Evaluation of Raw Cheese as a Novel Source of Biofertilizer with a High Level of Biosecurity for Blueberry
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains Isolation
2.2. MALDI-TOF MS Performing and Data Analysis
2.3. Phylogenetic Analysis of pheS Gene
2.4. Evaluation of Antimicrobial Activity
2.5. Analysis of Plant Growth Promotion Potential of Isolated Strains
2.6. In-Plant Evaluation of Plant Growth Promotion Ability
2.7. Colonization Ability
3. Results
3.1. Identification of Isolated Strains
3.2. Screening for Antimicrobial Activity
3.3. Plant Growth-Promotion Mechanisms
3.4. Plant Growth-Promotion Assays on Blueberry Seedlings
3.5. Colonization Ability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Minervini, F.; Lattanzi, A.; Dinardo, F.R.; De Angelis, M.; Gobbetti, M. Wheat endophytic lactobacilli drive the microbial and biochemical features of sourdoughs. Food Microbiol. 2018, 70, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Gaglio, R.; Franciosi, E.; Todaro, A.; Guarcello, R.; Alfeo, V.; Randazzo, C.L.; Settanni, L.; Todaro, M. Addition of selected starter/non-starter lactic acid bacterial inoculums to stabilise PDO Pecorino Siciliano cheese production. Food Res. Int. 2020, 136, 109335. [Google Scholar] [CrossRef] [PubMed]
- Lortal, S.; Di Blasi, A.; Madec, M.N.; Pediliggieri, C.; Tuminello, L.; Tanguy, G.; Fauquant, J.; Lecuona, Y.; Campo, P.; Carpino, S.; et al. Tina wooden vat biofilm: A safe and highly efficient lactic acid bacteria delivering system in PDO Ragusano cheese making. Int. J. Food Microbiol. 2009, 132, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cardinali, F.; Ferrocino, I.; Milanović, V.; Belleggia, L.; Corvaglia, M.R.; Garofalo, C.; Foligni, R.; Mannozzi, C.; Mozzon, M.; Cocolin, L.; et al. Microbial communities and volatile profile of Queijo de Azeitão PDO cheese, a traditional Mediterranean thistle-curdled cheese from Portugal. Food Res. Int. 2021, 147, 110537. [Google Scholar] [CrossRef] [PubMed]
- Flórez, A.B.; Mayo, B. Microbial diversity and succession during the manufacture and ripening of traditional, Spanish, blue-veined Cabrales cheese, as determined by PCR-DGGE. Int. J. Food Microbiol. 2006, 110, 165–171. [Google Scholar] [CrossRef]
- Gaglio, R.; Cruciata, M.; Scatassa, M.L.; Tolone, M.; Mancuso, I.; Cardamone, C.; Corona, O.; Todaro, M.; Settanni, L. Influence of the early bacterial biofilms developed on vats made with seven wood types on PDO Vastedda della valle del Belìce cheese characteristics. Int. J. Food Microbiol. 2019, 291, 91–103. [Google Scholar] [CrossRef]
- Picon, A.; López-Pérez, O.; Torres, E.; Garde, S.; Nuñez, M. Contribution of autochthonous lactic acid bacteria to the typical flavour of raw goat milk cheeses. Int. J. Food Microbiol. 2019, 299, 8–22. [Google Scholar] [CrossRef]
- Sánchez-juanes, F.; Teixeira-martín, V.; González-buitrago, J.M.; Velázquez, E.; Flores-félix, J.D. Identification of species and subspecies of lactic acid bacteria present in spanish cheeses type “torta” by maldi-tof ms and phes gene analyses. Microorganisms 2020, 8, 301. [Google Scholar] [CrossRef] [Green Version]
- Salameh, C.; Banon, S.; Hosri, C.; Scher, J. An overview of recent studies on the main traditional fermented milks and white cheeses in the Mediterranean region. Food Rev. Int. 2016, 32, 256–279. [Google Scholar] [CrossRef]
- Silva, L.R.; Jacinto, T.A.; Coutinho, P. Bioactive Compounds from Cardoon as Health Promoters in Metabolic Disorders. Foods 2022, 11, 336. [Google Scholar] [CrossRef]
- Ordiales, E.; Benito, M.J.; Martín, A.; Casquete, R.; Serradilla, M.J.; de Guía Córdoba, M. Bacterial communities of the traditional raw ewe’s milk cheese “Torta del Casar” made without the addition of a starter. Food Control 2013, 33, 448–454. [Google Scholar] [CrossRef]
- Macedo, A.C.; Tavares, T.G.; Malcata, F.X. Influence of native lactic acid bacteria on the microbiological, biochemical and sensory profiles of Serra da Estrela cheese. Food Microbiol. 2004, 21, 233–240. [Google Scholar] [CrossRef]
- Blanco-Vargas, A.; Rodríguez-Gacha, L.M.; Sánchez-Castro, N.; Garzón-Jaramillo, R.; Pedroza-Camacho, L.D.; Poutou-Piñales, R.A.; Rivera-Hoyos, C.M.; Díaz-Ariza, L.A.; Pedroza-Rodríguez, A.M. Phosphate-solubilizing Pseudomonas sp., and Serratia sp., co-culture for Allium cepa L. growth promotion. Heliyon 2020, 6, e05218. [Google Scholar] [CrossRef] [PubMed]
- Panwar, M.; Tewari, R.; Gulati, A.; Nayyar, H. Indigenous salt-tolerant rhizobacterium Pantoea dispersa (PSB3) reduces sodium uptake and mitigates the effects of salt stress on growth and yield of chickpea. Acta Physiol. Plant. 2016, 38, 278. [Google Scholar] [CrossRef]
- Luna-Guevara, J.J.; Arenas-Hernandez, M.M.P.; Martínez De La Peña, C.; Silva, J.L.; Luna-Guevara, M.L. The Role of Pathogenic E. coli in Fresh Vegetables: Behavior, Contamination Factors, and Preventive Measures. Int. J. Microbiol. 2019, 2019, 2894328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lamont, J.R.; Wilkins, O.; Bywater-Ekegärd, M.; Smith, D.L. From yogurt to yield: Potential applications of lactic acid bacteria in plant production. Soil Biol. Biochem. 2017, 111, 1–9. [Google Scholar] [CrossRef]
- Chen, C.; Cao, Z.; Li, J.; Tao, C.; Feng, Y.; Han, Y. A novel endophytic strain of Lactobacillus plantarum CM-3 with antagonistic activity against Botrytis cinerea on strawberry fruit. Biol. Control 2020, 148, 104306. [Google Scholar] [CrossRef]
- Taha, M.D.M.; Jaini, M.F.M.; Saidi, N.B.; Rahim, R.A.; Shah, U.K.M.; Hashim, A.M. Biological control of Erwinia mallotivora, the causal agent of papaya dieback disease by indigenous seed-borne endophytic lactic acid bacteria consortium. PLoS ONE 2019, 14, e0224431. [Google Scholar] [CrossRef]
- Terpou, A.; Papadaki, A.; Lappa, I.K.; Kachrimanidou, V.; Bosnea, L.A.; Kopsahelis, N. Probiotics in food systems: Significance and emerging strategies towards improved viability and delivery of enhanced beneficial value. Nutrients 2019, 11, 1591. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Ponpandian, L.N.; Kim, H.; Jeon, J.; Hwang, B.S.; Lee, S.K.; Park, S.C.; Bae, H. Distribution and diversity of bacterial endophytes from four Pinus species and their efficacy as biocontrol agents for devastating pine wood nematodes. Sci. Rep. 2019, 9, 12461. [Google Scholar] [CrossRef] [Green Version]
- Mohd Jaini, M.F.; Roslan, N.F.; Yusof, M.T.; Saidi, N.B.; Ramli, N.; Mohd Zainudin, N.A.I.; Mohd Hashim, A. Investigating the Potential of Endophytic Lactic Acid Bacteria Isolated from Papaya Seeds as Plant Growth Promoter and Antifungal Agent. Pertanika J. Trop. Agric. Sci. 2022, 45, 207–233. [Google Scholar] [CrossRef]
- Pontonio, E.; Di Cagno, R.; Tarraf, W.; Filannino, P.; De Mastro, G.; Gobbetti, M. Dynamic and Assembly of Epiphyte and Endophyte Lactic Acid Bacteria During the Life Cycle of Origanum vulgare L. Front. Microbiol. 2018, 9, 1372. [Google Scholar] [CrossRef] [PubMed]
- Gobbetti, M.; Di Cagno, R.; Calasso, M.; Neviani, E.; Fox, P.F.; De Angelis, M. Drivers that establish and assembly the lactic acid bacteria biota in cheeses. Trends Food Sci. Technol. 2018, 78, 244–254. [Google Scholar] [CrossRef]
- Doan, N.T.L.; Van Hoorde, K.; Cnockaert, M.; De Brandt, E.; Aerts, M.; Le Thanh, B.; Vandamme, P. Validation of MALDI-TOF MS for rapid classification and identification of lactic acid bacteria, with a focus on isolates from traditional fermented foods in Northern Vietnam. Lett. Appl. Microbiol. 2012, 55, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Citar; Thompson, J.D.; Gibson, T.J.; Plewniak, F.; Jeanmougin, F.; Higgins, D.G. The CLUSTAL_X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 1997, 25, 4876–4882. [Google Scholar]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Tamura, K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol. Biol. Evol. 2016, 33, 1870–1874. [Google Scholar] [CrossRef] [Green Version]
- Samba, N.; Aitfella-Lahlou, R.; Nelo, M.; Silva, L.; Coca, R.; Rocha, P.; López Rodilla, J.M. Chemical composition and antibacterial activity of the essential oil of Lippia multiflora moldenke from Nigeria. Molecules 2021, 26, 155. [Google Scholar] [CrossRef]
- Ayuso-Calles, M.; García-Estévez, I.; Jiménez-Gómez, A.; Flores-Félix, J.D.; Teresa Escribano-Bailón, M.; Rivas, R. Rhizobium laguerreae improves productivity and phenolic compound content of lettuce (Lactuca sativa L.) under saline stress conditions. Foods 2020, 9, 1166. [Google Scholar] [CrossRef] [PubMed]
- Flores-Félix, J.D.; Carro, L.; Cerda-Castillo, E.; Squartini, A.; Rivas, R.; Velázquez, E. Analysis of the Interaction between Pisum sativum L. and Rhizobium laguerreae Strains Nodulating This Legume in Northwest Spain. Plants 2020, 9, 1755. [Google Scholar] [CrossRef] [PubMed]
- Pontonio, E.; Di Cagno, R.; Mahony, J.; Lanera, A.; De Angelis, M.; van Sinderen, D.; Gobbetti, M. Sourdough authentication: Quantitative PCR to detect the lactic acid bacterial microbiota in breads. Sci. Rep. 2017, 7, 624. [Google Scholar] [CrossRef] [PubMed]
- Strafella, S.; Simpson, D.J.; Khanghahi, M.Y.; Angelis, M.; De Gänzle, M.; Minervini, F.; Crecchio, C. Comparative Genomics and In Vitro Plant Growth Promotion and Biocontrol Traits of Lactic Acid Bacteria from the Wheat Rhizosphere. Microorganisms 2021, 9, 78. [Google Scholar] [CrossRef]
- García-Díez, J.; Saraiva, C. Use of Starter Cultures in Foods from Animal Origin to Improve Their Safety. Int. J. Environ. Res. Public Health 2021, 18, 2544. [Google Scholar] [CrossRef]
- Yu, A.O.; Leveau, J.H.J.J.; Marco, M.L. Abundance, diversity and plant-specific adaptations of plant-associated lactic acid bacteria. Environ. Microbiol. Rep. 2020, 12, 16–29. [Google Scholar] [CrossRef]
- Ray, P.; Lakshmanan, V.; Labbé, J.L.; Craven, K.D. Microbe to Microbiome: A Paradigm Shift in the Application of Microorganisms for Sustainable Agriculture. Front. Microbiol. 2020, 11, 3323. [Google Scholar] [CrossRef]
- Cogan, T.M.; Beresford, T.P. Microbiology of Hard Cheese. In Dairy Microbiology Handbook: The Microbiology of Milk and Milk Products; John Wiley and Sons: Hoboken, NJ, USA, 2005; pp. 515–560. [Google Scholar] [CrossRef]
- Picon, A.; Garde, S.; Ávila, M.; Nuñez, M. Microbiota dynamics and lactic acid bacteria biodiversity in raw goat milk cheeses. Int. Dairy J. 2016, 58, 14–22. [Google Scholar] [CrossRef]
- Carafa, I.; Clementi, F.; Tuohy, K.; Franciosi, E. Microbial evolution of traditional mountain cheese and characterization of early fermentation cocci for selection of autochtonous dairy starter strains. Food Microbiol. 2016, 53, 94–103. [Google Scholar] [CrossRef]
- Rocha, R.; Velho, M.V.; Santos, J.; Fernandes, P. Serra da estrela pdo cheese microbiome as revealed by next generation sequencing. Microorganisms 2021, 9, 2007. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef] [PubMed]
- Gantzias, C.; Lappa, I.K.; Aerts, M.; Georgalaki, M.; Manolopoulou, E.; Papadimitriou, K.; De Brandt, E.; Tsakalidou, E.; Vandamme, P. MALDI-TOF MS profiling of non-starter lactic acid bacteria from artisanal cheeses of the Greek island of Naxos. Int. J. Food Microbiol. 2020, 323, 108586. [Google Scholar] [CrossRef] [PubMed]
- Dewa, I.; Sukrama, M.; Franciska, J.; Suardana, W. Evaluation of the bacteriocin produced by strain 9 lactic acid bacteria isolate for biopreservation. Vet. World 2020, 13, 2012. [Google Scholar] [CrossRef]
- Nazari, M.; Smith, D.L. A PGPR-Produced Bacteriocin for Sustainable Agriculture: A Review of Thuricin 17 Characteristics and Applications. Front. Plant Sci. 2020, 11, 916. [Google Scholar] [CrossRef]
- Jiménez-Gómez, A.; Saati-Santamaría, Z.; Igual, J.M.; Rivas, R.; Mateos, P.F.; García-Fraile, P. Genome insights into the novel species microvirga brassicacearum, a rapeseed endophyte with biotechnological potential. Microorganisms 2019, 7, 354. [Google Scholar] [CrossRef] [Green Version]
- Miceli, A.; Settanni, L. Influence of agronomic practices and pre-harvest conditions on the attachment and development of Listeria monocytogenes in vegetables. Ann. Microbiol. 2019, 69, 185–199. [Google Scholar] [CrossRef]
- Li, L.; Chen, R.; Zuo, Z.; Lv, Z.; Yang, Z.; Mao, W.; Liu, Y.; Zhou, Y.; Huang, J.; Song, Z. Evaluation and improvement of phosphate solubilization by an isolated bacterium Pantoea agglomerans ZB. World J. Microbiol. Biotechnol. 2020, 36, 27. [Google Scholar] [CrossRef]
- Vílchez, J.I.; Lally, R.D.; Morcillo, R.J.L. Biosafety evaluation: A necessary process ensuring the equitable beneficial effects of PGPR. In Advances in PGPR Research; CABI: Wallingford, UK, 2017; pp. 50–74. [Google Scholar] [CrossRef]
- Macieira, A.; Barbosa, J.; Teixeira, P. Food Safety in Local Farming of Fruits and Vegetables. Int. J. Environ. Res. Public Health 2021, 18, 9733. [Google Scholar] [CrossRef]
- Chen, Z.; Li, Y.; Peng, Y.; Mironov, V.; Chen, J.; Jin, H.; Zhang, S. Feasibility of sewage sludge and food waste aerobic co-composting: Physicochemical properties, microbial community structures, and contradiction between microbial metabolic activity and safety risks. Sci. Total Environ. 2022, 825, 154047. [Google Scholar] [CrossRef]
- Hussain, N.; Singh, A.; Saha, S.; Venkata Satish Kumar, M.; Bhattacharyya, P.; Bhattacharya, S.S. Excellent N-fixing and P-solubilizing traits in earthworm gut-isolated bacteria: A vermicompost based assessment with vegetable market waste and rice straw feed mixtures. Bioresour. Technol. 2016, 222, 165–174. [Google Scholar] [CrossRef]
- Pajuelo, E.; Arjona, S.; Rodríguez-Llorente, I.D.; Mateos-Naranjo, E.; Redondo-Gómez, S.; Merchán, F.; Navarro-Torre, S. Coastal Ecosystems as Sources of Biofertilizers in Agriculture: From Genomics to Application in an Urban Orchard. Front. Mar. Sci. 2021, 8, 1162. [Google Scholar] [CrossRef]
- Tariq, M.; Jameel, F.; Ijaz, U.; Abdullah, M.; Rashid, K. Biofertilizer microorganisms accompanying pathogenic attributes: A potential threat. Physiol. Mol. Biol. Plants 2022, 28, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Chitra, J.; Siva Kumar, K. Antimicrobial activity of bacteriocin from lactic acid bacteria against food borne bacterial pathogens. Int. J. Curr. Res. Life Sci. 2018, 7, 1528–1532. [Google Scholar]
- Sidooski, T.; Brandelli, A.; Bertoli, S.L.; de Souza, C.K.; de Carvalho, L.F. Physical and nutritional conditions for optimized production of bacteriocins by lactic acid bacteria—A review. Crit. Rev. Food Sci. Nutr. 2018, 59, 2839–2849. [Google Scholar] [CrossRef]
- Gontijo, M.T.P.; Silva, J.d.S.; Vidigal, P.M.P.; Martin, J.G.P. Phylogenetic distribution of the bacteriocin repertoire of lactic acid bacteria species associated with artisanal cheese. Food Res. Int. 2020, 128, 108783. [Google Scholar] [CrossRef]
- Giassi, V.; Kiritani, C.; Kupper, K.C. Bacteria as growth-promoting agents for citrus rootstocks. Microbiol. Res. 2016, 190, 46–54. [Google Scholar] [CrossRef]
- Weinberg, E.D. The Lactobacillus Anomaly: Total Iron Abstinence. Perspect. Biol. Med. 1997, 40, 578–583. [Google Scholar] [CrossRef]
- Jiménez-Gómez, A.; Saati-Santamaría, Z.; Kostovcik, M.; Rivas, R.; Velázquez, E.; Mateos, P.F.; Menéndez, E.; García-Fraile, P. Selection of the Root Endophyte Pseudomonas brassicacearum CDVBN10 as Plant Growth Promoter for Brassica napus L. crops. Agronomy 2020, 10, 1788. [Google Scholar] [CrossRef]
- Spaepen, S.; Vanderleyden, J.; Remans, R. Indole-3-acetic acid in microbial and microorganism-plant signaling. FEMS Microbiol. Rev. 2007, 31, 425–448. [Google Scholar] [CrossRef] [Green Version]
- Etesami, H.; Alikhani, H.A.; Mirseyed Hosseini, H. Indole-3-Acetic Acid and 1-Aminocyclopropane-1-Carboxylate Deaminase: Bacterial Traits Required in Rhizosphere, Rhizoplane and/or Endophytic Competence by Beneficial Bacteria. In Bacterial Metabolites in Sustainable Agroecosystem; Springer: Berlin/Heidelberg, Germany, 2015; pp. 183–258. [Google Scholar]
- Patten, C.L.; Blakney, A.J.C.; Coulson, T.J.D. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit. Rev. Microbiol. 2013, 39, 395–415. [Google Scholar] [CrossRef]
- Gummalla, S.; Broadbent, J.R. Tryptophan Catabolism by Lactobacillus casei and Lactobacillus helveticus Cheese Flavor Adjuncts. J. Dairy Sci. 1999, 82, 2070–2077. [Google Scholar] [CrossRef]
- Khalaf, E.M.; Raizada, M.N. Draft Genome Sequences of Six Strains of Lactococcus lactis (Phylum Firmicutes), Spanning the Seeds of Cucumis sativus L. (Cucumber), Cucumis melo L. (Cantaloupe), and Cucurbita pepo var. turbinate (Acorn Squash). Microbiol. Resour. Announc. 2020, 9, e00665-20. [Google Scholar] [CrossRef] [PubMed]
- Bhardwaj, D.; Ansari, M.W.; Sahoo, R.K.; Tuteja, N. Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microb. Cell Fact. 2014, 13, 66. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tverdokhlib, V.S.; Limanska, N.V.; Krylova, K.D.; Ivanytsia, V.O. Ability of Lactobacillus Plantarum Onu 12 and Bacillus Megaterium Onu 484 to Stimulate Growth of Wheat Seedlings and to Form Biofilms; Odesa Mechnikov National University: Odessa, Ukraine, 2018. [Google Scholar] [CrossRef]
- Shrestha, A.; Kim, B.S.; Park, D.H. Biological control of bacterial spot disease and plant growth-promoting effects of lactic acid bacteria on pepper. Biocontrol Sci. Technol. 2014, 24, 763–779. [Google Scholar] [CrossRef]
- Hussein, K.A.; Joo, J.H. Plant Growth-Promoting Rhizobacteria Improved Salinity Tolerance of Lactuca sativa and Raphanus sativus. J. Microbiol. Biotechnol. 2018, 28, 938–945. [Google Scholar] [CrossRef] [Green Version]
- Temuri, S.; Naz Baloch, M.; Zia, M.; Eijaz, S. Role of lactococcus lcp-1 in biocontrol and lycopersicon esculentum miller plant growth promotion. Int. J. Biol. Res. 2018, 6, 59–72. [Google Scholar]
- Flores-Félix, J.D.; Marcos-García, M.; Silva, L.R.; Menéndez, E.; Martínez-Molina, E.; Mateos, P.F.; Velázquez, E.; García-Fraile, P.; Andrade, P.; Rivas, R. Rhizobium as plant probiotic for strawberry production under microcosm conditions. Symbiosis 2015, 67, 25–32. [Google Scholar] [CrossRef]
- Krzyzanowska, D.; Obuchowski, M.; Bikowski, M.; Rychlowski, M.; Jafra, S. Colonization of potato rhizosphere by GFP-tagged Bacillus subtilis MB73/2, Pseudomonas sp. P482 and Ochrobactrum sp. A44 shown on large sections of roots using enrichment sample preparation and confocal laser scanning microscopy. Sensors 2012, 12, 17608–17619. [Google Scholar] [CrossRef]
- Flores-Félix, J.D.; Silva, L.R.; Rivera, L.P.; Marcos-García, M.; García-Fraile, P.; Martínez-Molina, E.; Mateos, P.F.; Velázquez, E.; Andrade, P.; Rivas, R. Plants Probiotics as a Tool to Produce Highly Functional Fruits: The Case of Phyllobacterium and Vitamin C in Strawberries. PLoS ONE 2015, 10, e0122281. [Google Scholar] [CrossRef]
- Fan, B.; Borriss, R.; Bleiss, W.; Wu, X. Gram-positive rhizobacterium Bacillus amyloliquefaciens FZB42 colonizes three types of plants in different patterns. J. Microbiol. 2012, 50, 38–44. [Google Scholar] [CrossRef]
Strains | Group | MALDI TOF Identity | pheS Identity | |||
---|---|---|---|---|---|---|
Species | Scores | Close Type Strain | Identity % | Accession Number | ||
QSE21, QSE41, QSE43, QSE45, QSE49, QSE50, QSE52, QSE56, QSE58, QSE59, QSE60, QSE66, QSE71, QSE73, QSE75, QSE76, QSE77, QSE78, QSE81, QSE84, QSE86, QSE87, QSE92 | I | Lactiplantibacillus plantarum | 2566–2046 | Lactiplantibacillus plantarum subsp. plantarum ATCC 14917T | 99.75 | OM802174 |
QSE44, QSE48, QSE54, QSE61, QSE79, QSE83 | II | Lactiplantibacillus plantarum | 2464–2076 | Lactiplantibacillus plantarum subsp. plantarum ATCC 14917T | 99.85 | OM802180 |
QSE64 | III | Lactiplantibacillus plantarum | 1969 | Lactiplantibacillus plantarum subsp. plantarum ATCC 14917T | 100 | OM802177 |
QSE20, QSE51, QSE67A, QSE74 | IV | Lacticaseibacillus paracasei | 2426–2085 | Lacticaseibacillus paracasei subsp. tolerans DSM 20258T | 98.80 | OM802167 |
QSE62 | V | Lacticaseibacillus paracasei | 2343 | Lacticaseibacillus paracasei subsp. paracasei ATCC 25302T | 98.59 | OM802175 |
QSE67B | VI | Lacticaseibacillus paracasei | 2388 | Lacticaseibacillus paracasei subsp. paracasei ATCC 25302T | 98.60 | OM802178 |
QSE01, QSE04, QSE14, QSE23, QSE33, QSE36, QSE38, QSE40, QSE47, QSE55, QSE57, QSE69, QSE72, QSE82 | VII | Lactococcus lactis | 2540–2319 | Lactococcus lactis subsp. lactis LMG 6890T | 99.24 | OM802173 |
QSE68 | VIII | Levilactobacillus brevis | 2301 | Levilactobacillus brevis LMG 6906 T | 99.76 | OM802179 |
QSE02, QSE03, QSE05, QSE06, QSE12, QSE13, QSE15, QSE16, QSE19, QSE24, QSE27, QSE30, QSE32, QSE39 | IX | Latilactobacillus curvatus | 2447–2001 | Latilactobacillus curvatus JCM 1096 T | 99.75 | OM802171 |
QSE18, QSE29, QSE31, QSE35, QSE42, QSE46, QSE63, QSE65, QSE88, QSE89, QSE91 | X | Leuconostoc mesenteroides | 2332–1800 | Leuconostoc mesenteroides subsp. cremoris LMG 6909T | 99.15 | OM802176 |
QSE11, QSE22, QSE34, QSE53, QSE70, QSE80, QSE90 | XI | Leuconostoc mesenteroides | 1924–1579 | Leuconostoc mesenteroides subsp. cremoris LMG 6909T | 99.44 | OM802165 |
QSE17A, QSE17B | XII | Leuconostoc mesenteroides | 1825–1665 | Leuconostoc mesenteroides subsp. cremoris LMG 6909T | 99.74 | OM802166 |
QSE37 | XIII | Leuconostoc citreum | 1753 | Leuconostoc citreum LMG 9849T | 98.89 | OM802172 |
QSE26 | XIV | Lacticaseibacillus rhamnosus | 2447 | Lacticaseibacillus rhamnosus ATCC 7469 T | 98.30 | OM802169 |
QSE28 | XV | Leuconostoc mesenteroides | 1970 | Leuconostoc mesenteroides subsp. cremoris LMG 6909T | 99.74 | OM802170 |
Strain | BCP | TCP | HXP | Siderophore | IAA |
---|---|---|---|---|---|
QSE11 | 0.14 | 0.46 | n.d. | 0.85 | 11.0 |
QSE17A | 0.07 | 0.45 | n.d. | 0.27 | 12.0 |
QSE20 | 0.52 | 2.69 | 1.09 | 0.42 | 42.0 |
QSE26 | 0.56 | 1.85 | 0.88 | 0.55 | 24.0 |
QSE28 | n.d. | n.d. | n.d. | n.d. | 32.0 |
QSE32 | n.d. | 0.26 | n.d. | 0.08 | 17.0 |
QSE37 | n.d. | 0.09 | n.d. | n.d. | n.d. |
QSE38 | n.d. | n.d. | n.d. | 0.09 | 26.0 |
QSE60 | 0.29 | 1.87 | 0.77 | 0.50 | 28.0 |
QSE62 | 0.22 | 1.00 | 0.67 | 0.58 | 68.0 |
QSE63 | 0.11 | 1.19 | 0.92 | 1.00 | 2.0 |
QSE64 | 0.50 | 2.41 | 0.91 | 0.87 | 9.0 |
QSE67B | 0.67 | 1.27 | 0.83 | 0.28 | 26.0 |
QSE68 | 0.13 | 0.39 | n.d. | 0.50 | 28.0 |
QSE79 | 0.32 | 2.23 | 0.73 | 0.85 | 52.0 |
Treatment | 7 dpi | 14 dpi | ||||
---|---|---|---|---|---|---|
Root Length | Secondary Roots | Aerial Length | Root Length | Secondary Roots | Aerial Length | |
Control | 1.45 ± 0.21 | 1.40 ± 0.57 | 0.83 ± 0.09 | 2.61 ± 0.73 | 1.96 ± 0.95 | 1.09 ± 0.15 |
QSE11 | 1.52 ± 0.31 | 1.67 ± 0.79 | 0.92 ± 0.07 | 3.04 ± 0.74 | 2.57 ± 1.44 | 0.95 ± 0.13 |
QSE17A | 1.57 ± 0.34 | 1.77 ± 0.35 | 0.88 ± 0.08 | 3.14 ± 0.74 | 2.23 ± 0.49 | 1.26 ± 0.11 |
QSE20 | 2.07 ± 0.36 *** | 2.40 ± 0.91 **** | 0.97 ± 0.13 | 4.14 ± 0.86 **** | 4.36 ± 1.27 **** | 1.33 ± 0.19 |
QSE26 | 1.96 ± 0.41 * | 1.85 ± 0.66 | 1.05 ± 0.07 | 4.31 ± 0.73 **** | 3.11 ± 0.83 **** | 1.09 ± 0.07 |
QSE28 | 1.76 ± 0.17 | 2.12 ± 1.02 **** | 0.79 ± 0.11 | 4.22 ± 0.44 **** | 3.56 ± 1.86 **** | 1.23 ± 0.13 |
QSE32 | 1.51 ± 0.24 | 1.90 ± 0.81 * | 0.91 ± 0.11 | 3.32 ± 0.48 | 2.66 ± 1.36 | 0.94 ± 0.11 |
QSE37 | 1.41 ± 0.37 | 1.52 ± 0.42 | 1.08 ± 0.07 | 2.82 ± 0.66 | 1.91 ± 0.76 | 1.36 ± 0.08 |
QSE38 | 1.67 ± 0.28 | 2.01 ± 0.61 *** | 0.86 ± 0.12 | 3.01 ± 0.56 | 3.56 ± 0.85 **** | 1.23 ± 0.12 |
QSE60 | 1.78 ± 0.33 | 2.15 ± 0.68 **** | 0.83 ± 0.06 | 3.92 ± 0.85 **** | 3.31 ± 1.05 **** | 1.30 ± 0.09 |
QSE62 | 2.31 ± 0.45 **** | 2.68 ± 1.03 **** | 0.73 ± 0.09 | 4.16 ± 0.90 **** | 3.77 ± 1.87 **** | 1.35 ± 0.15 |
QSE63 | 1.52 ± 0.37 | 1.55 ± 0.76 | 0.96 ± 0.14 | 2.74 ± 0.74 | 2.38 ± 1.28 | 1.12 ± 0.14 |
QSE64 | 1.67 ± 0.44 | 1.62 ± 0.61 | 0.79 ± 0.07 | 3.67 ± 0.94 **** | 2.72 ± 0.94 * | 0.92 ± 0.10 |
QSE67A | 1.86 ± 0.27 | 2.41 ± 0.95 **** | 1.00 ± 0.10 | 3.72 ± 0.48 **** | 4.38 ± 1.19 **** | 1.26 ± 0.10 |
QSE68 | 1.74 ± 0.24 | 2.18 ± 0.84 **** | 0.82 ± 0.08 | 4.18 ± 0.57 **** | 2.74 ± 1.41 * | 1.06 ± 0.09 |
QSE79 | 2.42 ± 0.44 **** | 2.36 ± 0.67 **** | 0.92 ± 0.07 | 4.84 ± 0.88 **** | 3.90 ± 1.13 **** | 1.45 ± 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nunes, A.R.; Sánchez-Juanes, F.; Gonçalves, A.C.; Alves, G.; Silva, L.R.; Flores-Félix, J.D. Evaluation of Raw Cheese as a Novel Source of Biofertilizer with a High Level of Biosecurity for Blueberry. Agronomy 2022, 12, 1150. https://doi.org/10.3390/agronomy12051150
Nunes AR, Sánchez-Juanes F, Gonçalves AC, Alves G, Silva LR, Flores-Félix JD. Evaluation of Raw Cheese as a Novel Source of Biofertilizer with a High Level of Biosecurity for Blueberry. Agronomy. 2022; 12(5):1150. https://doi.org/10.3390/agronomy12051150
Chicago/Turabian StyleNunes, Ana R., Fernando Sánchez-Juanes, Ana C. Gonçalves, Gilberto Alves, Luís R. Silva, and José David Flores-Félix. 2022. "Evaluation of Raw Cheese as a Novel Source of Biofertilizer with a High Level of Biosecurity for Blueberry" Agronomy 12, no. 5: 1150. https://doi.org/10.3390/agronomy12051150
APA StyleNunes, A. R., Sánchez-Juanes, F., Gonçalves, A. C., Alves, G., Silva, L. R., & Flores-Félix, J. D. (2022). Evaluation of Raw Cheese as a Novel Source of Biofertilizer with a High Level of Biosecurity for Blueberry. Agronomy, 12(5), 1150. https://doi.org/10.3390/agronomy12051150