Effect of Mepiquat Chloride on Phenology, Yield and Quality of Cotton as a Function of Application Time Using Different Sowing Techniques
Abstract
:1. Introduction
2. Results
2.1. Crop Phenology
2.2. Morphological Traits
2.3. Yield Attributes
2.4. Lint Quality
3. Discussion
3.1. Sowing Techniques
3.2. Mepiquat Chloride Application
4. Materials and Methods
4.1. Experimental Site and Soil Characteristics
4.2. Design and Treatments
4.3. Experimental Material
4.4. Field Management
4.5. Data Recorded
4.5.1. Crop Phenology
4.5.2. Morphological Features, Yield and Yield Component
4.5.3. Lint Quality
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Constable, G.A.; Bange, M.P. The yield potential of cotton (Gossypium hirsutum L.). Field Crop. Res. 2015, 182, 98–106. [Google Scholar] [CrossRef]
- Dhokne, A.; Zingare, M.; Mahure, A.; Lutade, S. Design and fabrication of cotton boll picker machine. Inter. Res. J. Eng. Technol. 2017, 4, 1907–1908. [Google Scholar]
- Fortucci, P. The contribution of cotton to economy and food security in developing countries. In Cotton and Global Trade Negotiations Sponsored by the World Bank and ICAC; FAO: Rome, Italy, 2002; Volume 8, pp. 8–9. [Google Scholar]
- Ibrahim, M.; Akhtar, J.; Younis, M.; Riaz, M.A.; Anwar-ul-Haq, M.; Tahir, M. Selection of cotton (Gossypium hirsutum L.) genotypes against NaCl stress. Soil Environ. 2007, 26, 59–63. [Google Scholar]
- Ozyigit, I.I.; Kahraman, M.V.; Ercan, O. Relation between explant age, total phenols and regeneration response in tissue cultured cotton (Gossypium hirsutum L.). Afr. J. Biotechnol. 2007, 6, 3–8. [Google Scholar] [CrossRef]
- Government of Pakistan. Pakistan Economic Survey; Economic Advisors Wing Finance Division: Islamabad, Pakistan, 2018.
- Nawaz, M.; Anjum, S.A.; Ashraf, U.; Khan, I.; Hussain, S.; Zohaib, A.; Hubiao, Y.; Zhiyong, W. Assessment of cropping system productivity, profitability and economic efficiency of wheat. J. Anim. Plant Sci. 2020, 2, 467–474. [Google Scholar] [CrossRef] [Green Version]
- Oosterhuis, D. Physiology and nutrition of high yielding cotton in the USA. Inf. Agronômicas 2001, 95, 18–24. [Google Scholar]
- Mao, L.; Zhang, L.; Zhao, X.; Liu, S.; van der Werf, W.; Zhang, S.; Spiertz, H.; Li, Z. Crop growth, light utilization and yield of relay intercropped cotton as affected by plant density and a plant growth regulator. Field Crop. Res. 2014, 155, 67–76. [Google Scholar] [CrossRef]
- Li, X.; Han, Y.; Wang, G.; Feng, L.; Wang, Z.; Yang, B.; Du, W.; Lei, Y.; Xiong, S.; Zhi, X.; et al. Response of cotton fruit growth, intraspecific competition and yield to plant density. Eur. J. Agron. 2020, 114, 125991. [Google Scholar] [CrossRef]
- Liu, Z.-Y.; Chen, Y.; Li, Y.-B.; Chen, C.; Ma, Y.-X.; Chen, D.-H.; Zhang, X.; Zhou, M. Construction of optimum number of fruiting nodes benefit high yield in cotton population. Ind. Crop. Prod. 2020, 158, 113020. [Google Scholar] [CrossRef]
- Siebert, J.D.; Stewart, A.M.; Leonard, B.R. Comparative growth and yield of cotton planted at various densities and configurations. Agron. J. 2006, 98, 562–568. [Google Scholar] [CrossRef]
- Aphalo, P.J.; Ballaré, C.L. On the Importance of Information-Acquiring Systems in Plant-Plant Interactions. Funct. Ecol. 1995, 9, 5–14. [Google Scholar] [CrossRef]
- Wang, L.; Mu, C.; Du, M.; Chen, Y.; Tian, X.; Zhang, M.; Li, Z. The effect of mepiquat chloride on elongation of cotton (Gossypium hirsutum L.) internode is associated with low concentration of gibberellic acid. Plant Sci. 2014, 225, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.A.; Mushtaq, A.; Mueen-ud-Din, Y.K.; Yamin, M. Effect of nitrogen and plant population levels on seed cotton yield of newly introduced variety CIM-497. J. Agric. Res. 2007, 45, 289–298. [Google Scholar]
- Ali, M.; Ali, L.; Waqar, M.Q.; Ali, M.A. Bed planting: A new crop establishment method for wheat (Triticum aestivum L.) in cotton-wheat cropping system of Southern Punjab. Int. J. Agric. Appl. Sci. 2012, 4, 8–14. [Google Scholar]
- Shahzad, M.A.; Anjum, S.A.; Zohaib, A.; Ishfaq, M.; Warraich, E.A. Effect of different sowing methods and planting densities on growth, yield, fiber quality and economic efficacy of cotton. Pak. J. Agric. Res. 2017, 30, 212–219. [Google Scholar]
- Echer, F.R.; Rosolem, C.A. Plant growth regulator losses in cotton as affected by adjuvants and rain. Ciencia Rural 2012, 42, 2138–2144. [Google Scholar] [CrossRef]
- Zhao, W.; Du, M.; Xu, D.; Lu, H.; Tian, X.; Li, Z. Interactions of Single Mepiquat Chloride Application at Different Growth Stages with Climate, Cultivar, and Plant Population for Cotton Yield. Crop Sci. 2017, 57, 1713–1724. [Google Scholar] [CrossRef]
- Krause, U.; Koch, H.-J.; Maerlaender, B. Soil properties effecting yield formation in sugar beet under ridge and flat cultivation. Eur. J. Agron. 2009, 31, 20–28. [Google Scholar] [CrossRef]
- Hussain, T.; Jehanzeb, J.T.; Siddiqui, B.N. Effect of different irrigation levels on the yield and yield components of cotton (Gossypium hirsutum L.) under two sowing methods. J. Biol. Sci. 2003, 3, 655–659. [Google Scholar]
- Ali, L.; Ehsanullah. Water use efficiency of different planting methods in cotton (Gossypium hirsutum L.). J. Agric. Res. 2007, 45, 299–306. [Google Scholar]
- Quanqi, L.; Yuhai, C.; Mengyu, L.; Xunbo, Z.; Baodi, D.; Songlie, Y. Water potential characteristics and yield of summer maize in different planting patterns. J. Plant Soil. Environ. 2008, 54, 14–19. [Google Scholar] [CrossRef] [Green Version]
- Dong, H.; Li, W.; Tang, W.; Zhang, D. Furrow Seeding with Plastic Mulching Increases Stand Establishment and Lint Yield of Cotton in a Saline Field. Agron. J. 2008, 100, 1640–1646. [Google Scholar] [CrossRef]
- Ahmed, A.U.H.; Ali, R.; Zamir, S.I.; Mehmood, N. Growth, yield and quality performance of cotton cultivar BH-160 (Gossypium hirsutum L.). J. Anim. Plant Sci. 2009, 19, 189–192. [Google Scholar]
- Iftikhar, T.; Babar, L.K.; Zahoor, S.; Khan, N.G. Impact of land pattern and hydrological properties of soil on cotton yield. Pak. J. Bot. 2010, 42, 3023–3028. [Google Scholar]
- Ashraf, M. Promising Land and Water Management Practices: A Manual; International Center for Agricultural Research in Dry Areas (ICARDA): Islamabad, Pakistan, 2015. [Google Scholar]
- Ozpinar, S.; Isik, A. Effects of tillage, ridging and row spacing on seedling emergence and yield of cotton. Soil Tillage Res. 2004, 75, 19–26. [Google Scholar] [CrossRef]
- Gursoy, S.; Sessiz, A.; Karademir, E.; Karademir, C.; Kolay, B.; Urgun, M.; Malhi, S.S. Effects of ridge and conventional tillage systems on soil properties and cotton growth. Int. J. Plant Prod. 2011, 5, 227–236. [Google Scholar] [CrossRef]
- Aslam, M.; Ahmed, T.; Sanghi, A.H.; Khalid, L. Demonstration and evaluation of the effect of the yield response of seed cotton yield to various planting methods in ecological zone of Rahim Yar Khan. Int. J. Adv. Res. Biol. Sci. 2018, 5, 95–99. [Google Scholar] [CrossRef]
- Tung, S.A.; Huang, Y.; Hafeez, A.; Ali, S.; Khan, A.; Souliyanonh, B.; Song, X.; Liu, A.; Yang, G. Mepiquat chloride effects on cotton yield and biomass accumulation under late sowing and high density. Field Crop. Res. 2018, 215, 59–65. [Google Scholar] [CrossRef]
- Cothren, J.T. Use of growth regulators in cotton production. In Challenging the Future. World Cotton Research Conference-1, Brisbane, Australia, 14–17 February 1994; Constable, G.A., Forrester, N.W., Eds.; CSIRO: Canberra, Australia; pp. 6–24.
- Siebert, J.D.; Stewart, A.M. Influence of Plant Density on Cotton Response to Mepiquat Chloride Application. Agron. J. 2006, 98, 1634–1639. [Google Scholar] [CrossRef]
- Souza, F.S.; Rosolem, C.A. Rainfall intensity and mepiquat chloride persistence in cotton. Sci. Agric. 2007, 64, 125–130. [Google Scholar] [CrossRef]
- Rosolem, C.A.; Oosterhuis, D.M.; De Souza, F.S. Cotton response to mepiquat chloride and temperature. Sci. Agricola 2013, 70, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Kerby, T.A. Cotton Response to Mepiquat Chloride. Agron. J. 1985, 77, 515–518. [Google Scholar] [CrossRef]
- Oosterhuis, D.M.; Egilla, J.N. Field evaluation of plant growth regulators for effect on the growth and yield of cotton. In Proceedings of the Beltwide Cotton Conference, Nashville, TN, USA, 9–12 January 1996; Dugger, P., Richter, D., Eds.; National Cotton Council: Memphis, TN, USA, 1996; pp. 1213–1215. [Google Scholar]
- Gencsoylu, I. Effect of Plant Growth Regulators on Agronomic Characteristics, Lint Quality, Pests, and Predators in Cotton. J. Plant Growth Regul. 2009, 28, 147–153. [Google Scholar] [CrossRef]
- Rademacher, W. Growth retardants: Effects on Gibberellin Biosynthesis and Other Metabolic Pathways. Annu. Rev. Plant Biol. 2000, 51, 501–531. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nuti, R.C.; Viator, R.P.; Casteel, S.N.; Edmisten, K.L.; Wells, R. Effect of Planting Date, Mepiquat Chloride, and Glyphosate Application to Glyphosate-Resistant Cotton. Agron. J. 2006, 98, 1627–1633. [Google Scholar] [CrossRef] [Green Version]
- O'Berry, N.B.; Faircloth, J.C.; Jones, M.A.; Herbert, D.A.; Abaye, A.O.; McKemie, T.E.; Brownie, C. Differential Responses of Cotton Cultivars when Applying Mepiquat Pentaborate. Agron. J. 2009, 101, 25–31. [Google Scholar] [CrossRef]
- Nichols, S.P.; Snipes, C.E.; Jones, M.A. Evaluation of row spacing and mepiquat chloride in cotton. J. Cotton Sci. 2003, 7, 148–155. [Google Scholar]
- Zhao, D.; Oosterhuis, D.M. Pix Plus and Mepiquat Chloride Effects on Physiology, Growth, and Yield of Field-Grown Cotton. J. Plant Growth Regul. 2000, 19, 415–422. [Google Scholar] [CrossRef]
- Yeates, S.J.; Constable, G.A.; McCumstie, T. Cotton growth and yield after seed treatment with mepiquat chloride in the tropical winter season. Field Crop. Res. 2005, 93, 122–131. [Google Scholar] [CrossRef]
- Yang, G.-Z.; Luo, X.-J.; Nie, Y.-C.; Zhang, X.-L. Effects of Plant Density on Yield and Canopy Micro Environment in Hybrid Cotton. J. Integr. Agric. 2014, 13, 2154–2163. [Google Scholar] [CrossRef]
- Hake, K.; Kerby, T.A.; McCarthy, W.; O'Neal, D.; Supak, J. Physiology of PIX [R]. In Physiology Today; Louisiana Cooperative Extension Service; Louisiana State University Agric. Center: Baton Rouge, LA, USA; The National Cotton Council of America: Memphis, TN, USA, 1991; Volume 2. [Google Scholar]
- Pettigrew, W.T.; Johnson, J.T. Effects of different seeding rates and plant growth regulators on early-planted cotton. J. Cotton Sci. 2005, 9, 189–198. [Google Scholar]
- Fahong, W.; Xuqing, W.; Sayre, K. Comparison of conventional, flood irrigated, flat planting with furrow irrigated, raised bed planting for winter wheat in China. Field Crop. Res. 2004, 87, 35–42. [Google Scholar] [CrossRef]
- Chauhan, S.K. Seeding technique under saline water irrigation for cotton-wheat rotation. Res. J. Agric. Anim. Sci. 2007, 22, 430–437. [Google Scholar]
- Akbar, H.M.; Akram, M.; Hassan, M.W.; Hussain, M.; Rafay, M.; Ahmad, I. Growth, yield and water use efficiency of cotton (Gossypium hirsutum L.) sown under different planting techniques. Cust. Agronegocio 2015, 11, 142–160. Available online: www.custoseagronegocioonline.com.br (accessed on 4 March 2022).
- Goyne, P.J.; McIntyre, G.T. Improving on Farm Irrigation Water Use Efficiency in the Queensland Cotton and Grain Industries; A project of QDPI; Agency for Food and Fiber Sciences, Farming System Institute and Australian Cotton CRC: Dalby, Australia, 2001. [Google Scholar]
- Anwar, M.M.; Gill, M.I.; Zaki, M.S. Effect of bed-furrow planting on cotton crop. Pak. Cottons. 2003, 47, 41–46. [Google Scholar]
- McAlavy, T.W. Researchers Investigate Cotton Irrigation Strategies; Agricultural Communications, Texas; A & M University System: College Station, TX, USA, 2004. [Google Scholar]
- Nadeem, M.A.; Ali, A.; Tahir, M.; Naeem, M.; Chadhar, A.R.; Ahmad, S. Effect of nitrogen levels and plant spacing on growth and yield of cotton. Pak. J. Life Soc. Sci. 2010, 8, 121–124. [Google Scholar]
- Gill, M.I. Bed and furrow planting method ensures profitable seed cotton yield. Pak. Cotton Grower. 1999, 3, 10–11. [Google Scholar]
- Maqbool, M.M.; Tanveer, A.; Ali, A.; Ahmad, R. Effect of sowing methods and herbicides on weeds and yield of cotton. Pak. J. Bot. 2001, 33, 383–387. [Google Scholar]
- Ali, L. Bio-economic studies on water economy and water use efficiency in cotton (Gossypium hirsutum L.) planted under different methods. Pak. J. Agric. Sci. 2008, 44, 571–574. [Google Scholar]
- Cao, Y.; He, J.; Yan, Y.; Feng, Z.; Wang, Q.; Zhang, Y. Effect of water deficit on cotton characteristics. China Cotton. 2003, 30, 29–30. [Google Scholar]
- Gwathmey, C.O.; Craig, C.C. Managing Earliness in Cotton with Mepiquat-type Growth Regulators. Crop Manag. 2003, 2, 1–8. [Google Scholar] [CrossRef]
- Biles, S.P.; Cothren, J.T. Flowering and Yield Response of Cotton to Application of Mepiquat Chloride and PGR-IV. Crop Sci. 2001, 41, 1834–1837. [Google Scholar] [CrossRef]
- Tung, S.A.; Huang, Y.; Ali, S.; Hafeez, A.; Shah, A.N.; Song, X.; Ma, X.; Luo, D.; Yang, G. Mepiquat chloride application does not favor leaf photosynthesis and carbohydrate metabolism as well as lint yield in late-planted cotton at high plant density. Field Crop. Res. 2018, 221, 108–118. [Google Scholar] [CrossRef]
- Sawan, Z.M.; Sakr, R.A. Response of Egyptian cotton (Gossypium barbadense) yield to 1,1-dimethyl piperidinium chloride (Pix). J. Agric. Sci. 1990, 114, 335–338. [Google Scholar] [CrossRef]
- Brar, Z.S.; Anupam, S.; Thakar, S. Response of hybrid cotton (Gossypium hirsutum) to nitrogen and canopy modification practices. Indian J. Agron. 2000, 45, 395–400. [Google Scholar]
- Ritchie, G.; Ziehl, A.; Shurley, D.; Sexton, L. Effects of varying irrigation and mepiquat chloride application on cotton height, uniformity, yield, and quality. In Proceedings of the Beltwide Cotton Conference, Nashville, TN, USA, 8–11 January 2008; National Cotton Council of America: Memphis, TN, USA, 2008; pp. 103–108. [Google Scholar]
- Livingston, S.D.; Anderson, D.J.; Wide, L.B.J.; Hickey, L.J. Use of foliar application of pix, PGR-IV and PCHA in low rate multiple applications for cotton improvement under irrigated and dry land conditions. Proc. Beltwide Cotton Conf. 1992, 3, 1055–1066. [Google Scholar]
- Zakaria, M.; Sawan, M.; Amal, H.E. Response of yield, yield component and fiber properties of Egyptian cotton (Gssypium barbadense L.) to nitrogen fertilization and foliar applied potassium and mepiquat chloride. J. Cotton Sci. 2006, 10, 224–234. [Google Scholar]
- Gwathmey, C.O.; Clement, J.D. Alteration of cotton source–sink relations with plant population density and mepiquat chloride. Field Crop. Res. 2010, 116, 101–107. [Google Scholar] [CrossRef]
- Prince, W.B.; Livingston, C.W.; Fernandez, C.J. Effects of planting date and mepiquat chloride on cotton growth, lint yield, and fiber quality in the south Texas coastal plains. Proceeding of the Beltwide Cotton Conference, San Antonio, TX, USA, 4–7 January 2000; National Cotton Council of America: Memphis, TN, USA, 2000; p. 681. [Google Scholar]
- Nawalagatti, C.M.; Doddamani, M.B.; Jyothi, R.H.; Chetti, M.B. Effect of plant growth regulators on growth, biochemical traits, yield and yield attributes in Bt cotton. J. Ecofriendly Agric. 2011, 6, 25–28. [Google Scholar]
- Collins, G.D.; Edmisten, K.L.; Wells, R.; Whitaker, J.R. The Effects of Mepiquat Chloride Applied to Cotton at Early Bloom and Physiological Cutout. J. Cotton Sci. 2017, 21, 183–189. [Google Scholar]
- Khanzada, B.; Khanzada, K.K. Effect of plant growth regulators on the lint quality of cotton parameters. Int. J. Zool. Stud. 2019, 4, 24–26. [Google Scholar]
- Meier, U. Growth Stages of Mono-and Dicotyledonous Plants; Federal Biological Research Centre for Agriculture and Forestry: Berlin, Germany, 2001. [Google Scholar]
- Moore, J.F. Cotton Classification and Quality. In The Cotton Industry in the United States; USDA-ERS Agricultural Economical Report No. 739; Glade, J.R., Meyer, L.A., Stuits, H., Eds.; U.S. Goverment Printing Office: Washington, DC, USA, 1996; pp. 51–57. [Google Scholar]
- Steel, R.G.D.; Torrie, J.H.; Dicky, D.A. Principles and Procedures of Statistics. A Biometrical Approach, 3rd ed.; McGraw Hill Book Company Inc.: New York, NY, USA, 1997; pp. 352–358. [Google Scholar] [CrossRef]
Treatment | Days to Flowering (Days) | Plant Height (cm) | Monopodial Branches | Sympodial Branches | Bolls Palnt−1 | Opened Bolls Palnt−1 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | ||
Sowing Techniques (S) | |||||||||||||
Flat sowing | 62.9 a | 64.7 a | 89.8 a | 93.7 b | 1.41 a | 1.58 a | 17.7 b | 20.1 b | 23.3 b | 26.0 b | 17.3 b | 18.6 b | |
Ridge sowing | 59.3 ab | 61.8 ab | 95.9 a | 96.3 ab | 1.60 a | 1.78 a | 21.5 b | 24.5 ab | 30.2 ab | 33.3 ab | 23.9 ab | 25.9 ab | |
Bed sowing | 56.6 b | 58.6 b | 99.1 a | 98.1 a | 1.72 a | 1.91 a | 26.5 a | 28.5 a | 33.9 a | 36.8 a | 27.3 a | 30.1 a | |
HSD (p ≤ 0.05) | 3.86 | 3.79 | 16.6 | 3.37 | 0.63 | 0.78 | 4.63 | 5.88 | 7.58 | 7.64 | 7.59 | 8.34 | |
Mepiquat chloride application timing (MC) | |||||||||||||
50 days after sowing | 62.4 a | 64.6 a | 87.6 b | 88.0 b | 1.44 b | 1.62 b | 18.9 b | 21.2 b | 26.3 b | 29.8 b | 20.9 b | 22.7 b | |
60 days after sowing | 59.5 ab | 61.4 ab | 95.6 ab | 97.3 a | 1.57 ab | 1.75 ab | 22.3 ab | 24.3 ab | 29.0 ab | 31.6 b | 22.4 b | 24.5 ab | |
70 days after sowing | 56.8 b | 59.1 b | 101.7 a | 102.8 a | 1.71 a | 1.89 a | 24.5 a | 27.6 a | 32.1 a | 34.8 a | 25.1 a | 27.4 a | |
HSD (p ≤ 0.05) | 4.60 | 4.33 | 13.5 | 7.56 | 0.62 | 0.15 | 4.37 | 4.43 | 3.53 | 3.15 | 2.29 | 2.94 | |
Analysis of variance | |||||||||||||
Source | df | ||||||||||||
S | 2 | ** | ** | ns | * | ns | ns | ** | * | * | * | * | * |
MC | 2 | * | * | * | ** | * | ** | * | ** | ** | ** | ** | ** |
S × MC | 4 | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Treatment | Un-Opened Bolls Plant−1 | Seed Cotton Yield Plant−1 (g) | Boll Weight (g) | Ginning out Turn (%) | Lint Yield (g) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | ||
Sowing Techniques (S) | |||||||||||
Flat sowing | 6.06 a | 7.45 a | 48.5 b | 52.1 b | 2.4 b | 2.6 b | 31.7 a | 35.1 a | 20.8 b | 23.1 b | |
Ridge sowing | 6.67 a | 7.21 a | 59.0 b | 62.5 b | 3.1 a | 3.2 a | 34.2 a | 36.4 a | 23.5 b | 25.9 b | |
Bed sowing | 6.67 a | 6.72 a | 73.1 a | 77.9 a | 3.2 a | 3.5 a | 37.2 a | 38.3 a | 29.4 a | 31.8 a | |
HSD (p ≤ 0.05) | 2.59 | 1.16 | 13.7 | 14.7 | 0.48 | 0.55 | 5.90 | 6.70 | 5.14 | 5.86 | |
Mepiquat chloride application timing (MC) | |||||||||||
50 days after sowing | 5.61 a | 6.87 a | 53.6 b | 57.0 b | 2.6 a | 2.8 b | 32.0 b | 35.9 a | 22.2 b | 24.2 b | |
60 days after sowing | 6.67 a | 7.06 a | 61.0 ab | 65.2 ab | 2.9 a | 3.2 a | 34.9 ab | 36.8 a | 23.3 b | 26.1 ab | |
70 days after sowing | 7.11 a | 7.46 a | 66.1 a | 70.3 a | 3.1 a | 3.3 a | 36.1 a | 37.1 a | 28.3 a | 30.7 a | |
HSD (p ≤ 0.05) | 1.86 | 1.36 | 9.15 | 9.82 | 0.57 | 0.38 | 2.95 | 2.51 | 4.19 | 4.91 | |
Analysis of variance | |||||||||||
Source | df | ||||||||||
S | 1 | ns | ns | ** | ** | ** | * | ns | ns | ** | * |
MC | 5 | ns | ns | * | * | ns | ** | ** | ns | ** | * |
S × MC | 5 | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Treatment | 100-Cotton Seed Weight (g) | Cotton Yield (kg ha−1) | Fiber Length (mm) | Fiber Strength (g tex−1) | Fiber Uniformity (%) | Fiber Fineness (μg inch−1) | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | 2017 | 2018 | ||
Sowing Techniques (S) | |||||||||||||
Flat sowing | 3.6 b | 3.9 b | 1844 b | 1982 b | 22.6 b | 23.9 a | 23.2 a | 22.4 a | 45.0 b | 46.2 a | 3.6 a | 3.7 a | |
Ridge sowing | 4.2 ab | 4.5 ab | 2244 b | 2376 b | 25.9 a | 24.6 a | 23.3 a | 22.6 a | 46.7 b | 47.1 ab | 3.9 a | 4.3 a | |
Bed sowing | 4.7 a | 5.0 a | 2779 a | 2960 a | 22.8 b | 25.3 a | 23.6 a | 22.9 a | 50.2 a | 48.6 a | 4.5 a | 4.7 a | |
HSD (p ≤ 0.05) | 0.64 | 0.72 | 520 | 560 | 1.47 | 1.74 | 2.84 | 3.11 | 2.54 | 2.01 | 1.31 | 1.13 | |
Mepiquat chloride application timing (MC) | |||||||||||||
50 days after sowing | 3.8 b | 4.1 b | 2038 b | 2168 b | 22.9 a | 23.9 a | 22.1 a | 22.2 a | 45.6 a | 45.9 a | 3.3 b | 3.9 a | |
60 days after sowing | 4.3 ab | 4.6 ab | 2318 ab | 2478 ab | 23.8 a | 24.5 a | 23.7 a | 22.8 a | 47.2 a | 47.8 a | 4.1 ab | 4.2 a | |
70 days after sowing | 4.4 a | 4.8 a | 2510 a | 2673 a | 24.6 a | 25.5 a | 24.3 a | 22.9 a | 49.1 a | 48.3 a | 4.7 a | 4.5 a | |
HSD (p ≤ 0.05) | 0.63 | 0.57 | 347.8 | 373 | 2.85 | 3.16 | 4.15 | 4.15 | 5.47 | 5.47 | 0.79 | 0.76 | |
Analysis of variance | |||||||||||||
Source | df | ||||||||||||
S | 1 | * | * | ** | ** | ** | ns | ns | ns | ** | * | ns | ns |
MC | 5 | * | * | * | * | ns | ns | ns | ns | ns | ns | ** | ns |
S × MC | 5 | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns | ns |
Characteristics | 2017 and 2018 | Units | Status | |
---|---|---|---|---|
(0–15 cm) | (15–30 cm) | |||
Texture | Sandy Loam | |||
Chemical analysis | ||||
pH | 8.20 | 7.95 | Medium alkaline | |
EC | 1.03 | 1.28 | dS m−1 | Non-saline |
Exchangeable sodium | 0.49 | 0.37 | mmol 100 g−1 | Normal |
Total nitrogen | 0.05 | 0.04 | % | Low |
Available phosphorus | 08.9 | 08.2 | mg kg−1 | Low |
Exchangeable potassium | 180 | 156 | mg kg−1 | Medium |
Organic matter | 0.98 | 0.72 | % | Low |
Boron | 0.63 | 0.32 | mg kg−1 | Deficient |
Zinc | 1.98 | 1.12 | mg kg−1 | Deficient |
Ferrous | 7.93 | 4.98 | mg kg−1 | Adequate |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Murtza, K.; Ishfaq, M.; Akbar, N.; Hussain, S.; Anjum, S.A.; Bukhari, N.A.; AlGarawi, A.M.; Hatamleh, A.A. Effect of Mepiquat Chloride on Phenology, Yield and Quality of Cotton as a Function of Application Time Using Different Sowing Techniques. Agronomy 2022, 12, 1200. https://doi.org/10.3390/agronomy12051200
Murtza K, Ishfaq M, Akbar N, Hussain S, Anjum SA, Bukhari NA, AlGarawi AM, Hatamleh AA. Effect of Mepiquat Chloride on Phenology, Yield and Quality of Cotton as a Function of Application Time Using Different Sowing Techniques. Agronomy. 2022; 12(5):1200. https://doi.org/10.3390/agronomy12051200
Chicago/Turabian StyleMurtza, Khadija, Muhammad Ishfaq, Nadeem Akbar, Saddam Hussain, Shakeel Ahmad Anjum, Najat A. Bukhari, Amal Mohamed AlGarawi, and Ashraf Atef Hatamleh. 2022. "Effect of Mepiquat Chloride on Phenology, Yield and Quality of Cotton as a Function of Application Time Using Different Sowing Techniques" Agronomy 12, no. 5: 1200. https://doi.org/10.3390/agronomy12051200
APA StyleMurtza, K., Ishfaq, M., Akbar, N., Hussain, S., Anjum, S. A., Bukhari, N. A., AlGarawi, A. M., & Hatamleh, A. A. (2022). Effect of Mepiquat Chloride on Phenology, Yield and Quality of Cotton as a Function of Application Time Using Different Sowing Techniques. Agronomy, 12(5), 1200. https://doi.org/10.3390/agronomy12051200