Short-Term Responses of Soil Organic Carbon Pool and Crop Performance to Different Fertilizer Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Treatments and Sampling
2.3. Analytical
2.3.1. SOC Fractions
2.3.2. Soil Physical and Chemical Parameters
2.3.3. Plant Performance
2.3.4. Emission of CO2 and N2O
2.4. Statistical Analysis
3. Results
3.1. SOC Fractions
3.2. Soil Physicochemical Properties
3.3. GHG Emission
3.4. Crop Biomass and Physiological Properties
3.5. Correlations of SOC Fractions with Whole Parameters
3.6. Analysis of PCA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gong, W.; Yan, X.; Wang, J.; Hu, T.; Gong, Y. Long-Term Manure and Fertilizer Effects on Soil Organic Matter Fractions and Microbes under a Wheat–Maize Cropping System in Northern China. Geoderma 2009, 149, 318–324. [Google Scholar] [CrossRef]
- FAO. Plant Nutrition for Food Security: A Guide for Integrated Nutrient Management; Roy, R.N., Finck, A., Blair, G.J., Tandon, H.L.S., Eds.; FAO fertilizer and plant nutrition bulletin; Food and Agriculture Organization of the United Nations: Rome, Italy, 2006; p. 348. [Google Scholar] [CrossRef]
- Savci, S. An Agricultural Pollutant: Chemical Fertilizer. IJESD 2012, 3, 73–80. [Google Scholar] [CrossRef] [Green Version]
- Srivastav, A.L. Chemical Fertilizers and Pesticides: Role in Groundwater Contamination. In Agrochemicals Detection, Treatment and Remediation; Prasad, M.N.V., Ed.; Butterworth-Heinemann: Oxford, UK, 2020; Chapter 6; pp. 143–159. [Google Scholar]
- Clark, S. Organic Farming and Climate Change: The Need for Innovation. Sustainability 2020, 12, 7012. [Google Scholar] [CrossRef]
- Xu, C.; Wang, J.; Wu, D.; Li, C.; Wang, L.; Ji, C.; Zhang, Y.; Ai, Y. Optimizing Organic Amendment Applications to Enhance Carbon Sequestration and Economic Benefits in an Infertile Sandy Soil. J. Environ. Manag. 2022, 303, 114129. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Soil Organic Matter Stratification Ratio as an Indicator of Soil Quality. Soil Tillage Res. 2002, 66, 95–106. [Google Scholar] [CrossRef]
- Mirsky, S.B.; Lanyon, L.E.; Needelman, B.A. Evaluating Soil Management Using Particulate and Chemically Labile Soil Organic Matter Fractions. Soil Sci. Soc. Am. J. 2008, 72, 180–185. [Google Scholar] [CrossRef]
- Deb, S.; Bhadoria, P.B.S.; Mandal, B.; Rakshit, A.; Singh, H.B. Soil Organic Carbon: Towards Better Soil Health, Productivity and Climate Change Mitigation. Clim. Chang. Environ. Sustain. 2015, 3, 26. [Google Scholar] [CrossRef]
- Wander, M.M. Soil Organic Matter Fractions and Their Relevance to Soil Function. In Soil Organic Matter in Sustainable Agriculture; Magdoff, F., Weil, R., Eds.; Advances in Agroecology; CRC Press: Boca Raton, FL, USA, 2004; pp. 67–102. [Google Scholar]
- Bolan, N.; Kunhikrishnan, A.; Thangarajan, R.; Kumpiene, J.; Park, J.; Makino, T.; Kirkham, M.B.; Scheckel, K. Remediation of Heavy Metal(Loid)s Contaminated Soils—To Mobilize or to Immobilize? J. Hazard. Mater. 2014, 266, 141–166. [Google Scholar] [CrossRef]
- Bongiorno, G.; Bünemann, E.K.; Oguejiofor, C.U.; Meier, J.; Gort, G.; Comans, R.; Mäder, P.; Brussaard, L.; de Goede, R. Sensitivity of Labile Carbon Fractions to Tillage and Organic Matter Management and Their Potential as Comprehensive Soil Quality Indicators across Pedoclimatic Conditions in Europe. Ecol. Indic. 2019, 99, 38–50. [Google Scholar] [CrossRef]
- Culman, S.W.; Snapp, S.S.; Green, J.M.; Gentry, L.E. Short- and Long-Term Labile Soil Carbon and Nitrogen Dynamics Reflect Management and Predict Corn Agronomic Performance. Agron. J. 2013, 105, 493–502. [Google Scholar] [CrossRef]
- Hurisso, T.T.; Culman, S.W.; Horwath, W.R.; Wade, J.; Cass, D.; Beniston, J.W.; Bowles, T.M.; Grandy, A.S.; Franzluebbers, A.J.; Schipanski, M.E.; et al. Comparison of Permanganate-Oxidizable Carbon and Mineralizable Carbon for Assessment of Organic Matter Stabilization and Mineralization. Soil Sci. Soc. Am. J. 2016, 80, 1352–1364. [Google Scholar] [CrossRef]
- Lewis, D.B.; Kaye, J.P.; Jabbour, R.; Barbercheck, M.E. Labile Carbon and Other Soil Quality Indicators in Two Tillage Systems during Transition to Organic Agriculture. Renew. Agric. Food Syst. 2011, 26, 342–353. [Google Scholar] [CrossRef]
- Li, J.; Wu, X.; Gebremikael, M.T.; Wu, H.; Cai, D.; Wang, B.; Li, B.; Zhang, J.; Li, Y.; Xi, J. Response of Soil Organic Carbon Fractions, Microbial Community Composition and Carbon Mineralization to High-Input Fertilizer Practices under an Intensive Agricultural System. PLoS ONE 2018, 13, e0195144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, W.; Yan, X.; Wang, J.; Hu, T.; Gong, Y. Long-Term Manuring and Fertilization Effects on Soil Organic Carbon Pools under a Wheat–Maize Cropping System in North China Plain. Plant Soil 2009, 314, 67–76. [Google Scholar] [CrossRef]
- Haynes, R.J. Labile Organic Matter Fractions as Centralcomponents of the Quality of Agricultural Soils: Anoverview. Adv. Agron. 2005, 5, 221–268. [Google Scholar]
- Weil, R.R.; Islam, K.R.; Stine, M.A.; Gruver, J.B.; Samson-Liebig, S.E. Estimating Active Carbon for Soil Quality Assessment: A Simplified Method for Laboratory and Field Use. Am. J. Altern. Agric. 2003, 18, 3–17. [Google Scholar]
- Culman, S.W.; Snapp, S.S.; Freeman, M.A.; Schipanski, M.E.; Beniston, J.; Lal, R.; Drinkwater, L.E.; Franzluebbers, A.J.; Glover, J.D.; Grandy, A.S. Permanganate Oxidizable Carbon Reflects a Processed Soil Fraction That Is Sensitive to Management. Soil Sci. Soc. Am. J. 2012, 76, 494–504. [Google Scholar] [CrossRef] [Green Version]
- Heiri, O.; Lotter, A.F.; Lemcke, G. Loss on Ignition as a Method for Estimating Organic and Carbonate Content in Sediments: Reproducibility and Comparability of Results. J. Paleolimnol. 2001, 25, 101–110. [Google Scholar] [CrossRef]
- Nelson, D.W.; Sommers, L.E. Total Carbon, Organic Carbon, and Organic Matter. In Methods of Soil Analysis: Part 3 Chemical Methods; Sparks, D.L., Page, A.L., Helmke, P.A., Loeppert, R.H., Soltanpour, P.N., Tabatabai, M.A., Johnston, C.T., Summer, M.E., Eds.; Soil Science Society of America—American Society of Agronomy: Madison, WI, USA, 1996; Chapter 34; pp. 961–1010. [Google Scholar] [CrossRef]
- Franzluebbers, A.J.; Haney, R.L.; Honeycutt, C.W.; Schomberg, H.H.; Hons, F.M. Flush of Carbon Dioxide Following Rewetting of Dried Soil Relates to Active Organic Pools. Soil Sci. Soc. Am. J. 2000, 64, 613–623. [Google Scholar] [CrossRef]
- Vance, E.D.; Brookes, P.C.; Jenkinson, D.S. An Extraction Method for Measuring Soil Microbial Biomass C. Soil Biol. Biochem. 1987, 19, 703–707. [Google Scholar] [CrossRef]
- NIAST. Methods of Analysis of Soil and Plant; RDA: Suwon, Korea, 2000. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of Total, Organic, and Available Forms of Phosphorus in Soils. Soil Sci. 1945, 59, 39–46. [Google Scholar] [CrossRef]
- Lichtenthaler, H.K. Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes. Meth. Enzymol. 1987, 148, 350–382. [Google Scholar]
- Ding, X.; Yuan, Y.; Liang, Y.; Li, L.; Han, X. Impact of Long-Term Application of Manure, Crop Residue, and Mineral Fertilizer on Organic Carbon Pools and Crop Yields in a Mollisol. J. Soils Sediments 2014, 14, 854–859. [Google Scholar] [CrossRef]
- Brar, B.S.; Singh, K.; Dheri, G.S. Carbon Sequestration and Soil Carbon Pools in a Rice–Wheat Cropping System: Effect of Long-Term Use of Inorganic Fertilizers and Organic Manure. Soil Tillage Res. 2013, 128, 30–36. [Google Scholar] [CrossRef]
- Yan, X.; Zhou, H.; Zhu, Q.H.; Wang, X.F.; Zhang, Y.Z.; Yu, X.C.; Peng, X. Carbon Sequestration Efficiency in Paddy Soil and Upland Soil under Long-Term Fertilization in Southern China. Soil Tillage Res. 2013, 130, 42–51. [Google Scholar] [CrossRef]
- Zhu, L.; Hu, N.; Zhang, Z.; Xu, J.; Tao, B.; Meng, Y. Short-Term Responses of Soil Organic Carbon and Carbon Pool Management Index to Different Annual Straw Return Rates in a Rice–Wheat Cropping System. Catena 2015, 135, 283–289. [Google Scholar] [CrossRef]
- Ghosh, M.; Ashiq, W.; Bhogilal Vasava, H.; Gamage, D.N.V.; Patra, P.K.; Biswas, A. Short-Term Carbon Sequestration and Changes of Soil Organic Carbon Pools in Rice under Integrated Nutrient Management in India. Agriculture 2021, 11, 348. [Google Scholar] [CrossRef]
- Tang, H.; Xiao, X.; Li, C.; Pan, X.; Cheng, K.; Shi, L.; Li, W. Short-Term Responses of Soil Organic Carbon and Its Labile Fractions to Different Manure Nitrogen Input in a Double-Cropping Rice Field. J. Agric. Sci. 2020, 158, 119–127. [Google Scholar] [CrossRef]
- Lou, Y.; Wang, J.; Liang, W. Impacts of 22-Year Organic and Inorganic N Managements on Soil Organic C Fractions in a Maize Field, Northeast China. Catena 2011, 87, 386–390. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, J.; Han, X.; Zou, W.; Chen, X.; Lu, X.; Feng, Y. Labile Organic Carbon Fractions Drive Soil Microbial Communities after Long-Term Fertilization. Glob. Ecol. Conserv. 2021, 32, e01867. [Google Scholar] [CrossRef]
- Manna, M.C.; Swarup, A.; Wanjari, R.H.; Singh, Y.V.; Ghosh, P.K.; Singh, K.N.; Tripathi, A.K.; Saha, M.N. Soil Organic Matter in a West Bengal Inceptisol after 30 Years of Multiple Cropping and Fertilization. Soil Sci. Soc. Am. J. 2006, 70, 121–129. [Google Scholar] [CrossRef]
- Rudrappa, L.; Purakayastha, T.J.; Singh, D.; Bhadraray, S. Long-Term Manuring and Fertilization Effects on Soil Organic Carbon Pools in a Typic Haplustept of Semi-Arid Sub-Tropical India. Soil Tillage Res. 2006, 88, 180–192. [Google Scholar] [CrossRef]
- Lou, Y.; Xu, M.; Wang, W.; Sun, X.; Liang, C. Soil Organic Carbon Fractions and Management Index after 20 Yr of Manure and Fertilizer Application for Greenhouse Vegetables: Soil Organic C and Fertilizer Use. Soil Use Manag. 2011, 27, 163–169. [Google Scholar] [CrossRef]
- Chang, E.-H.; Wang, C.-H.; Chen, C.-L.; Chung, R.-S. Effects of Long-Term Treatments of Different Organic Fertilizers Complemented with Chemical N Fertilizer on the Chemical and Biological Properties of Soils. Soil Sci. Plant Nutr. 2014, 60, 499–511. [Google Scholar] [CrossRef]
- Omay, A.B.; Rice, C.W.; Maddux, L.D.; Gordon, W.B. Changes in Soil Microbial and Chemical Properties under Long-term Crop Rotation and Fertilization. Soil Sci. Soc. Am. J. 1997, 61, 1672–1678. [Google Scholar] [CrossRef]
- Xue, D.; Yao, H.; Huang, C. Microbial Biomass, N Mineralization and Nitrification, Enzyme Activities, and Microbial Community Diversity in Tea Orchard Soils. Plant Soil 2006, 288, 319–331. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, X.; Wang, Y.; Zong, J.; Ma, J.; Li, C. Changes in Soil Organic Carbon Fractions and Bacterial Community Composition under Different Tillage and Organic Fertiliser Application in a Maize−Wheat Rotation System. Acta Agric. Scand. B Soil Plant Sci. 2020, 70, 457–466. [Google Scholar] [CrossRef]
- Anda, M.; Syed Omar, S.R.; Shamshuddin, J.; Fauziah, C.I. Changes in Properties of Composting Rice Husk and Their Effects on Soil and Cocoa Growth. Commun. Soil Sci. Plant Anal. 2008, 39, 2221–2249. [Google Scholar] [CrossRef]
- Liu, E.; Teclemariam, S.G.; Yan, C.; Yu, J.; Gu, R.; Liu, S.; He, W.; Liu, Q. Long-Term Effects of No-Tillage Management Practice on Soil Organic Carbon and Its Fractions in the Northern China. Geoderma 2014, 213, 379–384. [Google Scholar] [CrossRef]
- Jiang, H.-M.; Jiang, J.-P.; Jia, Y.; Li, F.-M.; Xu, J.-Z. Soil Carbon Pool and Effects of Soil Fertility in Seeded Alfalfa Fields on the Semi-Arid Loess Plateau in China. Soil Biol. Biochem. 2006, 38, 2350–2358. [Google Scholar] [CrossRef]
- Iqbal, A.; He, L.; Khan, A.; Wei, S.; Akhtar, K.; Ali, I.; Ullah, S.; Munsif, F.; Zhao, Q.; Jiang, L. Organic Manure Coupled with Inorganic Fertilizer: An Approach for the Sustainable Production of Rice by Improving Soil Properties and Nitrogen Use Efficiency. Agronomy 2019, 9, 651. [Google Scholar] [CrossRef] [Green Version]
- Chen, C.; Liu, W.; Jiang, X.; Wu, J. Effects of Rubber-Based Agroforestry Systems on Soil Aggregation and Associated Soil Organic Carbon: Implications for Land Use. Geoderma 2017, 299, 13–24. [Google Scholar] [CrossRef]
- Logsdon, S.D.; Karlen, D.L. Bulk Density as a Soil Quality Indicator during Conversion to No-Tillage. Soil Tillage Res. 2004, 78, 143–149. [Google Scholar] [CrossRef]
- Dong, L.; Zhang, W.; Xiong, Y.; Zou, J.; Huang, Q.; Xu, X.; Ren, P.; Huang, G. Impact of Short-Term Organic Amendments Incorporation on Soil Structure and Hydrology in Semiarid Agricultural Lands. Int. Soil Water Conserv. Res. 2021, in press. [Google Scholar] [CrossRef]
- Adugna, G. A Review on Impact of Compost on Soil Properties, Water Use and Crop Productivity. Acad. Res. J. Agric. Sci. Res. 2016, 4, 93–104. [Google Scholar]
- De Rosa, D.; Rowlings, D.W.; Biala, J.; Scheer, C.; Basso, B.; Grace, P.R. N2O and CO2 Emissions Following Repeated Application of Organic and Mineral N Fertiliser from a Vegetable Crop Rotation. Sci. Total Environ. 2018, 637, 813–824. [Google Scholar] [CrossRef] [PubMed]
- Graham, R.F.; Wortman, S.E.; Pittelkow, C.M. Comparison of Organic and Integrated Nutrient Management Strategies for Reducing Soil N2O Emissions. Sustainability 2017, 9, 510. [Google Scholar] [CrossRef] [Green Version]
- Thangarajan, R.; Bolan, N.S.; Tian, G.; Naidu, R.; Kunhikrishnan, A. Role of Organic Amendment Application on Greenhouse Gas Emission from Soil. Sci. Total Environ. 2013, 465, 72–96. [Google Scholar] [CrossRef]
- Charles, A.; Rochette, P.; Whalen, J.K.; Angers, D.A.; Chantigny, M.H.; Bertrand, N. Global Nitrous Oxide Emission Factors from Agricultural Soils after Addition of Organic Amendments: A Meta-Analysis. Agric. Ecosyst. Environ. 2017, 236, 88–98. [Google Scholar] [CrossRef]
- Bhattacharyya, P.; Nayak, A.K.; Mohanty, S.; Tripathi, R.; Shahid, M.; Kumar, A.; Raja, R.; Panda, B.B.; Roy, K.S.; Neogi, S. Greenhouse Gas Emission in Relation to Labile Soil C, N Pools and Functional Microbial Diversity as Influenced by 39 Years Long-Term Fertilizer Management in Tropical Rice. Soil Tillage Res. 2013, 129, 93–105. [Google Scholar] [CrossRef]
- Fang, Y.; Singh, B.P.; Collins, D.; Armstrong, R.; Van Zwieten, L.; Tavakkoli, E. Nutrient Stoichiometry and Labile Carbon Content of Organic Amendments Control Microbial Biomass and Carbon-Use Efficiency in a Poorly Structured Sodic-Subsoil. Biol. Fertil. Soils 2020, 56, 219–233. [Google Scholar] [CrossRef]
- Dalal, R.C.; Gibson, I.; Allen, D.E.; Menzies, N.W. Green Waste Compost Reduces Nitrous Oxide Emissions from Feedlot Manure Applied to Soil. Agric. Ecosyst. Environ. 2010, 136, 273–281. [Google Scholar] [CrossRef]
- Bhunia, S.; Bhowmik, A.; Mallick, R.; Mukherjee, J. Agronomic Efficiency of Animal-Derived Organic Fertilizers and Their Effects on Biology and Fertility of Soil: A Review. Agronomy 2021, 11, 823. [Google Scholar] [CrossRef]
- Celestina, C.; Hunt, J.R.; Sale, P.W.G.; Franks, A.E. Attribution of Crop Yield Responses to Application of Organic Amendments: A Critical Review. Soil Tillage Res. 2019, 186, 135–145. [Google Scholar] [CrossRef]
- Liu, C.; Liu, Y.; Lu, Y.; Liao, Y.; Nie, J.; Yuan, X.; Chen, F. Use of a Leaf Chlorophyll Content Index to Improve the Prediction of Above-Ground Biomass and Productivity. PeerJ 2019, 6, e6240. [Google Scholar] [CrossRef]
- Hermanns, A.S.; Zhou, X.; Xu, Q.; Tadmor, Y.; Li, L. Carotenoid Pigment Accumulation in Horticultural Plants. Hortic. Plant J. 2020, 6, 343–360. [Google Scholar] [CrossRef]
- Agati, G.; Tuccio, L.; Kusznierewicz, B.; Chmiel, T.; Bartoszek, A.; Kowalski, A.; Grzegorzewska, M.; Kosson, R.; Kaniszewski, S. Nondestructive Optical Sensing of Flavonols and Chlorophyll in White Head Cabbage (Brassica oleracea L. Var. Capitata Subvar. Alba) Grown under Different Nitrogen Regimens. J. Agric. Food Chem. 2016, 64, 85–94. [Google Scholar] [CrossRef]
- Costa, M.L.; Civello, P.M.; Chaves, A.R.; Martínez, G.A. Effect of Hot Air Treatments on Senescence and Quality Parameters of Harvested Broccoli (Brassica oleracea L. Var. Italica) Heads. J. Sci. Food Agric. 2005, 85, 1154–1160. [Google Scholar] [CrossRef]
- Rostami, M.; Koocheki, A.R.; Mahallati, M.N.; Kafi, M. Evaluation of Chlorophyll Meter (SPAD) Data for Prediction of Nitrogen Status in Corn (Zea mays L.). Am.-Eurasian J. Agric. Sci. 2008, 3, 79–85. [Google Scholar]
- Wang, Y.; Wang, D.; Shi, P.; Omasa, K. Estimating Rice Chlorophyll Content and Leaf Nitrogen Concentration with a Digital Still Color Camera under Natural Light. Plant Methods 2014, 10, 36. [Google Scholar] [CrossRef] [Green Version]
- Kalacska, M.; Lalonde, M.; Moore, T.R. Estimation of Foliar Chlorophyll and Nitrogen Content in an Ombrotrophic Bog from Hyperspectral Data: Scaling from Leaf to Image. Remote Sens. Environ. 2015, 169, 270–279. [Google Scholar] [CrossRef]
- Wang, Q.; Mao, X.; Jiang, X.; Pei, D.; Shao, X. Digital Image Processing Technology under Backpropagation Neural Network and K-Means Clustering Algorithm on Nitrogen Utilization Rate of Chinese Cabbages. PLoS ONE 2021, 16, e0248923. [Google Scholar] [CrossRef] [PubMed]
- Duval, M.E.; Galantini, J.A.; Iglesias, J.O.; Canelo, S.; Martinez, J.M.; Wall, L. Analysis of Organic Fractions as Indicators of Soil Quality under Natural and Cultivated Systems. Soil Tillage Res. 2013, 131, 11–19. [Google Scholar] [CrossRef]
Amendment | T-C | T-N | C/N | P2O5 | K2O | Ca | Mg | K |
---|---|---|---|---|---|---|---|---|
(%) | (%) | (cmol kg−1) | ||||||
MC | 57.4 ± 0.145 | 3.61 ± 0.055 | 15.9 | 8.64 ± 0.726 | 1.93 ± 0.057 | 4.17 ± 0.177 | 2.76 ± 0.099 | 3.48 ± 0.136 |
RH | 40.0 ± 0.219 | 0.47 ± 0.048 | 85.1 | 3.96 ± 0.852 | 0.33 ± 0.035 | 0.21 ± 0.016 | 0.41 ± 0.037 | 0.01 ± 0.002 |
Treatment | LOIC | WBC | POXC | PMC | MBC |
---|---|---|---|---|---|
(g kg−1) | (mg kg−1) | ||||
Control | 53.0b | 18.8 | 643 | 43.3 | 25.2c |
CF | 65.8a | 20.4 | 699 | 17.9 | 26.8c |
MC | 71.1a | 22.1 | 746 | 21.5 | 38.9abc |
2MC | 71.4a | 22.9 | 782 | 31.4 | 46.1ab |
CF + MC | 67.9a | 20.4 | 712 | 22.9 | 27.7c |
CF + RH | 72.9a | 21.6 | 706 | 28.9 | 29.8bc |
MC + RH | 72.7a | 22.4 | 807 | 27.5 | 48.8a |
CF + MC + RH | 70.1a | 20.9 | 712 | 25.3 | 31.5bc |
p value | <0.001 | 0.813 | 0.424 | 0.097 | <0.001 |
Treatment | Bulk Density | pH1:5w | EC | T-N | Av. P2O5 | CEC | Ex. Ca | Ex. K | Ex. Mg |
---|---|---|---|---|---|---|---|---|---|
(dS m−1) | (g kg−1) | (mg kg−1) | (cmolc kg−1) | ||||||
Control | 1.21a | 7.51 | 0.107 | 1.83b | 83.3 | 9.18 | 9.33 | 1.06 | 3.17 |
CF | 1.19ab | 7.60 | 0.220 | 1.87b | 96.3 | 11.8 | 9.40 | 1.55 | 3.22 |
MC | 1.14ab | 7.52 | 0.150 | 2.20ab | 100 | 12.8 | 10.0 | 1.64 | 3.38 |
2MC | 1.09b | 7.78 | 0.183 | 2.37a | 238 | 11.9 | 9.82 | 1.78 | 3.30 |
CF + MC | 1.12ab | 7.27 | 0.217 | 2.10ab | 147 | 12.9 | 9.42 | 1.70 | 3.18 |
CF + RH | 1.09b | 7.57 | 0.240 | 2.10ab | 134 | 11.2 | 9.70 | 2.47 | 3.28 |
MC + RH | 1.12ab | 7.76 | 0.116 | 2.23ab | 168 | 11.6 | 10.6 | 1.73 | 3.40 |
CF + MC + RH | 0.93c | 7.37 | 0.183 | 2.10ab | 172 | 12.1 | 9.45 | 1.71 | 3.24 |
p value | <0.001 | 0.205 | 0.332 | 0.019 | 0.080 | 0.303 | 0.387 | 0.073 | 0.955 |
Treatment | CO2 (kg ha−1 d−1) | N2O (g ha−1 d−1) | ||
---|---|---|---|---|
3 Days | 60 Days | 3 Days | 60 Days | |
Control | 14.3c | 0.124d | 2.01c | 5.89b |
CF | 17.4bc | 0.279cd | 9.37ab | 9.30b |
MC | 29.7abc | 0.391bc | 9.34ab | 21.2ab |
2MC | 44.3a | 0.636a | 11.6a | 54.6a |
CF + MC | 34.3ab | 0.297cd | 11.3a | 33.3ab |
CF + RH | 18.0bc | 0.211cd | 5.26bc | 23.7ab |
MC + RH | 36.6a | 0.543ab | 9.51ab | 31.7ab |
CF + MC + RH | 40.3a | 0.548ab | 8.16ab | 33.4ab |
p value | <0.001 | <0.001 | <0.001 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, Y.-N.; Cho, Y.-S.; Lee, J.-H.; Seo, H.-R.; Kim, B.-H.; Lee, D.-B.; Lee, Y.B.; Kim, K.-H. Short-Term Responses of Soil Organic Carbon Pool and Crop Performance to Different Fertilizer Applications. Agronomy 2022, 12, 1106. https://doi.org/10.3390/agronomy12051106
Kim Y-N, Cho Y-S, Lee J-H, Seo H-R, Kim B-H, Lee D-B, Lee YB, Kim K-H. Short-Term Responses of Soil Organic Carbon Pool and Crop Performance to Different Fertilizer Applications. Agronomy. 2022; 12(5):1106. https://doi.org/10.3390/agronomy12051106
Chicago/Turabian StyleKim, Young-Nam, Young-Sang Cho, Ji-Hyun Lee, Han-Ryul Seo, Bo-Hyun Kim, Dan-Bi Lee, Yong Bok Lee, and Kye-Hoon Kim. 2022. "Short-Term Responses of Soil Organic Carbon Pool and Crop Performance to Different Fertilizer Applications" Agronomy 12, no. 5: 1106. https://doi.org/10.3390/agronomy12051106
APA StyleKim, Y. -N., Cho, Y. -S., Lee, J. -H., Seo, H. -R., Kim, B. -H., Lee, D. -B., Lee, Y. B., & Kim, K. -H. (2022). Short-Term Responses of Soil Organic Carbon Pool and Crop Performance to Different Fertilizer Applications. Agronomy, 12(5), 1106. https://doi.org/10.3390/agronomy12051106