M.; Waqas, A.; Hussain, M.B.; Hussain, A.; Liu, S.; Alqarawi, A.A.; Hashem, A.; Abd, A.E.F. Fulvic acid prevents chromium-induced morphological, photosynthetic, and oxidative alterations in wheat irrigated with tannery waste water. J. Plant Growth Regul. 2018, 37, 1357–1367. [Google Scholar] [CrossRef]
- Yildirim, E.; Ekinci, M.; Turan, M.; Ağar, G.; Dursun, A.; Kul, R.; Alim, Z.; Argin, S. Humic + Fulvic acid mitigated Cd adverse effects on plant growth, physiology and biochemical properties of garden cress. Sci Rep 2021, 11, 8040. [Google Scholar] [CrossRef]
- Stevenson, F.J. Humus Chemistry: Genesis, Composition, Reactions; John Wiley & Sons: New York, NY, USA, 1994. [Google Scholar]
- Chang, L.; Wu, Y.; Xu, W.; Nikbakht, A.; Xia, Y. Effects of Calcium and Humic Acid Treatment on the Growth and Nutrient Uptake of Oriental Lily. Afr. J. 2012, 11, 2218–2222. [Google Scholar]
- Conselvan, G.B.; Pizzeghello, D.; Francioso, O.; Di Foggia, M.; Nardi, S.; Carletti, P. Biostimulant activity of humic substances extracted from leonardites. Plant Soil 2017, 420, 119–134. [Google Scholar] [CrossRef]
- Savy, D.; Brostaux, Y.; Cozzolino, V.; Delaplace, P.; du Jardin, P.; Piccolo, A. Quantitative structure-activity relationship of humic-like biostimulants derived from agro-industrial byproducts and energy crops. Front. Plant Sci. 2020, 11, 581. [Google Scholar] [CrossRef] [PubMed]
- Vaughan, D.; Malcolm, R.E. Influence of humic substances on growth and physiological processes. In Soil Organic Matter and Biological Activity; Springer: Dordrecht, The Netherlands, 1985; pp. 37–75. [Google Scholar]
- Nardi, S.; Panuccio, M.R.; Abenavoli, M.R.; Muscolo, A. Auxin-like Effect of Humic Substances Extracted from Faeces of Allolobophora caliginosa and A. rosea. Soil Biol. Biochem. 1994, 26, 1341–1346. [Google Scholar] [CrossRef]
- Elmongy, M.S.; Zhou, H.; Cao, Y.; Liu, B.; Xia, Y. The Effect of Humic Acid on Endogenous Hormone Levels and Antioxidant Enzyme Activity during in Vitro Rooting of Evergreen Azalea. Sci Hortic. 2018, 227, 234–243. [Google Scholar] [CrossRef]
- del Buono, D. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci. Total Environ. 2021, 751, 141763. [Google Scholar] [CrossRef]
- Michalak, I.; Chojnacka, K. Algae as production systems of bioactive compounds. Eng. Life Sci. 2015, 15, 160–176. [Google Scholar] [CrossRef]
- Hurtado, A.Q.; Critchley, A.T. A Review of Multiple Biostimulant and Bioeffector Benefits of AMPEP, an Extract of the Brown Alga Ascophyllum nodosum, as Applied to the Enhanced Cultivation and Micropropagation of the Commercially Important Red Algal Carrageenophyte Kappaphycus Alvarezii and its Selected Cultivars. J. Appl. Phycol. 2018, 30, 2859–2873. [Google Scholar]
- Rodrigues, M.; Baptistella, J.L.C.; Horz, D.C.; Bortolato, L.M.; Mazzafera, P. Organic Plant Biostimulants and Fruit Quality—A Review. Agronomy 2020, 10, 988. [Google Scholar] [CrossRef]
- Gupta, V.; Kumar, M.; Brahmbhatt, H.; Reddy, C.R.K.; Seth, A.; Jha, B. Simultaneous determination of different endogenetic plant growth regulators in common green seaweeds using dispersive liquid–liquid microextraction method. Plant Physiol. Biochem. 2011, 49, 1259–1263. [Google Scholar] [CrossRef]
- Hong, D.D.; Hien, H.M.; Son, P.N. Seaweeds from Vietnam Used for Functional Food, Medicine and Biofertilizer. J. Appl. Phycol. 2007, 19, 817–826. [Google Scholar] [CrossRef]
- Khan, W.; Rayirath, U.P.; Subramanian, S.; Jithesh, M.N.; Rayorath, P.; Hodges, D.M.; Critchley, A.T.; Craigie, J.S.; Norrie, J.; Prithiviraj, B. Seaweed Extracts as Biostimulants of Plant Growth and Development. J. Plant Growth Regul. 2009, 28, 386–399. [Google Scholar] [CrossRef]
- Behera, B.; Venkata, S.K.; Paramasivan, B. Integrated microalgal biorefinery for the production and application of biostimulants in circular bioeconomy. Bioresour. Technol. 2021, 339, 125588. [Google Scholar] [CrossRef] [PubMed]
- Blunden, G.; El Barouni, M.M.; Gordon, S.M.; McLean, W.F.H.; Rogers, D.J. Extraction, Purification and Characterisation of Dragendorff-Positive Compounds from some British Marine Algae. Bot. Mar. 2013, 24, 451–456. [Google Scholar] [CrossRef]
- Colapietra, M.; Alexander, A. Effect of Foliar Fertilization on Yield and Quality of Table Grapes. In Proceedings of the V International Symposium on Mineral Nutrition of Fruit Plants 721, Talca, Chile, 16–21 January 2005; pp. 213–218. [Google Scholar]
- Jayaraj, J.; Wan, A.; Rahman, M.; Punja, Z.K. Seaweed Extract Reduces Foliar Fungal Diseases on Carrot. Crop Prot. 2008, 27, 1360–1366. [Google Scholar] [CrossRef]
- Bajpai, S.; Shukla, P.S.; Asiedu, S.; Pruski, K.; Prithiviraj, B. A Biostimulant Preparation of Brown Seaweed Ascophyllum nodosum Suppresses Powdery Mildew of Strawberry. Plant Pathol. J. 2019, 35, 406. [Google Scholar] [CrossRef]
- Soppelsa, S.; Kelderer, M.; Casera, C.; Bassi, M.; Robatscher, P.; Andreotti, C. Use of biostimulants for organic apple production: Effects on tree growth, yield, and fruit quality at harvest and during storage. Front. Plant Sci. 2018, 9, 1324. [Google Scholar] [CrossRef]
- Spann, T.M.; Little, H.A. Applications of a Commercial Extract of the Brown Seaweed Ascophyllum nodosum Increases Drought Tolerance in Container-Grown ‘Hamlin’Sweet Orange Nursery Trees. HortScience 2011, 46, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Shukla, P.S.; Borza, T.; Critchley, A.T.; Hiltz, D.; Norrie, J.; Prithiviraj, B. Ascophyllum nodosum Extract Mitigates Salinity Stress in Arabidopsis thaliana by Modulating the Expression of miRNA Involved in Stress Tolerance and Nutrient Acquisition. PLoS ONE 2018, 13, e0206221. [Google Scholar] [CrossRef] [Green Version]
- Omidbakhshfard, M.A.; Sujeeth, N.; Gupta, S.; Omranian, N.; Guinan, K.J.; Brotman, Y.; Nikoloski, Z.; Fernie, A.R.; Mueller-Roeber, B.; Gechev, T.S. A Biostimulant Obtained from the Seaweed Ascophyllum nodosum Protects Arabidopsis thaliana from Severe Oxidative Stress. Int. J. Mol. Sci. 2020, 21, 474. [Google Scholar] [CrossRef] [Green Version]
- Tandon, S.; Dubey, A. Effects of Biozyme (Ascophyllum nodosum) Biostimulant on Growth and Development of Soybean [Glycine max (L.) Merill]. Commun Soil Sci Plant Anal. 2015, 46, 845–858. [Google Scholar] [CrossRef]
- Shukla, P.S.; Shotton, K.; Norman, E.; Neily, W.; Critchley, A.T.; Prithiviraj, B. Seaweed Extract Improve Drought Tolerance of Soybean by Regulating Stress-Response Genes. AoB Plants 2018, 10, plx051. [Google Scholar] [CrossRef]
- Jayaraman, J.; Norrie, J.; Punja, Z.K. Commercial Extract from the Brown Seaweed Ascophyllum nodosum Reduces Fungal Diseases in Greenhouse Cucumber. J. Appl. Phycol. 2011, 23, 353–361. [Google Scholar] [CrossRef]
- da Silva, C.P.; Laschi, D.; Ono, E.O.; Rodrigues, J.D.; Mogor, Á.F. Aplicação Foliar do Extrato de Alga Ascophyllum nodosum e do Ácido Glutâmico no Desenvolvimento Inicial de Crisântemos (Dendranthema morifolium (Ramat.) Kitam.) em Vasos. J. Ornam. Hortic. 2010, 16, 179–181. [Google Scholar]
- Wadas, W.; Dziugieł, T. Quality of new potatoes (Solanum tuberosum L.) in response to plant biostimulants application. Agriculture 2020, 10, 265. [Google Scholar] [CrossRef]
- Prisa, D. Ascophyllum nodosum Extract on Growth Plants in Rebutia heliosa and Sulcorebutia canigueralli. GSC Biol. Pharm. Sci. 2020, 10, 039–045. [Google Scholar] [CrossRef]
- Frioni, T.; Sabbatini, P.; Tombesi, S.; Norrie, J.; Poni, S.; Gatti, M.; Palliotti, A. Effects of a Biostimulant Derived from the Brown Seaweed Ascophyllum nodosum on Ripening Dynamics and Fruit Quality of Grapevines. Sci. Hortic. 2018, 232, 97–106. [Google Scholar] [CrossRef]
- Kaviani, B.; Negahdar, N.; Hashemabadi, D. Improvement of Micropropagation and Proliferation of Robinia pseudoacasia L. Using Plant Growth Regulators and Extracts of Brown Seaweed Ascophyllum nodosum. J. Crop Prod. 2016, 6, 61–79. [Google Scholar] [CrossRef]
- Ronga, D.; Biazzi, E.; Parati, K.; Carminati, D.; Carminati, E.; Tava, A. Microalgal Biostimulants and Biofertilisers in Crop Productions. Agronomy 2019, 9, 192. [Google Scholar] [CrossRef] [Green Version]
- Kapoore, R.V.; Wood, E.E.; Llewellyn, C.A. Algae biostimulants: A critical look at microalgal biostimulants for sustainable agricultural practices. Biotechnol. Adv. 2021, 49, 107754. [Google Scholar] [CrossRef]
- Sharma, H.S.; Fleming, C.; Selby, C.; Rao, J.R.; Martin, T. Plant biostimulants: A review on the processing of macroalgae and use of extracts for crop management to reduce abiotic and biotic stresses. J. Appl. Phycol. 2014, 26, 465–490. [Google Scholar] [CrossRef]
- Rouphael, Y.; Giordano, M.; Cardarelli, M.; Cozzolino, E.; Mori, M.; Kyriacou, M.C.; Bonini, P.; Colla, G. Plant-and seaweed-based extracts increase yield but differentially modulate nutritional quality of greenhouse spinach through biostimulant action. Agronomy 2018, 8, 126. [Google Scholar] [CrossRef] [Green Version]
- Murtic, S.; Oljaca, R.; Murtic, M.S.; Koleska, I.; Muhic, A. Enzymatic antioxidant responses to biostimulants in cherry tomato subjected to drought. JAPS 2019, 29, 1664–1672. [Google Scholar]
- Bashan, Y. Proposal for the Division of Plant Growth-Promoting Rhizobacteria into Two Classifications: Biocontrol-PGPB (Plant-Growth-Promoting Bacteria) and PGPB. Soil Biol. Biochem. 1998, 30, 1225–1228. [Google Scholar] [CrossRef]
- Bashan, Y.; de-Bashan, L.E.; Prabhu, S.R.; Hernandez, J.P. Advances in plant growth-promoting bacterial inoculant technology: Formulations and practical perspectives (1998–2013). Plant Soil 2014, 378, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Bashan, Y.; Prabhu, S.R.; de-Bashan, L.E.; Kloepper, J.W. Disclosure of exact protocols of fermentation, identity of microorganisms within consortia, formation of advanced consortia with microbe-based products. Biol. Fertil. Soils 2000, 56, 443–445. [Google Scholar] [CrossRef]
- Brock, A.K.; Berger, B.; Mewis, I.; Ruppel, S. Impact of the PGPB Enterobacter Radicincitans DSM 16656 on Growth, Glucosinolate Profile, and Immune Responses of Arabidopsis thaliana. Microb. Ecol. 2013, 65, 661–670. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.-M.; Guo, S.-J.; Tian, W.; Chen, Y.; Han, H.; Chen, E.; Li, B.-L.; Li, Y.-Y.; Chen, Z.-J. Effects of plant growth-promoting bacteria (pgpb) inoculation on the growth, antioxidant activity, cu uptake, and bacterial community structure of rape (Brassica napus l.) grown in cu-contaminated agricultural soil. Front. Microbiol. 2019, 10, 1455. [Google Scholar] [CrossRef] [PubMed]
- Efthimiadou, A.; Katsenios, N.; Chanioti, S.; Giannoglou, M.; Djordjevic, N.; Katsaros, G. Effect of foliar and soil application of plant growth promoting bacteria on growth, physiology, yield and seed quality of maize under Mediterranean conditions. Sci. Rep. 2020, 10, 21060. [Google Scholar] [CrossRef]
- Bhise, K.K.; Dandge, P.B. Mitigation of salinity stress in plants using plant growth promoting bacteria. Symbiosis 2019, 79, 191–204. [Google Scholar] [CrossRef]
- Katsenios, N.; Andreou, V.; Sparangis, P.; Djordjevic, N.; Giannoglou, M.; Chanioti, S.; Stergiou, P.; Xanthou, M.-Z.; Kakabouki, I.; Vlachakis, D.; et al. Evaluation of Plant Growth Promoting Bacteria Strains on Growth, Yield and Quality of Industrial Tomato. Microorganisms 2021, 9, 2099. [Google Scholar] [CrossRef]
- Yarte, M.E.; Gismondi, M.I.; Llorente, B.E.; Larraburu, E.E. Isolation of Endophytic Bacteria from the Medicinal, Forestal and Ornamental Tree Handroanthus impetiginosus. Environ. Technol. 2022, 43, 1129–1139. [Google Scholar] [CrossRef]
- Manhães, N.E.; Jasmim, J.M.; Silva, L.A.A.; Castro, B.B.; Motta, N.L.; Pereira, V.R.; Erthal, A.P.R.C. Loofah Fiber and Sphagnum Moss in the Acclimatization of Cattleya guttata and Zygopetalum mackayi Inoculated with Plant Growth-Promoting Bacteria. Acta Hortic. 2015, 1076, 113–118. [Google Scholar] [CrossRef]
- Hoda, E.E.; Mona, S. Effect of Bio and Chemical Fertilizers on Growth and Flowering of Petunia hybrida Plants. J. Plant Physiol. 2014, 9, 68–77. [Google Scholar]
- Toffoli, L.M.; Martínez-Zamora, M.G.; Medrano, N.N.; Fontana, C.A.; Lovaisa, N.C.; Delaporte-Quintana, P.; Elias, J.M.; Salazar, S.M.; Pedraza, R.O. Natural Occurrence of Azospirillum brasilense in Petunia with Capacity to Improve Plant Growth and Flowering. J. Basic Microbiol. 2021, 61, 662–673. [Google Scholar] [CrossRef] [PubMed]
- Domenico, P. Optimised Fertilisation with Zeolitites Containing Plant Growth Promoting Rhizobacteria (PGPR) in Ranunculus asiaticus. SC Biol. Pharm. Sci. 2020, 10, 096–102. [Google Scholar] [CrossRef]
- Ordookhani, K.; Sharafzadeh, S.; Zare, M. Influence of PGPR on Growth, Essential Oil and Nutrients Uptake of Sweet Basil. Adv. Environ. Biol. 2011, 5, 672–677. [Google Scholar]
- Khandan-Mirkohi, A.; Taheri, M.; Zafar-Farrokhi, F.; Rejali, F. Effects of Arbuscular Mycorrhizal Fungus and Plant Growth Promoting Rhizobacteria (PGPR) under Drought Stress on Growth of Ornamental Osteospermum (Osteospermum hybrida ‘Passion Mix’). Int. J. Hortic. Sci. Technol. 2016, 47, 177–191. [Google Scholar]
- Prisa, D.; Benati, A. Improving the Quality of Ornamental Bulbous with Plant Growth-Promoting Rhizobacteria (PGPR). EPRA Int. J. Multidiscip. Res. (IJMR) 2021, 7, 2455–3662. [Google Scholar] [CrossRef]
- Park, H.G.; Lee, Y.S.; Kim, K.Y.; Park, Y.S.; Park, K.H.; Han, T.H.; Ahn, Y.S. Inoculation with Bacillus licheniformis MH48 Promotes Nutrient Uptake in Seedlings of the Ornamental Plant Camellia japonica Grown in Korean Reclaimed Coastal Lands. Hortic. Sci. Technol. 2017, 35, 11–20. [Google Scholar]
- Sezen, I.; Kaymak, H.Ç.; Aytatlı, B.; Dönmez, M.F.; Ercişli, S. Inoculations with Plant Growth Promoting Rhizobacteria (PGPR) Stimulate Adventitious Root Formation on Semi-Hardwood Stem Cuttings of Ficus benjamina L. Propag. Ornam. Plants 2014, 14, 152–157. [Google Scholar]
- Kumari, B.; Hora, A.; Mallick, M.A. Stimulatory effect of PGPR (Plant Growth Promoting Rhizospheric Bacteria) on Medicinal and Growth Properties of a Potential Medicinal Herb Chlorophytum borivilianum: A review. J. Plant Sci. Res. 2017, 33, 151–156. [Google Scholar]
- Parlakova Karagoz, F.; Dursun, A. Effects of PGPR Formulations, Chemical Fertilizers, and Their Combinations on Physiological Traits and Quality of Bracts of Poinsettia. J. Agric. 2020, 22, 775–787. [Google Scholar]
- Vinale, F.; Sivasithamparm, K. Beneficial effects of Trichoderma secondary metabolites on corps. Phyto. Res. 2020, 34, 2835–2842. [Google Scholar] [CrossRef] [PubMed]
- Harman, G.E. Myths and Dogmas of Biocontrol Changes in Perceptions Derived from Research on Trichoderma harzinum T-22. Plant Dis. 2000, 84, 377–393. [Google Scholar] [CrossRef] [Green Version]
- Blaszczyk, L.M.S.K.S.; Siwulski, M.; Sobieralski, K.; Lisiecka, J.; Jedryczka, M. Trichoderma spp.–application and prospects for use in organic farming and industry. J. Plant Prot. Res. 2014, 54, 309–317. [Google Scholar] [CrossRef]
- López-Bucio, J.; Pelagio-Flores, R.; Herrera-Estrella, A. Trichoderma as Biostimulant: Exploiting the Multilevel Properties of a Plant Beneficial Fungus. Sci. Hortic. 2015, 196, 109–123. [Google Scholar] [CrossRef]
- Fiorentino, N.; Ventorino, V.; Woo, S.L.; Pepe, O.; De Rosa, A.; Gioia, L.; Romano, I.; Lombardi, N.; Napolitano, M.; Colla, G.; et al. Trichoderma-Based Biostimulants Modulate Rhizosphere Microbial Populations and Improve N Uptake Efficiency, Yield, and Nutritional Quality of Leafy Vegetables. Front. Plant Sci. 2018, 9, 743. [Google Scholar] [CrossRef] [Green Version]
- Şesan, T.E.; Oancea, A.O.; Ştefan, L.M.; Mănoiu, V.S.; Ghiurea, M.; Răut, I.; Constantinescu-Aruxandei, D.; Toma, Á.; Savin, S.; Bira, A.F.; et al. Effects of Foliar Treatment with a Trichoderma Plant Biostimulant Consortium on Passiflora caerulea L. Yield and Quality. Microorganisms 2020, 8, 123. [Google Scholar] [CrossRef] [Green Version]
- Majkowska-Gadomska, J.; Francke, A.; Dobrowolski, A.; Mikulewicz, E. The Effect of Selected Biostimulants on Seed Germination of Four Plant Species. Acta Agrophys. 2017, 24, 591–599. [Google Scholar]
- Di Vaio, C.; Testa, A.; Cirillo, A.; Conti, S. Slow-Release Fertilization and Trichoderma harzianum-Based Biostimulant for the Nursery Production of Young Olive Trees (Olea europaea L.). Agronomy. 2021, 19, 3. [Google Scholar] [CrossRef]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive oxygen species and antioxidant defense in plants under abiotic stress: Revisiting the crucial role of a universal defense regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef]
- Teklić, T.; Parađiković, N.; Špoljarević, M.; Zeljković, S.; Lončarić, Z.; Lisjak, M. Linking abiotic stress, plant metabolites, biostimulants and functional food. Ann. Appl. Biol. 2021, 178, 169–191. [Google Scholar] [CrossRef]
- Sangiorgio, D.; Cellini, A.; Donati, I.; Pastore, C.; Onofrietti, C.; Spinelli, F. Facing climate change: Application of microbial biostimulants to mitigate stress in horticultural crops. Agronomy 2020, 10, 794. [Google Scholar] [CrossRef]
- de Pascali, M.; Vergine, M.; Sabella, E.; Aprile, A.; Nutricati, E.; Nicolì, F.; Buja, I.; Negro, C.; Miceli, A.; Rampino, P.; et al. Molecular effects of Xylella fastidiosa and drought combined stress in olive trees. Plants 2019, 8, 437. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahanger, M.A.; Tyagi, S.R.; Wani, M.R.; Ahmad, P. Drought Tolerance: Role of Organic Osmolytes, Growth Regulators, and Mineral Nutrients. In Physiological Mechanisms and Adaptation Strategies in Plants Under Changing Environment: Volume 1; Ahmad, P., Wani, M.R., Eds.; Springer: Berlin, Germany, 2014; pp. 25–55. [Google Scholar] [CrossRef]
- Zhang, H.; Zhu, J.; Gong, Z.; Zhu, J.-K. Abiotic Stress Responses in Plants. Nat. Rev. Genet. 2022, 23, 104–119. [Google Scholar] [CrossRef]
- Gong, Z.; Xiong, L.; Shi, H.; Yang, S.; Herrera-Estrella, L.R.; Xu, G.; Chao, D.-Y.; Li, J.; Wang, P.-Y.; Qin, F.; et al. Plant abiotic stress response and nutrient use efficiency. Sci. China Life Sci. 2020, 63, 635–674. [Google Scholar] [CrossRef] [PubMed]
- Kollist, H.; Zandalinas, S.I.; Sengupta, S.; Nuhkat, M.; Kangasjärvi, J.; Mittler, R. Rapid Responses to Abiotic Stress: Priming the Landscape for the Signal Transduction Network. Trends Plant Sci. 2019, 24, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Bechtold, U.; Field, B. Molecular mechanisms controlling plant growth during abiotic stress. J. Exp. Bot. 2018, 69, 2753–2758. [Google Scholar] [CrossRef] [Green Version]
- Nemhauser, J.L.; Hong, F.; Chory, J. Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 2006, 126, 467–475. [Google Scholar] [CrossRef] [Green Version]
- Hepler, P. Calcium: A Central Regulator of Plant Growth and Development. Plant Cell 2005, 17, 2142–2155. [Google Scholar] [CrossRef]
- Gupta, S.; Doležal, K.; Kulkarni, M.G.; Balázs, E.; Van Staden, J. Role of Non-Microbial Biostimulants in Regulation of Seed Germination and Seedling Establishment. Plant Growth Regul. 2022, 1–43. [Google Scholar] [CrossRef]
- Kumar, J.S.P.; Rajendra Prasad, S.; Banerjee, R.; Thammineni, C. Seed Birth to Death: Dual Functions of Reactive Oxygen Species in Seed Physiology. Ann. Bot. 2015, 116, 663–668. [Google Scholar] [CrossRef] [Green Version]
- Campobenedetto, C.; Grange, E.; Mannino, G.; Van Arkel, J.; Beekwilder, J.; Karlova, R.; Garabello, C.; Contartese, V.; Bertea, C.M. A Biostimulant Seed Treatment Improved Heat Stress Tolerance during Cucumber Seed Germination by Acting on the Antioxidant System and Glyoxylate Cycle. Front. Plant Sci. 2020, 11, 836. [Google Scholar] [CrossRef] [PubMed]
- Pal, G.; Kumar, K.; Verma, A.; Verma, S.K. Application of Bacterial Biostimulants in Promoting Growth and Disease Prevention in Crop Plants. In Biostimulants for Crops from Seed Germination to Plant Development; Academic Press: New York, NY, USA, 2021; pp. 393–410. ISBN 9780128230480. [Google Scholar]
- Bayona-Morcillo, P.J.; Plaza, B.M.; Gómez-Serrano, C.; Rojas, E.; Jimenez-Becker, S. Effect of the Foliar Application of Cyanobacterial Hydrolysate (Arthrospira platensis) on the Growth of Petunia × hybrida Under Salinity Conditions. J. Appl. Phycol. 2020, 32, 4003–4011. [Google Scholar] [CrossRef]
- Plaza, B.M.; Gómez-Serrano, C.; Acién-Fernández, F.G.; Jimenez-Becker, S. Effect of Microalgae Hydrolysate Foliar Application (Arthrospira platensis and Scenedesmus sp.) on Petunia × hybrida Growth. J. Appl. Phycol. 2018, 30, 2359–2365. [Google Scholar] [CrossRef]
- Saini, I.; Aggarwal, A.; Kaushik, P. Influence of biostimulants on important traits of Zinnia elegans Jacq. under open field conditions. Int. J. Agron 2019, 2019, e3082967. [Google Scholar] [CrossRef] [Green Version]
- Lin, Y.; Jones, M.L. Evaluating the growth-promoting effects of microbial biostimulants on greenhouse floriculture crops. HortScience 2022, 57, 97–109. [Google Scholar] [CrossRef]
- Caser, M.; Lovisolo, C.; Scariot, V. The influence of water stress on growth, ecophysiology and ornamental quality of potted Primula vulgaris ‘Heidy’ Plants. New insights to increase water use efficiency in plant production. Plant Growth Regul. 2017, 83, 361–373. [Google Scholar] [CrossRef] [Green Version]
- South, K.A.; Nordstedt, N.P.; Jones, M.L. Identification of Plant Growth Promoting Rhizobacteria That Improve the Performance of Greenhouse-Grown Petunias under Low Fertility Conditions. Plants 2021, 10, 1410. [Google Scholar] [CrossRef]
- Nordstedt, N.P.; Chapin, L.J.; Taylor, C.G.; Jones, M.L. Identification of Pseudomonas spp. that Increase Ornamental Crop Quality During Abiotic Stress. Front. Plant Sci. 2020, 10, 1754. [Google Scholar] [CrossRef]
- Van Loon, L.C. Plant Responses to Plant Growth-Promoting Rhizobacteria. In New Perspectives and Approaches in Plant Growth-Promoting Rhizobacteria Research; Springer: Dordrecht, The Netherlands, 2007; pp. 243–254. [Google Scholar]
- Shoresh, M.; Harman, G.E.; Mastouri, F. Induced systemic resistance and plant responses to fungal biocontrol agents. Ann. Rev. Phytopathol. 2010, 48, 21–43. [Google Scholar] [CrossRef] [Green Version]
- Ertani, A.; Schiavon, M.; Muscolo, A.; Nardi, S. Alfalfa plant-derived biostimulant stimulate short-term growth of salt stressed Zea mays L. plants. Plant Soil 2013, 364, 145–158. [Google Scholar] [CrossRef]
- Mutale-Joan, C.; Rachidi, F.; Mohamed, H.A.; Mernissi, N.E.; Aasfar, A.; Barakate, M.; Mohammad, D.; Sbabou, L.; Arroussi, H.E. Microalgae-cyanobacteria–based biostimulant effect on salinity tolerance mechanisms, nutrient uptake, and tomato plant growth under salt stress. J. Appl. Phycol. 2021, 33, 3779–3795. [Google Scholar] [CrossRef]
- Rayirath, P.; Benkel, B.; Mark Hodges, D.; Allan-Wojtas, P.; MacKinnon, S.; Critchley, A.T.; Prithiviraj, B. Lipophilic components of the brown seaweed, Ascophyllum nodosum, enhance freezing tolerance in Arabidopsis thaliana. Planta 2009, 230, 135–147. [Google Scholar] [CrossRef]
- Xu, C.; Leskovar, D.I. Effects of A. nodosum seaweed extracts on spinach growth, physiology and nutrition value under drought stress. Sci. Hortic. 2015, 183, 39–47. [Google Scholar] [CrossRef]
- Möller, M.; Smith, M.L. The significance of the mineral component of seaweed suspensions on lettuce (Lactuca sativa L.) seedling growth. J. Plant Physiol. 1998, 153, 658–663. [Google Scholar] [CrossRef]
- Khan, M.S.; Pandey, M.K.; Hemalatha, S. Comparative Studies on the Role of Organic Biostimulant in Resistant and Susceptible Cultivars of Rice Grown under Saline Stress—Organic Biostimulant Alleviate Saline Stress in Tolerant and Susceptible Cultivars of Rice. J. Crop Sci. Biotechnol. 2018, 21, 459–467. [Google Scholar] [CrossRef]
- Hare, P.D.; Cress, W.A.; Van Staden, J. The involvement of cytokinins in plant responses to environmental stress. Plant Growth Regul. 1997, 23, 79–103. [Google Scholar] [CrossRef]
- Toscano, S.; Ferrante, A.; Romano, D. Response of Mediterranean ornamental plants to drought stress. Horticulturae 2019, 5, 6. [Google Scholar] [CrossRef] [Green Version]
- Battacharyya, D.; Babgohari, M.Z.; Rathor, P.; Prithiviraj, B. Seaweed extracts as biostimulants in horticulture. Sci. Hortic. 2015, 196, 39–48. [Google Scholar] [CrossRef]
- Massa, D.; Lenzi, A.; Montoneri, E.; Ginepro, M.; Prisa, D.; Burchi, G. Plant response to biowaste soluble hydrolysates in hibiscus grown under limiting nutrient availability. J. Plant Nutr. 2018, 41, 396–409. [Google Scholar] [CrossRef]
- Nordstedt, N.P.; Jones, M.L. Isolation of rhizosphere bacteria that improve quality and water stress tolerance in greenhouse ornamentals. Front. Plant Sci. 2020, 11, 826. [Google Scholar] [CrossRef] [PubMed]
- Giordano, M.; Petropoulos, S.A.; Cirillo, C.; Rouphael, Y. Biochemical, physiological, and molecular aspects of ornamental plants adaptation to deficit irrigation. Horticulturae 2021, 7, 107. [Google Scholar] [CrossRef]
- Chang, Y.-N.; Zhu, C.; Jiang, J.; Zhang, H.; Zhu, J.-K.; Duan, C.-G. Epigenetic regulation in plant abiotic stress responses. J. Integr. Plant Biol. 2020, 62, 563–580. [Google Scholar] [CrossRef]
- Askari-Khorasgani, O.; Hatterman-Valenti, H.; Flores Pardo, F.B.; Pessarakli, M. Plant and symbiont metabolic regulation and biostimulants application improve symbiotic performance and cold acclimation. J. Plant Nutr. 2019, 42, 2151–2163. [Google Scholar] [CrossRef]
- Hajizadeh, H.S.; Heidari, B.; Bertoldo, G.; Della Lucia, M.C.; Magro, F.; Broccanello, C.; Baglieri, A.; Puglisi, I.; Squartini, A.; Campagna, G.; et al. Expression Profiling of Candidate Genes in Sugar Beet Leaves Treated with Leonardite-Based Biostimulant. High-Throughput 2019, 8, 18. [Google Scholar] [CrossRef] [Green Version]
- Sahana, B.N.; PrasannaKumar, M.K.; Mahesh, H.B.; Buela Parivallal, P.; Puneeth, M.E.; Gautam, C.; Girish, T.R.; Nori, S.; Suryanarayan, S. Biostimulants derived from red seaweed stimulate the plant defence mechanism in rice against Magnaporthe oryzae. J. Appl. Phycol. 2022, 34, 659–665. [Google Scholar] [CrossRef]
- Campobenedetto, C.; Mannino, G.; Beekwilder, J.; Contartese, V.; Karlova, R.; Bertea, C.M. The application of a biostimulant based on tannins affects root architecture and improves tolerance to salinity in tomato plants. Sci. Rep. 2021, 11, 354. [Google Scholar] [CrossRef]
- Casadesús, A.; Polo, J.; Munné-Bosch, S. Hormonal effects of an enzymatically hydrolyzed animal protein-based biostimulant (pepton) in water-stressed tomato plants. Front. Plant Sci. 2019, 10, 758. [Google Scholar] [CrossRef] [Green Version]
- Vitale, E.; Velikova, V.; Tsonev, T.; Ferrandino, I.; Capriello, T.; Arena, C. The Interplay between Light Quality and Biostimulant Application Affects the Antioxidant Capacity and Photosynthetic Traits of Soybean (Glycine max L. Merrill). Plants 2021, 10, 861. [Google Scholar] [CrossRef]
- Fan, H.M.; Wang, X.W.; Sun, X.; Li, Y.Y.; Sun, X.Z.; Zheng, C.S. Effects of Humic Acid Derived from Sediments on Growth, Photosynthesis and Chloroplast Ultrastructure in Chrysanthemum. Sci. Hortic. 2014, 177, 118–123. [Google Scholar] [CrossRef]
- Krajnc, A.U.; Turinek, M.; Ivančič, A. Morphological and Physiological Changes during Adventitious Root Formation as Affected by Auxin Metabolism: Stimulatory Effect of Auxin Containing Seaweed Extract Treatment. Agricultura 2013, 10, 17–27. [Google Scholar]
- Tahiri, A.; Destain, J.; Thonart, P.; Druart, P. In vitro Model to Study the Biological Properties of Humic Fractions from Landfill Leachate and Leonardite during Root Elongation of Alnus glutinosa L. Gaertn and Betula pendula Roth. Plant Cell Tissue Organ Cult. 2015, 122, 739–749. [Google Scholar] [CrossRef]
- Baldotto, L.E.; Baldotto, M.A. Adventitious Rooting on the Brazilian Red-Cloak and Sanchezia after Application of Indole-Butyric and Humic Acids. Hortic. Bras. 2014, 32, 434–439. [Google Scholar] [CrossRef] [Green Version]
- Asrar, A.A.; Abdel-Fattah, G.M.; Elhindi, K.M. Improving growth, flower yield, and water relations of snapdragon (Antirhinum majus L.) plants grown under well-watered and water-stress conditions using arbuscular mycorrhizal fungi. Photosynthetica 2012, 50, 305–316. [Google Scholar] [CrossRef]
- Monder, M.J.; Kozakiewicz, P.; Jankowska, A. The Role of Plant Origin Preparations and Phenological Stage in Anatomy Structure Changes in the Rhizogenesis of Rosa ‘Hurdal’. Front Plant Sci 2021, 12, 696998. [Google Scholar] [CrossRef]
- Monder, M.J.; Kozakiewicz, P.; Jankowska, A. Anatomical Structure Changes in Stem Cuttings of Rambler Roses Induced with Plant Origin Preparations. Sci. Hortic. 2019, 255, 242–254. [Google Scholar] [CrossRef]
- Megersa, H.G.; Lemma, D.T.; Banjawu, D.T. Effects of plant growth retardants and pot sizes on the height of potting ornamental plants: A short review. J. Hortic. 2018, 5, 1. [Google Scholar]
- Sriprapat, W.; Thiravetyan, P. Efficacy of Ornamental Plants for Benzene Removal from Contaminated Air and Water: Effect of Plant Associated Bacteria. Int. Biodeterior. Biodegrad. 2016, 113, 262–268. [Google Scholar] [CrossRef]
- Lekawatana, S.; Suwannamek, B. Ornamental plants in Thailand. Acta Hortic. 2017, 11–16. [Google Scholar] [CrossRef]
- Junqueira, A.H.; Peetz, M. Brazilian consumption of flowers and ornamental plants: Habits, practices and trends. OH 2017, 23, 178. [Google Scholar] [CrossRef] [Green Version]
- Briercliffe, T. Growing the global market for ornamentals. Acta Hortic. 2017, 1–8. [Google Scholar] [CrossRef]
- de Pascale, S.; Rouphael, Y.; Cirillo, C.; Colla, G. Plant Biostimulants in Greenhouse Horticulture: Recent Advances and Challenges Ahead. In Proceedings of the XXX International Horticultural Congress IHC2018: III International Symposium on Innovation and New Technologies in Protected 1271, Istanbul, Turkey, 12–18 August 2018; pp. 327–334. [Google Scholar]
- Gebashe, F.; Gupta, S.; Van Staden, J. Disease Management Using Biostimulants. In Biostimulants for Crops from Seed Germination to Plant Development; Academic Press: New York, NY, USA, 2021; pp. 411–425. ISBN 9780128230480. [Google Scholar]
- de Silva, T.S.; Silva, A.P.S.; de Almeida, S.A.; Ribeiro, K.G.; Souza, D.C.; Bueno, P.A.A.; Marques, M.M.M.; Almeida, P.M.; Peron, A.P. Cytotoxicity, Genotoxicity, and Toxicity of Plant Biostimulants Produced in Brazil: Subsidies for Determining Environmental Risk to Non-Target Species. Water Air Soil Pollut. 2020, 231, 233. [Google Scholar] [CrossRef]
- Yuan, Y. Effects of Biostimulants on Ornamental Plants Grown in Solid Soil Less Cultural Systems. Ph.D. Thesis, Lincoln University, Lincoln, UK, 2021. [Google Scholar]
- Yücel, G.; Erken, K.; Doğan, Y.E. Organic Stimulant Uses in Natural Plant Production. EJOH 2020, 47, 119–128. [Google Scholar] [CrossRef]
- Carmo, L.P.; Moura, C.W.N.; Lima-Brito, A. Red macroalgae extracts affect in vitro growth and bud formation in Comanthera mucugensis (Giul.) LR Parra & Giul., an endemic dry flower species from the Chapada Diamantina (Brazil). S. Afr. J. 2020, 135, 29–34. [Google Scholar]
- Florijančić, T.; Lužaić, R. Poljoprivredni Fakultet Sveučilišta Josipa Jurja Strossmayera u Osijeku. In Proceedings of the 44th Croatian and the 4th International Symposium of Agronomists, Opatija, Croatia, 16–20 February 2009. [Google Scholar]
- Parađiković, N.; Zeljković, S.; Tkalec, M.; Vinković, T.; Maksimović, I.; Haramija, J. Influence of Biostimulant Application on Growth, Nutrient Status and Proline Concentration of Begonia Transplants. Biol. Agric. 2017, 33, 89–96. [Google Scholar] [CrossRef]
- Tavares, A.R.; dos Santos, P.L.F.; Zabotto, A.R.; do Nascimento, M.V.L.; Jordão, H.W.C.; Boas, R.L.V.; Broetto, F. Seaweed Extract to Enhance Marigold Seed Germination and Seedling Establishment. SN Appl. Sci. 2020, 2, 1–6. [Google Scholar] [CrossRef]
- Zeljković, S.; Parađiković, N.; Vinković, T.; Tkalec, M. Biostimulant application in the production of seedlings of seasonal flowers. Agro-Knowl. J. 2011, 12, 175–181. [Google Scholar]
- Dudaš, S.; Šestan, I. Effect of Seedling Growing Technology and Bio-Algeen S-90 Application on Plantlets Quality of French Marigold (Tagetes patula L.) ‘Orange Boy’. Zb. Veleuč. Rij. 2014, 2, 333–342. [Google Scholar]
- Bolagam, R.; Natarajan, S. Economics of Cut Gladiolus (Gladiolus grandiflorus L.) Production with Application Biostimulants. J. Pharmacogn. Phytochem. 2019, 8, 1276–1279. [Google Scholar]
- Sankari, A.; Anand, M.; Arulmozhiyan, R. Effect of Biostimulants on Yield and Post Harvest Quality of Gladiolus cv. White Prosperity. J. Asian Hortic. 2015, 10, 86–94. [Google Scholar] [CrossRef]
- Kumar, P.; Kumar, R.; Kumar, A. Effect of Organic Culture on Growth, Development and Post Harvest Life of Gladiolus (Gladiolus hybrida). J. Ornam. Hortic. 2008, 11, 127–130. [Google Scholar]
- Bhattacharyya, P.; Lalthafamkimi, L.; Van Staden, J. Insights into the Biostimulatory Effects of Chitosan in Propagation of Orchid Bioresources. In Biostimulants for Crops from Seed Germination to Plant Development; Academic Press: New York, NY, USA, 2021; pp. 197–210. ISBN 9780128230480. [Google Scholar]
- Abdalla, M.M. Boosting the growth of rocket plants in response to the application of Moringa olifera extracts as a biostimulant. Life Sci. 2014, 11, 1113–1121. [Google Scholar]
- Exposito-Rodriguez, M.; Laissue, P.P.; Yvon-Durocher, G.; Smirnoff, N.; Mullineaux, P.M. Photosynthesis-dependent H2O2 transfer from chloroplasts to nuclei provides a high-light signalling mechanism. Nat Commun 2017, 8, 49. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Shahzad, B.; Rehman, A.; Bhardwaj, R.; Landi, M.; Zheng, B. Response of Phenylpropanoid Pathway and the Role of Polyphenols in Plants under Abiotic Stress. Molecules 2019, 24, 2452. [Google Scholar] [CrossRef] [Green Version]
- Arjana, I.G.M.; Situmeang, Y.P.; Suaria, I.N.; Mudra, N.K.S. Effect of Plant Material and Variety for Production and Quality Chrysanthemum. Int. J. Adv. Sci. Eng. Inf. Technol. 2015, 5, 407–409. [Google Scholar] [CrossRef]
- Pacholczak, A.; Jędrzejuk, A.; Sobczak, M. Shading and Natural Rooting Biostimulator Enhance Potential for Vegetative Propagation of Dogwood Plants (Cornus alba L.) Via Stem Cuttings. S. Afr. J 2017, 109, 34–41. [Google Scholar] [CrossRef]
- Preece, J.E. A Century of Progress with Vegetative Plant Propagation. HortSci 2003, 38, 1015–1025. [Google Scholar] [CrossRef] [Green Version]
- Wise, K.; Gill, H.; Selby-Pham, J. Willow Bark Extract and the Biostimulant Complex Root Nectar® Increase Propagation Efficiency in Chrysanthemum and Lavender Cuttings. Sci. Hort. 2020, 263, 109108. [Google Scholar] [CrossRef]
- Abdel-Rahman, S.; Abdul-Hafeez, E.; Saleh, A.M. Improving Rooting and Growth of Conocarpus erectus Stem Cuttings Using Indole-3-Butyric Acid (IBA) and Some Biostimulants. SJFOP 2020, 7, 109–129. [Google Scholar] [CrossRef]
- Ahkami, A.H.; Lischewski, S.; Haensch, K.T.; Porfirova, S.; Hofmann, J.; Rolletschek, H.; Melzer, M.; Franken, P.; Hause, B.; Druege, U.; et al. Molecular Physiology of Adventitious Root Formation in Petunia Hybrida Cuttings: Involvement of Wound Response and Primary Metabolism. New Phytol. 2009, 181, 613–625. [Google Scholar] [CrossRef]
- Trofimuk, L.P.; Kirillov, P.S.; Egorov, A.A. Application of Biostimulants for Vegetative Propagation of Endangered Abies gracilis. J. For. Res. 2020, 31, 1195–1199. [Google Scholar] [CrossRef]
- Stirk, W.A.; Van Staden, J. Comparison of Cytokinin-and Auxin-Like Activity in Some Commercially Used Seaweed Extracts. J. Appl. Phycol. 1996, 8, 503–508. [Google Scholar] [CrossRef]
- Monder, M.J.; Woliński, K.; Niedzielski, M. The Propagation of Rosa gallica ‘Tuscany Superb’by Root Cuttings with the Use of IBA and Biostimulants. Not. Botan. Horti Agrobot. Cluj-Napoca 2019, 47, 691–698. [Google Scholar] [CrossRef] [Green Version]
- Monder, M.J.; Niedzielski, M.; Woliński, K. The Pivotal Role of Phenological Stages Enhanced by Plant Origin Preparations in the Process of Rhizogenesis of Rosa ‘Hurdal’Stem Cuttings. Agriculture 2022, 12, 158. [Google Scholar] [CrossRef]
- Norrie, J.; Critchley, A.T.; Gupta, S.; Van Staden, J. Biostimulants in modern agriculture: Fitting round biological effects into square regulatory holes. In Biostimulants for Crops from Seed Germination to Plant Development; Academic Press: New York, NY, USA, 2021; pp. 231–236. ISBN 9780128230480. [Google Scholar]
- dos Santos, P.L.F.; Zabotto, A.R.; Jordão, H.W.C.; Boas, R.L.V.; Broetto, F.; Tavares, A.R. Use of seaweed-based biostimulant (Ascophyllum nodosum) on ornamental sunflower seed germination and seedling growth. J. Ornam. Hortic. 2019, 25, 231–237. [Google Scholar] [CrossRef] [Green Version]
- Makhaye, G.; Mofokeng, M.M.; Tesfay, S.; Aremu, A.O.; Van Staden, J.; Amoo, S.O. Influence of Plant Biostimulant Application on Seed Germination. In Biostimulants for Crops from Seed Germination to Plant Development; Academic Press: New York, NY, USA, 2021; pp. 109–135. ISBN 9780128230480. [Google Scholar]
- Szekely-Varga, Z.; Kentelky, E.; Cantor, M. Effect of Gibberellic Acid on the Seed Germination of Lavandula angustifolia Mill. RJH 2021, 2, 169–176. [Google Scholar] [CrossRef]
- Zeljković, S.; Gidas, J.D.; Todorović, V.; Pašalić, M. Germination of floral species depending on the applied biostimulant. AgroReS 2019, 16, 77. [Google Scholar]
- Byczyńska, A. Chitosan improves growth and bulb yield of pineapple lily (Eucomis bicolor ‘Baker’) an ornamental and medicinal plant. WSN 2018, 110, 159–171. [Google Scholar]
- Aremu, A.O.; Masondo, N.A.; Rengasamy, K.R.; Amoo, S.O.; Gruz, J.; Bíba, O.; Šubrtová, M.; Pěnčík, A.; Novák, O.; Doležal, K.; et al. Physiological Role of Phenolic Biostimulants Isolated from Brown Seaweed Ecklonia maxima on plant growth and development. Planta 2015, 241, 1313–1324. [Google Scholar] [CrossRef]
- Paris, L.; García-Caparrós, P.; Llanderal, A.; Silva, J.T.; Reca, J.; Lao, M. Plant Regeneration from Nodal Segments and Protocorm-Like Bodies (PLBs) Derived from Cattleya maxima J. Lindley in Response to Chitosan and Coconut Water. Propag. Ornam. Plants 2019, 19, 18–23. [Google Scholar]
- Gontijo, J.B.; Andrade, G.V.S.; Baldotto, M.A.; Baldotto, L.E.B. Bioprospecting and Selection of Growth-Promoting Bacteria for Cymbidium sp. orchids. Sci Agric 2018, 75, 368–374. [Google Scholar] [CrossRef] [Green Version]
- Hasan, A.S.I.L. The Effect of Different Biostimulants Applications on Corm Characters of Saffron (Crocus sativus L.). In Academic Reseach in Life Sciences for Sustainibility; Artikel Akademi: Istanbul, Turkey, 2021; pp. 123–135. [Google Scholar]
- Monder, M.J. Rooting and Growth of Root Cuttings of Two Old Rose Cultivars “Harison’s Yellow” and “Poppius” Treated with IBA and Biostimulants. Acta Agrobot. 2019, 72. [Google Scholar] [CrossRef]
- Zeljković, S.; Parađiković, N.; Vinković, T.; Oljača, R.; Tkalec, M. Contents of Mineral Elements in Nursery Stock of Marigold (Tagetes patula L.) Under Bio Stimulant Treatment. Agro-Knowl. J. 2020, 11, 127–134. [Google Scholar]
- Gomes, E.N.; Vieira, L.M.; Tomasi, J.D.C.; Tomazzoli, M.M.; Grunennvaldt, R.L.; Fagundes, C.D.M.; Machado, R.C.B. Brown Seaweed Extract Enhances Rooting and Roots Growth on Passiflora actinia Hook Stem Cuttings. Ornam. Hortic. 2018, 24, 269–276. [Google Scholar] [CrossRef] [Green Version]
- Prisa, D. Possible Use of Spirulina and Klamath algae as Biostimulants in Portulaca grandiflora (Moss Rose). World J. Adv. Res. Rev. 2019, 3, 001–006. [Google Scholar] [CrossRef] [Green Version]
- Bákonyi, N.; Kisvarga, S.; Barna, D.; Tóth, I.O.; El-Ramady, H.; Abdalla, N.; Kovács, S.; Rozbach, M.; Fehér, C.; Elhawat, N.; et al. Chemical traits of fermented alfalfa brown juice: Its implications on physiological, biochemical, anatomical, and growth parameters of celosia. Agronomy 2020, 10, 247. [Google Scholar] [CrossRef] [Green Version]
- Kisvarga, S.; Barna, D.; Kovács, S.; Csatári, G.O.; Tóth, I.; Fári, M.G.; Makleit, P.; Veres, S.; Alshaal, T.; Bákonyi, N. Fermented Alfalfa Brown Juice Significantly Stimulates the Growth and Development of Sweet Basil (Ocimum basilicum L.) Plants. Agronomy 2020, 10, 657. [Google Scholar] [CrossRef]
- Barna, D.; Kisvarga, S.; Kovács, S.; Csatári, G.; Tóth, I.O.; Fári, M.G.; Alshaal, T.; Bákonyi, N. Raw and fermented alfalfa brown juice induces changes in the germination and development of french marigold (Tagetes patula L.) plants. Plants 2021, 10, 1076. [Google Scholar] [CrossRef]
- Jelačić, S.; Beatović, D.; Lakić, N. Effect of Natural Biostimulators and Slow-Disintegrating Fertilizers on the Quality of Sage Nursery Stock under Different Growing Conditions. In Proceedings of the XXIst Conference of Agronomist, Veterinarians and Technologists, Ministry of Science and Environmental Protection, Novi Sad, Serbia, 19–21 October 2007; pp. 145–156. Available online: https://agris.fao.org/agris-search/search.do?recordID=RS2010001902 (accessed on 20 January 2022).
- Sureshkumar, R.; Priya, G.S.; Rajkumar, M.; Sendhilnathan, R. Studies on the effect of organic manures, biostimulants and micronutrients on certain growth and flowering parameters of tuberose (Poianthes tuberosa L.) CV. Prajwal. Plant Arch. 2019, 19, 2436–2440. [Google Scholar]
- Hegde, P.P.; Patil, B.C.; Kulkarni, M.S.; Hegde, N.K.; Kukanoor, L.; Shiragur, M.; Harshavardhan, M. Efficacy of biostimulants on growth and flowering of Dendrobium orchid (Dendrobium nobile Lindl.) var. Sonia-17 under protected cultivation. J. Pharm. Innov. 2021, 10, 1189–1191. [Google Scholar]
- Ozbay, N.; Demirkiran, A.R. Enhancement of growth in ornamental pepper (Capsicum annuum L.) Plants with application of a commercial seaweed product, stimplex®. Appl. Ecol. Environ. Res. 2019, 17, 4361–4375. [Google Scholar] [CrossRef]
- Marschner, H. (Ed.) Marschner’s Mineral Nutrition of Higher Plants; Academic Press: New York, NY, USA, 2011. [Google Scholar]
- Alhasan, A.S.; Aldahab, E.A.; Al-Ameri, D.T. Influence of Different Rates of Seaweed Extract on Chlorophyll Content, Vegetative Growth and Flowering Traits of Gerbera (Gerbera jamesonii L.) Grown under the Shade Net House Conditions. IOP Conf. Ser. Earth Environ. Sci. 2021, 923, 012019. [Google Scholar] [CrossRef]
- Salachna, P. Effects of Depolymerized Gellan with Different Molecular Weights on the Growth of Four Bedding Plant Species. Agronomy 2020, 10, 169. [Google Scholar] [CrossRef] [Green Version]
- Cristiano, G.; De Lucia, B. Petunia Performance under Application of Animal-Based Protein Hydrolysates: Effects on Visual Quality, Biomass, Nutrient Content, Root Morphology, and Gas Exchange. Front. Plant Sci. 2021, 12, 890. [Google Scholar] [CrossRef]
- Cristiano, G.; Pallozzi, E.; Conversa, G.; Tufarelli, V.; De Lucia, B. Effects of an animal-derived biostimulant on the growth and physiological parameters of potted snapdragon (Antirrhinum majus L.). Front. Plant Sci. 2018, 9, 861. [Google Scholar] [CrossRef]
- Kapczyńska, A.; Kowalska, I.; Prokopiuk, B.; Pawłowska, B. Rooting Media and Biostimulator Goteo Treatment effect the adventitious root formation of Pennisetum ‘Vertigo’cuttings and the Quality of the Final Product. Agriculture 2020, 10, 570. [Google Scholar] [CrossRef]
- de Luca, V.; de Barreda, D.G.; Lidón, A.; Lull, C. Effect of Nitrogen-fixing Microorganisms and Amino Acid-based Biostimulants on Perennial Ryegrass. J. Am. Soc. Hortic. Sci. 2020, 30, 12. [Google Scholar] [CrossRef] [Green Version]
- Godlewska, K.; Biesiada, A.; Michalak, I.; Pacyga, P. The effect of plant-derived biostimulants on white head cabbage seedlings grown under controlled conditions. Sustainability 2019, 11, 5317. [Google Scholar] [CrossRef] [Green Version]
- El-Ghait, A.E.M.; Abd Al Dayem, H.M.M.; Mohamed, Y.F.Y.; Khalifa, Y.I.H. Influence of some biostimulants and chemical fertilizers on growth, seed yield, chemical constituents, oil productivity and fixed oil content of chia (Salvia hispanica L.) plant under a swan conditions. SJFOP 2021, 8, 411–425. [Google Scholar] [CrossRef]
- Daughtrey, M.L.; Benson, D.M. Principles of Plant Health Management for Ornamental Plants. Annu. Rev. Phytopathol. 2005, 43, 141–169. [Google Scholar] [CrossRef] [Green Version]
- Bolagam, R.; Natarajan, S. Effect of Pre-Harvest Sprays of Biostimulants on Post-Harvest Vase Life of Cut Gladiolus cv. Arka Amar. Bioscan 2020, 15, 015–018. [Google Scholar]
- Zulfiqar, F.; Casadesús, A.; Brockman, H.; Munné-Bosch, S. An overview of plant-based natural biostimulants for sustainable horticulture with a particular focus on moringa leaf extracts. Plant Sci. 2020, 2020, 110194. [Google Scholar] [CrossRef]
- Gawade, N.V.; Varu, D.K.; Devdhara, U. Response of Biostimulants and Biofertilizers on Yield and Quality of Chrysanthemum cv. Ratlam Selection. Int. J. Curr. Microbiol. Appl. Sci 2019, 8, 2732–2742. [Google Scholar] [CrossRef]
- Desai, S.A.; Patel, B.B.; Aklade, S.A.; Desai, C.S. Performance of Tuberose cv. Prajwal as Influenced by Different Plant Growth Enhancers. Ind. J. Pure App. Biosci. 2020, 8, 472–477. [Google Scholar] [CrossRef]
- Khenizy, S.A.; Zaky, A.; Yasser, M.E. Effect of Humic Acid on Vase Life of Gerbera Flowers after Cutting. J. Ornam. Hortic 2013, 5, 127–136. [Google Scholar]
- Leclerc, M.; Caldwell, C.D.; Lada, R.R.; Norrie, J. Effect of Plant Growth Regulators on Propagule Formation in Hemerocallis spp. and Hosta spp. HortScience 2006, 41, 651–653. [Google Scholar] [CrossRef] [Green Version]
- Nordstedt, N.P.; Jones, M.L. Serratia plymuthica MBSA-MJ1 Increases Shoot Growth and Tissue Nutrient Concentration in Containerized Ornamentals Grown Under Low-Nutrient Conditions. Front. Microbiol. 2021, 12, 788198. [Google Scholar] [CrossRef]
- Khan, S.-A.; Li, M.-Z.; Wang, S.-M.; Yin, H.-J. Revisiting the Role of Plant Transcription Factors in the Battle against Abiotic Stress. Int. J. Mol. Sci. 2018, 19, 1634. [Google Scholar] [CrossRef] [Green Version]
- Semida, W.M.; Abd El-Mageed, T.A.; Hemida, K.; Rady, M.M. Natural bee-honey based biostimulants confer salt tolerance in onion via modulation of the antioxidant defence system. J. Hortic. Sci. Biotechnol. 2019, 94, 632–642. [Google Scholar] [CrossRef]
- Desoky, E.-S.M.; ElSayed, A.I.; Merwad, A.-R.M.A.; Rady, M.M. Stimulating antioxidant defenses, antioxidant gene expression, and salt tolerance in Pisum sativum seedling by pretreatment using licorice root extract (LRE) as an organic biostimulant. Plant Physiol. Biochem. 2019, 142, 292–302. [Google Scholar] [CrossRef]
- Abou-Sreea, A.I.B.; Azzam, C.R.; Al-Taweel, S.K.; Abdel-Aziz, R.M.; Belal, H.E.E.; Rady, M.M.; Abdel-Kader, A.A.S.; Majrashi, A.; Khaled, K.A.M. Natural biostimulant attenuates salinity stress effects in chili pepper by remodeling antioxidant, ion, and phytohormone balances, and augments gene expression. Plants 2021, 10, 2316. [Google Scholar] [CrossRef]
- Alharby, H.F.; Alzahrani, Y.M.; Rady, M.M. Seeds pretreatment with zeatins or maize grain-derived organic biostimulant improved hormonal contents, polyamine gene expression, and salinity and drought tolerance of wheat. Int. J. Agric. Biol. 2020, 24, 12. [Google Scholar]
- Setti, L.; Francia, E.; Pulvirenti, A.; Gigliano, S.; Zaccardelli, M.; Pane, C.; Caradonia, F.; Bortolini, S.; Maistrello, L.; Ronga, D. Use of black soldier fly (Hermetia illucens (L.), Diptera: Stratiomyidae) larvae processing residue in peat-based growing media. Waste Manag. 2019, 95, 278–288. [Google Scholar] [CrossRef]
- Mininni, C.; Grassi, F.; Traversa, A.; Cocozza, C.; Parente, A.; Miano, T.; Santamaria, P. Posidonia oceanica (L.) based compost as substrate for potted basil production. J. Sci. Food Agric. 2015, 95, 2041–2046. [Google Scholar] [CrossRef]
- Chen, Y.; Magen, H.; Clapp, C.E. Plant Growth Stimulation by Humic Substances and Their Complexes with Iron; IFS: York, UK, 2001; Volume 1. [Google Scholar]
- Juárez-Maldonado, A.; Ortega-Ortíz, H.; Morales-Díaz, A.B.; González-Morales, S.; Morelos-Moreno, Á.; Cabrera-De la Fuente, M.; Sandoval-Rangel, A.; Cadenas-Pliego, G.; Benavides-Mendoza, A. Nanoparticles and Nanomaterials as Plant Biostimulants. Int. J. Mol. Sci. 2019, 20, 162. [Google Scholar] [CrossRef] [Green Version]
Filatov, 1951b | Ikrina and Kolbin, 2004 | Kauffman et al., 2007 | Du Jardin, 2012 | Calvo et al., 2014 | Halpern et al., 2015 | Du Jardin, 2015 | Torre et al., 2016 | |
---|---|---|---|---|---|---|---|---|
1 | Carboxylic fatty acids (oxalic acid and succiric acid) | Microorganisms (bacteria, fungi) | Humic substances | Humic substances | Microbial inoculants | Humic substances | Humic and fulvic acids | Humic substances |
2 | Carboxylic fatty hydroxyl acids (malic and tartaric acids) | Plant materials (land, freshwater, and marine) | Hormone containing products (seaweed extracts) | Complex organic materials | Humic acids | Protein hydrolysate and amino acid formulations | Protein hydrolysates and other N-containing compounds | Seaweed extracts |
3 | Unsaturated fatty acids, aromatic and phenolic acids (cinnamic and hydroxycinnamic acids, coumarin) | Sea shellfish, animals, bees | Amino acid containing products | Beneficial chemical elements | Fulvic acids | Seaweed extract | Seaweed extracts and botanicals | Hydrolyzed proteins and amino acids |
4 | Phenolic aromatic acids containing several benzene rings linked via carbon atoms (humic acids) | Humate- and humus-containing substances | - | Inorganic salts (such as phosphite) | Protein hydrolysates and amino acids | Plant-growth-promoting microorganism (including mycorrhizal fungi) | Chitosan and other biopolymers | Inorganic salts |
5 | - | Vegetable oils | - | Seaweed extracts | Seaweed extracts | - | Inorganic compounds | Microorganisms |
6 | - | Natural minerals | - | Chitin and chitosan derivatives | - | - | Beneficial fungi | - |
7 | - | Water (activated, degassed, thermal) | - | Free amino acids and other N-containing substances | - | - | Beneficial bacteria | - |
8 | - | Resins | - | - | - | - | - | |
9 | - | Other raw materials (oil and petroleum fraction, shale substance | - | - | - | - | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kisvarga, S.; Farkas, D.; Boronkay, G.; Neményi, A.; Orlóci, L. Effects of Biostimulants in Horticulture, with Emphasis on Ornamental Plant Production. Agronomy 2022, 12, 1043. https://doi.org/10.3390/agronomy12051043
Kisvarga S, Farkas D, Boronkay G, Neményi A, Orlóci L. Effects of Biostimulants in Horticulture, with Emphasis on Ornamental Plant Production. Agronomy. 2022; 12(5):1043. https://doi.org/10.3390/agronomy12051043
Chicago/Turabian StyleKisvarga, Szilvia, Dóra Farkas, Gábor Boronkay, András Neményi, and László Orlóci. 2022. "Effects of Biostimulants in Horticulture, with Emphasis on Ornamental Plant Production" Agronomy 12, no. 5: 1043. https://doi.org/10.3390/agronomy12051043
APA StyleKisvarga, S., Farkas, D., Boronkay, G., Neményi, A., & Orlóci, L. (2022). Effects of Biostimulants in Horticulture, with Emphasis on Ornamental Plant Production. Agronomy, 12(5), 1043. https://doi.org/10.3390/agronomy12051043